Cellular and Molecular Life Sciences

, Volume 68, Issue 3, pp 341–352 | Cite as

The importance of HLA-G expression in embryos, trophoblast cells, and embryonic stem cells

  • Roberta Rizzo
  • Martine Vercammen
  • Hilde van de Velde
  • Peter A. Horn
  • Vera Rebmann
Multi-Author Review

Abstract

The nonclassical HLA-G molecule is a trophoblast-specific molecule present in almost every pregnancy. It differs from classical HLA class I molecules by the low degree of allelic variants and the high diversity of protein structures. HLA-G is reported to be a tolerogenic molecule that acts on cells of both innate and adaptive immunity. At the maternal–fetal interface HLA-G seems to be responsible largely for the reprogramming of local maternal immune response. This review will focus on the HLA-G gene expression profile in pregnancy, in preimplantation embryos, and in human embryonic stem cells with emphasis on the structural diversity of the HLA-G protein and its potential functional and diagnostic implications.

Keywords

HLA-G HLA-G isoforms Trophoblast cells Embryonic stem cells Embryo culture Preimplantation embryo 

References

  1. 1.
    Ishitani A, Sageshima N, Lee N, Dorofeeva N, Hatake K, Marquardt H, Geraghty DE (2003) Protein expression and peptide binding suggest unique and interacting functional roles for HLA-E, F, and G in maternal–placental immune recognition. J Immunol 171:1376–1384PubMedGoogle Scholar
  2. 2.
    Fujii T, Ishitani A, Geraghty DE (1994) A soluble form of the HLA-G antigen is encoded by a messenger ribonucleic acid containing intron 4. J Immunol 153:5516–5524PubMedGoogle Scholar
  3. 3.
    Ishitani A, Geraghty DE (1992) Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc Natl Acad Sci USA 89:3947–3951PubMedCrossRefGoogle Scholar
  4. 4.
    Paul P et al (2000) Identification of HLA-G7 as a new splice variant of the HLA-G mRNA and expression of soluble HLA-G5, -G6, and -G7 transcripts in human transfected cells. Hum Immunol 61:1138–1149PubMedCrossRefGoogle Scholar
  5. 5.
    Park GM, Lee S, Park B, Kim E, Shin J, Cho K, Ahn K (2004) Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochem Biophys Res Commun 313:606–611PubMedCrossRefGoogle Scholar
  6. 6.
    Diehl M, Munz C, Keilholz W, Stevanovic S, Holmes N, Loke YW, Rammensee HG (1996) Non-classical HLA-G molecules are classical peptide presenters. Curr Biol 6:305–314PubMedCrossRefGoogle Scholar
  7. 7.
    Lee N, Malacko AR, Ishitani A, Chen MC, Bajorath J, Marquardt H, Geraghty DE (1995) The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3:591–600PubMedCrossRefGoogle Scholar
  8. 8.
    Walpole NG, Kjer-Nielsen L, Kostenko L, McCluskey J, Brooks AG, Rossjohn J, Clements CS (2010) The structure and stability of the monomorphic HLA-G are influenced by the nature of the bound peptide. J Mol Biol 397:467–480PubMedCrossRefGoogle Scholar
  9. 9.
    Bahri R et al (2006) Soluble HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes. J Immunol 176:1331–1339PubMedGoogle Scholar
  10. 10.
    Dorling A, Monk NJ, Lechler RI (2000) HLA-G inhibits the transendothelial migration of human NK cells. Eur J Immunol 30:586–593PubMedCrossRefGoogle Scholar
  11. 11.
    Fournel S, Aguerre-Girr M, Huc X, Lenfant F, Alam A, Toubert A, Bensussan A, Le Bouteiller P (2000) Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol 164:6100–6104PubMedGoogle Scholar
  12. 12.
    Le Rond S, Azema C, Krawice-Radanne I, Durrbach A, Guettier C, Carosella ED, Rouas-Freiss N (2006) Evidence to support the role of HLA-G5 in allograft acceptance through induction of immunosuppressive/regulatory T cells. J Immunol 176:3266–3276PubMedGoogle Scholar
  13. 13.
