Cellular and Molecular Life Sciences

, Volume 68, Issue 6, pp 991–1003 | Cite as

Translation initiation: variations in the mechanism can be anticipated

  • Naglis MalysEmail author
  • John E. G. McCarthy


Translation initiation is a critical step in protein synthesis. Previously, two major mechanisms of initiation were considered as essential: prokaryotic, based on SD interaction; and eukaryotic, requiring cap structure and ribosomal scanning. Although discovered decades ago, cap-independent translation has recently been acknowledged as a widely spread mechanism in viruses, which may take place in some cellular mRNA translations. Moreover, it has become evident that translation can be initiated on the leaderless mRNA in all three domains of life. New findings demonstrate that other distinguishable types of initiation exist, including SD-independent in Bacteria and Archaea, and various modifications of 5′ end-dependent and internal initiation mechanisms in Eukarya. Since translation initiation has developed through the loss, acquisition, and modification of functional elements, all of which have been elevated by competition with viral translation in a large number of organisms of different complexity, more variation in initiation mechanisms can be anticipated.


Translation initiation mechanism mRNA Ribosome Initiation factor Archaea Bacteria Eukarya Virus Evolution 



We would like to thank anonymous reviewers for their valuable comments and suggestions, and apologies to those researchers whose work has not been cited because of the limited space. N.M. and J.E.G.M. acknowledge the support of BBSRC/EPSRC grant BB/C008219/1.


  1. 1.
    Londei P (2007) Translation. In: Cavicchioli R (ed) Archaea: cellular and molecular biology. ASM Press, Washington, pp 175–208Google Scholar
  2. 2.
    Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208PubMedCrossRefGoogle Scholar
  3. 3.
    Woese C, Kandler O, Wheelis M (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  4. 4.
    Kyrpides NC, Woese CR (1998) Universally conserved translation initiation factors. Proc Natl Acad Sci USA 95:224–228PubMedCrossRefGoogle Scholar
  5. 5.
    Spahn CMT, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae -tRNA-ribosome and subunit–subunit interactions. Cell 107:373–386PubMedCrossRefGoogle Scholar
  6. 6.
    Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9:242–253PubMedCrossRefGoogle Scholar
  7. 7.
    Panse VG, Johnson AW (2010) Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci 35:260–266PubMedCrossRefGoogle Scholar
  8. 8.
    Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU (2005) Initiation of protein synthesis in Bacteria. Microbiol Mol Biol Rev 69:101–123PubMedCrossRefGoogle Scholar
  9. 9.
    Yusupova GZ, Yusupov MM, Cate JHD, Noller HF (2001) The path of messenger RNA through the ribosome. Cell 106:233–241PubMedCrossRefGoogle Scholar
  10. 10.
    Boni IV, Isaeva DM, Musychenko ML, Tzareva NV (1991) Ribosome-messenger recognition-messenger-RNA target sites for ribosomal-protein S1. Nucleic Acids Res 19:155–162PubMedCrossRefGoogle Scholar
  11. 11.
    McCarthy JEG (1998) Posttrancriptional control of gene expression in yeast. Microbiol Mol Biol Rev 62:1492–1553PubMedGoogle Scholar
  12. 12.
    Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745PubMedCrossRefGoogle Scholar
  13. 13.
    van der Kelen K, Beyaert R, Inze D, De Veylder L (2009) Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 44:143–168CrossRefGoogle Scholar
  14. 14.
    Gallie DR (1998) A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 216:1–11PubMedCrossRefGoogle Scholar
  15. 15.
    Martin W, Koonin EV (2006) Introns and the origin of nucleus–cytosol compartmentalization. Nature 440:41–45PubMedCrossRefGoogle Scholar
  16. 16.
    French SL, Santangelo TJ, Beyer AL, Reeve JN (2007) Transcription and translation are coupled in Archaea. Mol Biol Evol 24:893–895PubMedCrossRefGoogle Scholar
  17. 17.
    Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2:135–140PubMedCrossRefGoogle Scholar
  18. 18.