    Rajagopalan S, Bryceson YT, Kuppusamy SP, Geraghty DE, van der Meer A, Joosten I, Long EO (2006) Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol 4:e9PubMedCrossRefGoogle Scholar
  14. 14.
    Rajagopalan S, Fu J, Long EO (2001) Cutting edge: induction of IFN-gamma production but not cytotoxicity by the killer cell Ig-like receptor KIR2DL4 (CD158d) in resting NK cells. J Immunol 167:1877–1881PubMedGoogle Scholar
  15. 15.
    Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci USA 94:11520–11525PubMedCrossRefGoogle Scholar
  16. 16.
    Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED (1997) The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci USA 94:5249–5254PubMedCrossRefGoogle Scholar
  17. 17.
    Yan WH, Fan LA (2005) Residues Met76 and Gln79 in HLA-G alpha1 domain involve in KIR2DL4 recognition. Cell Res 15:176–182PubMedCrossRefGoogle Scholar
  18. 18.
    Gros F, Cabillic F, Toutirais O, Maux AL, Sebti Y, Amiot L (2008) Soluble HLA-G molecules impair natural killer/dendritic cell crosstalk via inhibition of dendritic cells. Eur J Immunol 38:742–749PubMedCrossRefGoogle Scholar
  19. 19.
    LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED (2004) HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl Acad Sci USA 101:7064–7069PubMedCrossRefGoogle Scholar
  20. 20.
    Liang S, Ristich V, Arase H, Dausset J, Carosella ED, Horuzsko A (2008) Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6–STAT3 signaling pathway. Proc Natl Acad Sci USA 105:8357–8362PubMedCrossRefGoogle Scholar
  21. 21.
    Ristich V, Liang S, Zhang W, Wu J, Horuzsko A (2005) Tolerization of dendritic cells by HLA-G. Eur J Immunol 35:1133–1142PubMedCrossRefGoogle Scholar
  22. 22.
    Fons PCS, Cartwright JE, Lenfant F, L′Faqihi F, Giustiniani J, Herault JP, Gueguen G, Bono F, Savi P, Aguerre-Girr M, Fournel S, Malecaze F, Bensussan A, Plouët J, Le Bouteiller P (2006) Soluble HLA-G1 inhibits angiogenesis through an apoptotic pathway and by direct binding to CD160 receptor expressed by endothelial cells. Blood 108:2608–2615PubMedCrossRefGoogle Scholar
  23. 23.
    Kanai T, Fujii T, Kozuma S, Yamashita T, Miki A, Kikuchi A, Taketani Y (2001) Soluble HLA-G influences the release of cytokines from allogeneic peripheral blood mononuclear cells in culture. Mol Hum Reprod 7:195–200PubMedCrossRefGoogle Scholar
  24. 24.
    LeMaoult J, Zafaranloo K, Le Danff C, Carosella ED (2005) HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J 19:662–664PubMedGoogle Scholar
  25. 25.
    Amiot L, Onno M, Renard I, Drenou B, Guillaudeux T, Le Bouteiller P, Fauchet R (1996) HLA-G transcription studies during the different stages of normal and malignant hematopoiesis. Tissue Antigens 48:609–614PubMedCrossRefGoogle Scholar
  26. 26.
    Le Discorde M, Moreau P, Sabatier P, Legeais JM, Carosella ED (2003) Expression of HLA-G in human cornea, an immune-privileged tissue. Hum Immunol 64:1039–1044PubMedCrossRefGoogle Scholar
  27. 27.
    Mallet V, Fournel S, Schmitt C, Campan A, Lenfant F, Le Bouteiller P (1999) Primary cultured human thymic epithelial cells express both membrane-bound and soluble HLA-G translated products. J Reprod Immunol 43:225–234PubMedCrossRefGoogle Scholar
  28. 28.
    McMaster MT et al (1995) Human placental HLA-G expression is restricted to differentiated cytotrophoblasts. J Immunol 154:3771–3778PubMedGoogle Scholar
  29. 29.