    Kushner SR (2004) mRNA decay in prokaryotes and eukaryotes: different approaches to a similar problem. IUBMB Life 56:585–594PubMedCrossRefGoogle Scholar
  19. 19.
    Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37PubMedCrossRefGoogle Scholar
  20. 20.
    Zajančkauskaite A, Malys N, Nivinskas R (1997) A rare type of overlapping genes in bacteriophage T4: gene 30.3′ is completely embedded within gene 30.3 by one position downstream. Gene 194:157–162PubMedCrossRefGoogle Scholar
  21. 21.
    Jayant L, Priano C, Mills DR (2010) In polycistronic Qβ RNA, single-strandedness at one ribosome binding site directly affects translational initiations at a distal upstream cistron. Nucleic Acids Res (in press)Google Scholar
  22. 22.
    Komarova AV, Tchufistova LS, Dreyfus M, Boni IV (2005) AU-rich sequences within 50 untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol 187:1344–1349PubMedCrossRefGoogle Scholar
  23. 23.
    Nivinskas R, Malys N, Klausa V, Vaiškūnaitė R, Gineikienė E (1999) Post-transcriptional control of bacteriophage T4 gene 25 expression mRNA secondary structure that enhances translational initiation. J Mol Biol 288:291–304PubMedCrossRefGoogle Scholar
  24. 24.
    Andreev DE, Terenin IM, Dmitriev SE, Shatsky IN (2006) Similar features in mechanisms of translation initiation of mRNAs in eukaryotic and prokaryotic systems. Mol Biol 40:694–702CrossRefGoogle Scholar
  25. 25.
    Boni IV (2006) Diverse molecular mechanisms of translation initiation in prokaryotes. Mol Biol 40:587–596CrossRefGoogle Scholar
  26. 26.
    Grundy FJ, Henkin TM (2006) From ribosome to riboswitch: control of gene expression in Bacteria by RNA structural rearrangements. Crit Rev Biochem Mol Biol 41:329–338PubMedCrossRefGoogle Scholar
  27. 27.
    Kaberdin VR, Bläsi U (2006) Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol Rev 30:967–979PubMedCrossRefGoogle Scholar
  28. 28.
    Simonetti A, Marzi A, Jenner L, Myasnikov A, Romby P, Yusupova G, Klaholz BP, Yusupov M (2009) A structural view of translation initiation in Bacteria. Cell Mol Life Sci 66:423–436PubMedCrossRefGoogle Scholar
  29. 29.
    Gualerzi CO, Brandi L, Caserta E, La Teana A, Spurio R, Tomsic J, Pon CL (2000) Translation initiation in Bacteria. In: Garrett RA, Douthwaite SR, Liljas A, Matheson AT, Moore PB, Noller HF (eds) The ribosome. Structure, function, antibiotics, and cellular interactions. ASM Press, Washington, pp 447–494Google Scholar
  30. 30.
    Londei P (2005) Evolution of translational initiation: new insights from the Archaea. FEMS Microbiol Rev 29:185–200PubMedCrossRefGoogle Scholar
  31. 31.
    Benelli D, Londei P (2009) Begin at the beginning: evolution of translational initiation. Res Microbiol 160:493–501PubMedCrossRefGoogle Scholar
  32. 32.
    Benelli D, Marzi S, Mancone C, Alonzi T, la Teana A, Londei P (2009) Function and ribosomal localization of aIF6, a translational regulator shared by Archaea and Eukarya. Nucleic Acids Res 37:256–267PubMedCrossRefGoogle Scholar
  33. 33.
    Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 10:113–127CrossRefGoogle Scholar
  34. 34.
    Myasnikov AG, Simonetti A, Marzi S, Klaholz BP (2009) Structure-function insights into prokaryotic and eukaryotic translation initiation. Curr Opin Struct Biol 19:300–309PubMedCrossRefGoogle Scholar
  35. 35.