    Menier C, Rabreau M, Challier JC, Le Discorde M, Carosella ED, Rouas-Freiss N (2004) Erythroblasts secrete the nonclassical HLA-G molecule from primitive to definitive hematopoiesis. Blood 104:3153–3160PubMedCrossRefGoogle Scholar
  30. 30.
    Carosella ED, Favier B, Rouas-Freiss N, Moreau P, Lemaoult J (2008) Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood 111:4862–4870PubMedCrossRefGoogle Scholar
  31. 31.
    Carosella ED, Moreau P, Lemaoult J, Rouas-Freiss N (2008) HLA-G: from biology to clinical benefits. Trends Immunol 29:125–132PubMedCrossRefGoogle Scholar
  32. 32.
    Ellis SA, Sargent IL, Redman CW, McMichael AJ (1986) Evidence for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line. Immunology 59:595–601PubMedGoogle Scholar
  33. 33.
    Hunt JS, Langat DL (2009) HLA-G: a human pregnancy-related immunomodulator. Curr Opin Pharmacol 9:462–469PubMedCrossRefGoogle Scholar
  34. 34.
    Xuan YH, Choi YL, Shin YK, Ahn GH, Kim KH, Kim WJ, Lee HC, Kim SH (2007) Expression of TGF-beta signaling proteins in normal placenta and gestational trophoblastic disease. Histol Histopathol 22:227–234PubMedGoogle Scholar
  35. 35.
    Pang ZJ, Zhou JG, Huang LP (2008) Interleukin-10 may participate in regulating trophoblast invasion in human placentae throughout gestation. Am J Reprod Immunol 60:19–25PubMedCrossRefGoogle Scholar
  36. 36.
    Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193PubMedCrossRefGoogle Scholar
  37. 37.
    Guleria I et al (2005) A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med 202:231–237PubMedCrossRefGoogle Scholar
  38. 38.
    Brown D, Trowsdale J, Allen R (2004) The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 64:215–225PubMedCrossRefGoogle Scholar
  39. 39.
    Chen JH, Yao YQ, Hou KB, Lei YF, Yin W (2007) Construction of eukaryotic expression plasmid expressing siRNA targeting HLA-G gene and detection of its specific downregulation effect. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 23:409–412PubMedGoogle Scholar
  40. 40.
    Sun LL, Han Y, Chen JH, Yao YQ (2008) Down-regulation of HLA-G boosted natural killer cell-mediated cytolysis in JEG-3 cells cultured in vitro. Fertil Steril 90:2398–2405PubMedCrossRefGoogle Scholar
  41. 41.
    Morales PJ, Pace JL, Platt JS, Langat DK, Hunt JS (2007) Synthesis of beta(2)-microglobulin-free, disulphide-linked HLA-G5 homodimers in human placental villous cytotrophoblast cells. Immunology 122:179–188PubMedCrossRefGoogle Scholar
  42. 42.
    Apps R, Gardner L, Sharkey AM, Holmes N, Moffett A (2007) A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol 37:1924–1937PubMedCrossRefGoogle Scholar
  43. 43.
    McIntire RH, Sifers T, Platt JS, Ganacias KG, Langat DK, Hunt JS (2008) Novel HLA-G-binding leukocyte immunoglobulin-like receptor (lilr) expression patterns in human placentas and umbilical cords. Placenta 29:631–638PubMedCrossRefGoogle Scholar
  44. 44.
    Morales PJ, Pace JL, Platt JS, Phillips TA, Morgan K, Fazleabas AT, Hunt JS (2003) Placental cell expression of HLA-G2 isoforms is limited to the invasive trophoblast phenotype. J Immunol 171:6215–6224PubMedGoogle Scholar
  45. 45.
    Solier C, Aguerre-Girr M, Lenfant F, Campan A, Berrebi A, Rebmann V, Grosse-Wilde H, Le Bouteiller P (2002) Secretion of pro-apoptotic intron 4-retaining soluble HLA-G1 by human villous trophoblast. Eur J Immunol 32:3576–3586PubMedCrossRefGoogle Scholar
  46. 46.