    Fuglsang A (2004) Evolution of prokaryotic DNA: intragenic and extragenic divergences observed with orthologs from three related species. Mol Biol Evol 21:1152–1159PubMedCrossRefGoogle Scholar
  36. 36.
    Shuman S (2001) Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol 66:1–40PubMedCrossRefGoogle Scholar
  37. 37.
    Hartman H, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99:1420–1425PubMedCrossRefGoogle Scholar
  38. 38.
    Kozak M (1987) An analysis of 50-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148PubMedCrossRefGoogle Scholar
  39. 39.
    Hernandez G (2008) Was the initiation of translation in early eukaryotes IRES-driven? Trends Biochem Sci 33:58–64PubMedCrossRefGoogle Scholar
  40. 40.
    Schneider RJ, Mohr I (2003) Translation initiation and viral tricks. Trends Biochem Sci 28:130–136PubMedCrossRefGoogle Scholar
  41. 41.
    Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346PubMedCrossRefGoogle Scholar
  42. 42.
    Hartz D, McPheeters DS, Gold L (1991) Influence of mRNA determinants on translation initiation in Escherichia coli. J Mol Biol 218:83–97PubMedCrossRefGoogle Scholar
  43. 43.
    Komarova AV, Tchufistova LS, Supina EV, Boni IV (2002) Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA 8:1137–1147PubMedCrossRefGoogle Scholar
  44. 44.
    de Smit MH, van Duin J (2003) Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 331:737–743PubMedCrossRefGoogle Scholar
  45. 45.
    Studer SM, Joseph S (2006) Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol Cell 22:105–115PubMedCrossRefGoogle Scholar
  46. 46.
    Malys N, Nivinskas R (2009) Non-canonical RNA arrangement in T4-even phages: accommodated ribosome binding site at the gene 26-25 intercistronic junction. Mol Microbiol 73:1115–1127PubMedCrossRefGoogle Scholar
  47. 47.
    Boni IV, Artamonova VS, Tzareva NV, Dreyfus M (2001) Non-canonical mechanism for translational control in Bacteria: synthesis of ribosomal protein S1. EMBO J 20:4222–4232PubMedCrossRefGoogle Scholar
  48. 48.
    Schlax PJ, Worhunsky DJ (2003) Translational repression mechanisms in prokaryotes. Mol Microbiol 48:1157–1169PubMedCrossRefGoogle Scholar
  49. 49.
    Babitzke P, Baker CS, Romeo T (2009) Regulation of translation initiation by RNA binding proteins. Annu Rev Microbiol 63:27–44PubMedCrossRefGoogle Scholar
  50. 50.
    Ma J, Campbell A, Karlin S (2002) Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184:5733–5745PubMedCrossRefGoogle Scholar
  51. 51.
    Chang B, Halgamuge S, Tang SL (2006) Analysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes. Gene 373:90–99PubMedCrossRefGoogle Scholar
  52. 52.
    Nakagawa S, Niimura Y, Miura K, Gojobori T (2010) Dynamic evolution of translation initiation mechanisms in prokaryotes. Proc Natl Acad Sci USA 107:6382–6387PubMedCrossRefGoogle Scholar
  53. 53.
    Hasenöhrl D, Fabbretti A, Londei P, Gualerzi CO, Bläsi U (2009) Translation initiation complex formation in the crenarchaeon Sulfolobus solfataricus. RNA 15:2288–2298PubMedCrossRefGoogle Scholar
  54. 54.
    Hering O, Brenneis M, Beer J, Suess B, Soppa J (2009) A novel mechanism for translation initiation operates in Haloarchaea. Mol Microbiol 71:1451–1463PubMedCrossRefGoogle Scholar
  55. 55.
    Grill S, Gualerzi CO, Londei P, Bläsi U (2000) Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 19:4101–4110PubMedCrossRefGoogle Scholar
  56. 56.
    Benelli D, Maone E, Londei P (2003) Two different mechanisms for ribosome/mRNA interaction in Archaeal translation initiation. Mol Microbiol 50:635–643PubMedCrossRefGoogle Scholar
  57. 57.
    Moll I, Hirokawa G, Kiel MC, Kaji A, Bläsi U (2004) Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res 32:3354–3363PubMedCrossRefGoogle Scholar
  58. 58.
    Li L, Wang CC (2004) Capped mRNA with a single nucleotide leader is optimally translated in a primitive eukaryote, Giardia lamblia. J Biol Chem 279:14656–14664PubMedCrossRefGoogle Scholar
  59. 59.
    Brenneis M, Soppa J (2009) Regulation of translation in haloarchaea: 5′- and 3′-UTRs are essential and have to functionally interact in vivo. PLOS One 4:e4484PubMedCrossRefGoogle Scholar
  60. 60.
    Montoya J, Ojala D, Attardi G (1981) Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290:465–470PubMedCrossRefGoogle Scholar
  61. 61.
    Moll I, Grill S, Gualerzi CO, Bläsi U (2002) Leaderless mRNAs in Bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43:239–246PubMedCrossRefGoogle Scholar
  62. 62.
    O’Donnell SM, Janssen GR (2002) Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli. J Bacteriol 184:6730–6733PubMedCrossRefGoogle Scholar
  63. 63.
    Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I (2009) An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis. Mol Cell 33:227–236PubMedCrossRefGoogle Scholar
  64. 64.
    Hernández G, Vazquez-Pianzola P (2005) Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev 122:865–876PubMedCrossRefGoogle Scholar
  65. 65.
    von der Haar T, Gross JD, Wagner G, McCarthy JE (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11:503–511CrossRefGoogle Scholar
  66. 66.
    Kahvejian A, Svitkin YV, Sukarieh R, M’Boutchou MN, Sonenberg N (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19:104–113PubMedCrossRefGoogle Scholar
  67. 67.
    Martineau Y, Derry MC, Wang X, Yanagiya A, Berlanga JJ, Shyu A-B, Imataka H, Gehring K, Sonenberg N (2008) Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Mol Cell Biol 28:6658–6667PubMedCrossRefGoogle Scholar
  68. 68.
    Pestova TV, Kolupaeva VG (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 6:2906–2922CrossRefGoogle Scholar
  69. 69.
    Kochetov AV (2008) Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 30:683–691PubMedCrossRefGoogle Scholar
  70. 70.
    Song KY, Choi HS, Hwang CK, Kim CS, Law P-Y, Wei L-N, Loh HH (2009) Differential use of an in-frame translation initiation codon regulates human mu opioid receptor (OPRM1). Cell Mol Life Sci 66:2933–2942PubMedCrossRefGoogle Scholar
  71. 71.
    Rhoads RE (2009) EIF4E: new family members, new binding partners, new roles. J Biol Chem 284:16711–16715PubMedCrossRefGoogle Scholar
  72. 72.
    Joshi B, Cameron A, Jagus R (2004) Characterization of mammalian eIF4E-family members. Eur J Biochem 271:2189–2203PubMedCrossRefGoogle Scholar
  73. 73.
    Ruud KA, Kuhlow C, Goss DJ, Browning KS (1998) Identification and characterization of a novel cap-binding protein from Arabidopsis thaliana. J Biol Chem 273:10325–10330PubMedCrossRefGoogle Scholar
  74. 74.
    Ptushkina M, Malys N, McCarthy JEG (2004) eIF4E isoform 2 in Schizosaccharomyces pombe is a novel stress-response factor. EMBO Rep 5:311–316PubMedCrossRefGoogle Scholar
  75. 75.
    Keiper BD, Lamphear BJ, Deshpande AM, Jankowska-Anyszka M, Aamodt EJ, Blumenthal T, Rhoads RE (2000) Functional characterization of five eIF4E isoforms in Caenorhabditis elegans. J Biol Chem 275:10590–10596PubMedCrossRefGoogle Scholar
  76. 76.
    Malys N, McCarthy JEG (2006) Dcs2, a novel stress induced modulator of m7GpppX pyrophosphate activity that locates to P bodies. J Mol Biol 363:370–382PubMedCrossRefGoogle Scholar
  77. 77.
    Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Molecular biology: inhibition of translational initiation by let-7 microRNA in human cells. Science 309, 1573–1576Google Scholar
  78. 78.
    Humphreys DT, Westman BJ, Martin DIK, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102:16961–16966PubMedCrossRefGoogle Scholar
  79. 79.
    Chang TC, Yamashita A, Chen CY, Yamashita Y, Zhu W, Durdan S, Kahvejian A, Sonenberg N, Shyu AB (2004) UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev 18:2010–2023PubMedCrossRefGoogle Scholar
  80. 80.
    Ivanov PV, Gehring NH, Kunz JB, Hentze MW, Kulozik AE (2008) Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J 27:736–747PubMedCrossRefGoogle Scholar
  81. 81.
    Mir MA, Panganiban AT (2008) A protein that replaces the entire cellular eIF4F complex. EMBO J 27:3129–3139PubMedCrossRefGoogle Scholar
  82. 82.
    Kieft JS (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33:274–283PubMedCrossRefGoogle Scholar
  83. 83.
    Niepmann M (2009) Internal translation initiation of picornaviruses and hepatitis C virus. Biochim Biophys Acta 1789:529–541PubMedGoogle Scholar
  84. 84.
    Filbin ME, Kieft JS (2009) Toward a structural understanding of IRES RNA function. Curr Opin Struct Biol 19:267–276PubMedCrossRefGoogle Scholar
  85. 85.
    Hellen CU (2009) IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Biochim Biophys Acta 1789:558–570PubMedGoogle Scholar
  86. 86.
    Pestova TV, Hellen CU, Shatsky IN (1996) Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 16:6859–6869PubMedGoogle Scholar
  87. 87.
    Pestova TV, Shatsky IN, Hellen CUT (1996) Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol 16:6870–6878PubMedGoogle Scholar
  88. 88.
    Meerovitch K, Pelletier J, Sonenberg N (1989) A cellular protein that binds to the 5′-noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev 3:1026–1034PubMedCrossRefGoogle Scholar
  89. 89.
    Jang SK, Wimmer E (1990) Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev 4:1560–1572PubMedCrossRefGoogle Scholar
  90. 90.
    Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490PubMedCrossRefGoogle Scholar
  91. 91.
    Lukong KE, Chang K, Khandjian EW, Richard S (2008) RNA-binding proteins in human genetic disease. Trends Genet 24:416–425PubMedCrossRefGoogle Scholar
  92. 92.
    Auweter SD, Allain FH-T (2008) Structure-function relationships of the polypyrimidine tract binding protein. Cell Mol Life Sci 65:516–527PubMedCrossRefGoogle Scholar
  93. 93.
    Costa-Mattioli M, Svitkin Y, Sonenberg N (2004) La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Mol Cell Biol 24:6861–6870PubMedCrossRefGoogle Scholar
  94. 94.
    Lewis SM, Holcik M (2008) For IRES trans-acting factors, it is all about location. Oncogene 27:1033–1035PubMedCrossRefGoogle Scholar
  95. 95.
    Lopez-Lastra M, Ramdohr P, Letelier A, Vallejos M, Vera-Otarola J, Valiente-Echeverria F (2010) Translation initiation of viral mRNAs. Rev Med Virol 20:177–195PubMedCrossRefGoogle Scholar
  96. 96.
    Ali N, Pruijn GJ, Kenan DJ, Keene JD, Siddiqui A (2000) Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J Biol Chem 275:27531–27540PubMedGoogle Scholar
  97. 97.
    Hwang B, Lim JH, Hahm B, Jang SK, Lee SW (2009) hnRNP L is required for the translation mediated by HCV IRES. Biochem Biophys Res Commun 378:584–588PubMedCrossRefGoogle Scholar
  98. 98.
    Wilson JE, Pestova TV, Hellen CU, Sarnow P (2000) Initiation of protein synthesis from the A site of the ribosome. Cell 102:511–520PubMedCrossRefGoogle Scholar
  99. 99.