    McCormick J, Whitley GS, Le Bouteiller P, Cartwright JE (2009) Soluble HLA-G regulates motility and invasion of the trophoblast-derived cell line SGHPL-4. Hum Reprod 24:1339–1345PubMedCrossRefGoogle Scholar
  47. 47.
    Gonen-Gross T et al (2010) Inhibitory NK receptor recognition of HLA-G: regulation by contact residues and by cell specific expression at the fetal–maternal interface. PLoS One 5:e8941PubMedCrossRefGoogle Scholar
  48. 48.
    Yie SM, Li LH, Li GM, Xiao R, Librach CL (2006) Progesterone enhances HLA-G gene expression in JEG-3 choriocarcinoma cells and human cytotrophoblasts in vitro. Hum Reprod 21:46–51PubMedCrossRefGoogle Scholar
  49. 49.
    Lefebvre S et al (2001) A specific interferon (IFN)-stimulated response element of the distal HLA-G promoter binds IFN-regulatory factor 1 and mediates enhancement of this nonclassical class I gene by IFN-beta. J Biol Chem 276:6133–6139PubMedCrossRefGoogle Scholar
  50. 50.
    Moreau P, Adrian-Cabestre F, Menier C, Guiard V, Gourand L, Dausset J, Carosella ED, Paul P (1999) IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes. Int Immunol 11:803–811PubMedCrossRefGoogle Scholar
  51. 51.
    Rizzo R, Hviid TV, Stignani M, Balboni A, Grappa MT, Melchiorri L, Baricordi OR (2005) The HLA-G genotype is associated with IL-10 levels in activated PBMCs. Immunogenetics 57:172–181PubMedCrossRefGoogle Scholar
  52. 52.
    Anderson KJ, Allen RL (2009) Regulation of T-cell immunity by leucocyte immunoglobulin-like receptors: innate immune receptors for self on antigen-presenting cells. Immunology 127:8–17PubMedCrossRefGoogle Scholar
  53. 53.
    Nagamatsu T et al (2004) Hypoxia does not reduce HLA-G expression on extravillous cytotrophoblasts. J Reprod Immunol 63:85–95PubMedCrossRefGoogle Scholar
  54. 54.
    Humphrey KE, Harrison GA, Cooper DW, Wilton AN, Brennecke SP, Trudinger BJ (1995) HLA-G deletion polymorphism and pre-eclampsia/eclampsia. Br J Obstet Gynaecol 102:707–710PubMedCrossRefGoogle Scholar
  55. 55.
    Bohjanen PR, Petryniak B, June CH, Thompson CB, Lindsten T (1991) An inducible cytoplasmic factor (AU-B) binds selectively to AUUUA multimers in the 3′ untranslated region of lymphokine mRNA. Mol Cell Biol 11:3288–3295PubMedGoogle Scholar
  56. 56.
    Hviid TV, Sorensen S, Morling N (1999) Polymorphism in the regulatory region located more than 1.1 kilobases 5’ to the start site of transcription, the promoter region, and exon 1 of the HLA-G gene. Hum Immunol 60:1237–1244PubMedCrossRefGoogle Scholar
  57. 57.
    Holling TM, Bergevoet MW, Wierda RJ, van Eggermond MC, van den Elsen PJ (2009) Genetic and epigenetic control of the major histocompatibility complex class Ib gene HLA-G in trophoblast cell lines. Ann NY Acad Sci 1173:538–544PubMedCrossRefGoogle Scholar
  58. 58.
    Castelli EC et al (2009) In silico analysis of microRNAS targeting the HLA-G 3′ untranslated region alleles and haplotypes. Hum Immunol 70:1020–1025PubMedCrossRefGoogle Scholar
  59. 59.
    Gracia CR, Sammel MD, Chittams J, Hummel AC, Shaunik A, Barnhart KT (2005) Risk factors for spontaneous abortion in early symptomatic first-trimester pregnancies. Obstet Gynecol 106:993–999PubMedCrossRefGoogle Scholar
  60. 60.