    Hellen CU, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612PubMedCrossRefGoogle Scholar
  100. 100.
    Jan E, Sarnow P (2002) Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J Mol Biol 324:889–902PubMedCrossRefGoogle Scholar
  101. 101.
    Costantino DA, Pfingsten JS, Rambo RP, Kieft JS (2008) tRNA–mRNA mimicry drives translation initiation from a viral IRES. Nat Struct Mol Biol 15:57–64PubMedCrossRefGoogle Scholar
  102. 102.
    Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325PubMedCrossRefGoogle Scholar
  103. 103.
    Jang SK, Kräusslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643PubMedGoogle Scholar
  104. 104.
    Jang SK, Davies MV, Kaufman RJ, Wimmer E (1989) Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomyocarditis virus RNA in vivo. J Virol 63:1651–1660PubMedGoogle Scholar
  105. 105.
    Spriggs KA, Stoneley M, Bushell M, Willis AE (2008) Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 100:27–38PubMedCrossRefGoogle Scholar
  106. 106.
    Andreev DE, Dmitriev SE, Terenin IM, Prassolov VS, Merrick WC, Shatsky IN (2009) Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs. Nucleic Acids Res 37:6135–6147PubMedCrossRefGoogle Scholar
  107. 107.
    Bushell M, Stoneley M, Kong YW, Hamilton TL, Spriggs KA, Dobbyn HC, Qin X, Sarnow P, Willis AE (2006) Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis. Mol Cell 23:401–412PubMedCrossRefGoogle Scholar
  108. 108.
    Gilbert WV, Zhou K, Butler TK, Doudna JA (2007) Cap-independent translation is required for starvation-induced differentiation in yeast. Science 317:1224–1227PubMedCrossRefGoogle Scholar
  109. 109.
    Kozak M (2008) Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 423:108–115PubMedCrossRefGoogle Scholar
  110. 110.
    Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, Shatsky IN, Agol VI, Hellen CU (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci USA 98:7029–7036PubMedCrossRefGoogle Scholar
  111. 111.
    Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156PubMedCrossRefGoogle Scholar
  112. 112.
    Sonenberg N (1990) Measures and countermeasures in the modulation of initiation factor activities by viruses. New Biol 2:402–409PubMedGoogle Scholar
  113. 113.
    Fraser CS, Doudna JA (2007) Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 5:29–38PubMedCrossRefGoogle Scholar
  114. 114.
    Sarnow P, Cevallos RC, Jan E (2005) Takeover of host ribosomes by divergent IRES elements. Biochem Soc Trans 33:1479–1482PubMedCrossRefGoogle Scholar
  115. 115.
    Belsham GJ (2009) Divergent picornavirus IRES elements. Virus Res 139:183–192PubMedCrossRefGoogle Scholar
  116. 116.
    Balvay L, Soto Rifo R, Ricci EP, Decimo D, Ohlmann T (2009) Structural and functional diversity of viral IRESes. Biochim Biophys Acta 1789:542–557PubMedGoogle Scholar
  117. 117.
    Dreher TW, Miller WA (2006) Translational control in positive strand RNA plant viruses. Virology 344:185–197PubMedCrossRefGoogle Scholar
  118. 118.
    Krab IM, Caldwell C, Gallie DR, Bol JF (2005) Coat protein enhances translational efficiency of Alfalfa mosaic virus RNAs and interacts with the eIF4G component of initiation factor eIF4F. J Gen Virol 86:1841–1849PubMedCrossRefGoogle Scholar
  119. 119.
    Polacek C, Friebe P, Harris E (2009) Poly(A)-binding protein binds to the non-polyadenylated 39 untranslated region of dengue virus and modulates translation efficiency. J Gen Virol 90:687–692PubMedCrossRefGoogle Scholar
  120. 120.
    Miller WA, Wang Z, Treder K (2007) The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs. Biochem Soc Trans 35:1629–1633PubMedCrossRefGoogle Scholar
  121. 121.
    Wang Z, Treder K, Miller WA (2009) Structure of a viral cap-independent translation element that functions via high affinity binding to the eIF4E subunit of eIF4F. J Biol Chem 284:14189–14202PubMedCrossRefGoogle Scholar
  122. 122.
    Liu Y, Wimmer E, Paul AV (2009) Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim Biophys Acta 1789:495–517PubMedGoogle Scholar
  123. 123.
    Goodfellow I, Chaudhry Y, Gioldasi I, Gerondopoulos A, Natoni A, Labrie L, Laliberté JF, Roberts L (2005) Calicivirus translation initiation requires an interaction between VPg and eIF4E. EMBO Rep 6:968–972PubMedCrossRefGoogle Scholar
  124. 124.
    Kang B-C, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in capsicum encodes a translation initiation factor elF4E that interacts with tobacco etch virus VPg. Plant J 42:392–405PubMedCrossRefGoogle Scholar
  125. 125.
    Charron C, Nicolaï M, Gallois JL, Robaglia C, Moury B, Palloix A, Caranta C (2008) Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J 54:56–68PubMedCrossRefGoogle Scholar
  126. 126.
    Vende P, Piron M, Castagne N, Poncet D (2000) Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol 74:7064–7071PubMedCrossRefGoogle Scholar
  127. 127.
    Piron M, Vende P, Cohen J, Poncet D (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17:5811–5821PubMedCrossRefGoogle Scholar
  128. 128.
    Groft CM, Burley SK (2002) Recognition of eIF4G by Rotavirus NSP3 reveals a basis for mRNA circularization. Mol Cell 9:1273–1283PubMedCrossRefGoogle Scholar
  129. 129.
    Balvay L, Lopez-Lastra M, Sargueil B, Darlix J-L, Ohlmann T (2007) Translation control of retroviruses. Nat Rev Microbiol 5:128–140PubMedCrossRefGoogle Scholar
  130. 130.
    Hernandez G, Altmann M, Lasko P (2010) Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem Sci 35:63–73PubMedCrossRefGoogle Scholar
  131. 131.
    Smith RWP, Gray NK (2010) Poly(A)-binding protein (PABP): a common viral target. Biochem J 426:1–11PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang J, Deutscher MP (1992) A uridine-rich sequence required for translation of prokaryotic mRNA. Proc Natl Acad Sci USA 89:2605–2609PubMedCrossRefGoogle Scholar
  133. 133.
    O’Connor M, Asai T, Squires CL, Dahlberg AE (1999) Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. Proc Natl Acad Sci USA 96:8973–8978PubMedCrossRefGoogle Scholar
  134. 134.
    Vilela C, McCarthy JEG (2003) Regulation of fungal gene expression via short open reading frames in the mRNA 5′untranslated region. Mol Microbiol 49:859–867PubMedCrossRefGoogle Scholar
  135. 135.
    Andreev DE, Fernandez-Miragall O, Ramajo J, Dmitriev SE, Terenin IM, Martinez-Salas E, Shatsky IN (2007) Differential factor requirement to assemble translation initiation complexes at the alternative start codons of foot-and-mouth disease virus RNA. RNA 13:1366–1374PubMedCrossRefGoogle Scholar
  136. 136.
    Chaudhry Y, Nayak A, Bordeleau M-E, Tanaka J, Pelletier J, Belsham GJ, Roberts LO, Goodfellow IG (2006) Caliciviruses differ in their functional requirements for eIF4F components. J Biol Chem 281:25315–25325PubMedCrossRefGoogle Scholar
  137. 137.
    Dreher TW (2009) Role of tRNA-like structures in controlling plant virus replication. Virus Res 139:217–229PubMedCrossRefGoogle Scholar
  138. 138.
    Nicholson BL, Wu B, Chevtchenko I, White KA (2010) Tombusvirus recruitment of host translational machinery via the 3′ UTR. RNA 16:1402–1419PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Manchester Centre for Integrative Systems Biology, Faculty of Life Sciences, Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK
  2. 2.Manchester Centre for Integrative Systems Biology, School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK

Personalised recommendations