    Hara N, Fujii T, Yamashita T, Kozuma S, Okai T, Taketani Y (1996) Altered expression of human leukocyte antigen G (HLA-G) on extravillous trophoblasts in preeclampsia: immunohistological demonstration with anti-HLA-G specific antibody “87G” and anti-cytokeratin antibody “CAM5.2”. Am J Reprod Immunol 36:349–358PubMedGoogle Scholar
  61. 61.
    Lim KH, Zhou Y, Janatpour M, McMaster M, Bass K, Chun SH, Fisher SJ (1997) Human cytotrophoblast differentiation/invasion is abnormal in preeclampsia. Am J Pathol 151:1809–1818PubMedGoogle Scholar
  62. 62.
    Peng B, Zhang L, Xing AY, Hu M, Liu SY (2008) The expression of human leukocyte antigen G and E on human first trimester placenta and its relationship with recurrent spontaneous abortion. Sichuan Da Xue Xue Bao Yi Xue Ban 39:976–979PubMedGoogle Scholar
  63. 63.
    Yie SM, Li LH, Li YM, Librach C (2004) HLA-G protein concentrations in maternal serum and placenta tissue are decreased in preeclampsia. Fertil Steril 83:30–36CrossRefGoogle Scholar
  64. 64.
    Comiskey M, Domino KE, Warner CM (2007) HLA-G is found in lipid rafts and can act as a signaling molecule. Hum Immunol 68:1–11PubMedCrossRefGoogle Scholar
  65. 65.
    Comiskey M, Goldstein CY, De Fazio SR, Mammolenti M, Newmark JA, Warner CM (2003) Evidence that HLA-G is the functional homolog of mouse Qa-2, the Ped gene product. Hum Immunol 64:999–1004PubMedCrossRefGoogle Scholar
  66. 66.
    McElhinny AS, Exley GE, Warner CM (2000) Painting Qa-2 onto Ped slow preimplantation embryos increases the rate of cleavage. Am J Reprod Immunol 44:52–58PubMedCrossRefGoogle Scholar
  67. 67.
    Alegre E, Diaz-Lagares A, Lemaoult J, Lopez-Moratalla N, Carosella ED, Gonzalez A (2007) Maternal antigen presenting cells are a source of plasmatic HLA-G during pregnancy: longitudinal study during pregnancy. Hum Immunol 68:661–667PubMedCrossRefGoogle Scholar
  68. 68.
    Hunt JS, Jadhav L, Chu W, Geraghty DE, Ober C (2000) Soluble HLA-G circulates in maternal blood during pregnancy. Am J Obstet Gynecol 183:682–688PubMedCrossRefGoogle Scholar
  69. 69.
    Hackmon R, Hallak M, Krup M, Weitzman D, Sheiner E, Kaplan B, Weinstein Y (2004) HLA-G antigen and parturition: maternal serum, fetal serum and amniotic fluid levels during pregnancy. Fetal Diagn Ther 19:404–409PubMedCrossRefGoogle Scholar
  70. 70.
    Yie SM, Taylor RN, Librach C (2005) Low plasma HLA-G protein concentrations in early gestation indicate the development of preeclampsia later in pregnancy. Am J Obstet Gynecol 193:204–208PubMedCrossRefGoogle Scholar
  71. 71.
    Rizzo R, Stignani M, Amoudruz P, Nilsson C, Melchiorri L, Baricordi O, Sverremark-Ekstrom E (2009) Allergic women have reduced sHLA-G plasma levels at delivery. Am J Reprod Immunol 61:368–376PubMedCrossRefGoogle Scholar
  72. 72.
    Steinborn A, Rebmann V, Scharf A, Sohn C, Grosse-Wilde H (2003) Placental abruption is associated with decreased maternal plasma levels of soluble HLA-G. J Clin Immunol 23:307–314PubMedCrossRefGoogle Scholar
  73. 73.
    Borzychowski AM, Sargent IL, Redman CW (2006) Inflammation and pre-eclampsia. Semin Fetal Neonatal Med 11:309–316PubMedCrossRefGoogle Scholar
  74. 74.
    Steinborn A, Varkonyi T, Scharf A, Bahlmann F, Klee A, Sohn C (2007) Early detection of decreased soluble HLA-G levels in the maternal circulation predicts the occurrence of preeclampsia and intrauterine growth retardation during further course of pregnancy. Am J Reprod Immunol 57:277–286PubMedCrossRefGoogle Scholar
  75. 75.
    Pfeiffer KA, Rebmann V, Passler M, van der Ven K, van der Ven H, Krebs D, Grosse-Wilde H (2000) Soluble HLA levels in early pregnancy after in vitro fertilization. Hum Immunol 61:559–564PubMedCrossRefGoogle Scholar
  76. 76.
    Ishihara N, Matsuo H, Murakoshi H, Laoag-Fernandez JB, Samoto T, Maruo T (2002) Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol 186:158–166PubMedCrossRefGoogle Scholar
  77. 77.
    Orozco AF, Jorgez CJ, Ramos-Perez WD, Popek EJ, Yu X, Kozinetz CA, Bischoff FZ, Lewis DE (2009) Placental release of distinct DNA-associated micro-particles into maternal circulation: reflective of gestation time and preeclampsia. Placenta 30:891–897PubMedCrossRefGoogle Scholar
  78. 78.
    Rousseau P, Le Discorde M, Mouillot G, Marcou C, Carosella ED, Moreau P (2003) The 14 bp deletion–insertion polymorphism in the 3′ UT region of the HLA-G gene influences HLA-G mRNA stability. Hum Immunol 64:1005–1010PubMedCrossRefGoogle Scholar
  79. 79.
    Hiby SE, King A, Sharkey A, Loke YW (1999) Molecular studies of trophoblast HLA-G: polymorphism, isoforms, imprinting and expression in preimplantation embryo. Tissue Antigens 53:1–13PubMedCrossRefGoogle Scholar
  80. 80.
    Hviid TV, Hylenius S, Lindhard A, Christiansen OB (2004) Association between human leukocyte antigen-G genotype and success of in vitro fertilization and pregnancy outcome. Tissue Antigens 64:66–69PubMedCrossRefGoogle Scholar
  81. 81.
    Hviid TV, Hylenius S, Rorbye C, Nielsen LG (2003) HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics 55:63–79PubMedGoogle Scholar
  82. 82.
    Abbas A, Tripathi P, Naik S, Agrawal S (2004) Analysis of human leukocyte antigen (HLA)-G polymorphism in normal women and in women with recurrent spontaneous abortions. Eur J Immunogenet 31:275–278PubMedCrossRefGoogle Scholar
  83. 83.
    Tripathi P, Abbas A, Naik S, Agrawal S (2004) Role of 14-bp deletion in the HLA-G gene in the maintenance of pregnancy. Tissue Antigens 64:706–710PubMedCrossRefGoogle Scholar
  84. 84.
    Hviid TV, Hylenius S, Hoegh AM, Kruse C, Christiansen OB (2002) HLA-G polymorphisms in couples with recurrent spontaneous abortions. Tissue Antigens 60:122–132PubMedCrossRefGoogle Scholar
  85. 85.
    Hylenius S, Andersen AM, Melbye M, Hviid TV (2004) Association between HLA-G genotype and risk of pre-eclampsia: a case-control study using family triads. Mol Hum Reprod 10:237–246PubMedCrossRefGoogle Scholar
  86. 86.
    Larsen MH, Hylenius S, Andersen AM, Hviid TV (2010) The 3′-untranslated region of the HLA-G gene in relation to pre-eclampsia: revisited. Tissue Antigens 75:253–261PubMedCrossRefGoogle Scholar
  87. 87.
    Moreau P et al (2008) HLA-G gene polymorphism in human placentas: possible association of G*0106 allele with preeclampsia and miscarriage. Biol Reprod 79:459–467PubMedCrossRefGoogle Scholar
  88. 88.
    O′Brien M, McCarthy T, Jenkins D, Paul P, Dausset J, Carosella ED, Moreau P (2001) Altered HLA-G transcription in pre-eclampsia is associated with allele specific inheritance: possible role of the HLA-G gene in susceptibility to the disease. Cell Mol Life Sci 58:1943–1949PubMedCrossRefGoogle Scholar
  89. 89.
    Ober C, Aldrich CL, Chervoneva I, Billstrand C, Rahimov F, Gray HL, Hyslop T (2003) Variation in the HLA-G promoter region influences miscarriage rates. Am J Hum Genet 72:1425–1435PubMedCrossRefGoogle Scholar
  90. 90.
    Aruna M, Sudheer PS, Andal S, Tarakeswari S, Reddy AG, Thangaraj K, Singh L, Reddy BM (2010) HLA-G polymorphism patterns show lack of detectable association with recurrent spontaneous abortion. Tissue Antigens 76(3):216–222PubMedCrossRefGoogle Scholar
  91. 91.
    Iversen AC et al (2008) The HLA-G 14 bp gene polymorphism and decidual HLA-G 14 bp gene expression in pre-eclamptic and normal pregnancies. J Reprod Immunol 78:158–165PubMedCrossRefGoogle Scholar
  92. 92.
    Lin A, Yan WH, Dai MZ, Chen XJ, Li BL, Chen BG, Fan LA (2006) Maternal human leukocyte antigen-G polymorphism is not associated with pre-eclampsia in a Chinese Han population. Tissue Antigens 68:311–316PubMedCrossRefGoogle Scholar
  93. 93.
    Penzes M, Rajczy K, Gyodi E, Reti M, Feher E, Petranyi G (1999) HLA-G gene polymorphism in the normal population and in recurrent spontaneous abortion in Hungary. Transplant Proc 31:1832–1833PubMedCrossRefGoogle Scholar
  94. 94.
    Yamashita T et al (1999) Analysis of human leukocyte antigen-G polymorphism including intron 4 in Japanese couples with habitual abortion. Am J Reprod Immunol 41:159–163PubMedGoogle Scholar
  95. 95.
    Le Discorde M, Le Danff C, Moreau P, Rouas-Freiss N, Carosella ED (2005) HLA-G*0105N null allele encodes functional HLA-G isoforms. Biol Reprod 73:280–288PubMedCrossRefGoogle Scholar
  96. 96.
    Rebmann V, LeMaoult J, Rouas-Freiss N, Carosella ED, Grosse-Wilde H (2007) Quantification and identification of soluble HLA-G isoforms. Tissue Antigens 69(Suppl 1):143–149PubMedCrossRefGoogle Scholar
  97. 97.
    Jurisicova A, Casper RF, MacLusky NJ, Mills GB, Librach CL (1996) HLA-G expression during preimplantation human embryo development. Proc Natl Acad Sci USA 93:161–165PubMedCrossRefGoogle Scholar
  98. 98.
    Yao YQ, Barlow DH, Sargent IL (2005) Differential expression of alternatively spliced transcripts of HLA-G in human preimplantation embryos and inner cell masses. J Immunol 175:8379–8385PubMedGoogle Scholar
  99. 99.
    Jurisicova A, Casper RF, MacLusky NJ, Librach CL (1996) Embryonic human leukocyte antigen-G expression: possible implications for human preimplantation development. Fertil Steril 65:997–1002PubMedGoogle Scholar
  100. 100.
    Shaikly VR, Morrison IE, Taranissi M, Noble CV, Withey AD, Cherry RJ, Blois SM, Fernandez N (2008) Analysis of HLA-G in maternal plasma, follicular fluid, and preimplantation embryos reveal an asymmetric pattern of expression. J Immunol 180:4330–4337PubMedGoogle Scholar
  101. 101.
    Verloes A, de Velde HV, Mateizel I, Cauffman G, De Waele M, Devroey P, LeMaoult J, Vercammen M (2009) HLA-G: expression in human embryonic stem cells. Tissue Antigens 74:83CrossRefGoogle Scholar
  102. 102.
    Hviid TV, Moller C, Sorensen S, Morling N (1998) Co-dominant expression of the HLA-G gene and various forms of alternatively spliced HLA-G mRNA in human first trimester trophoblast. Hum Immunol 59:87–98PubMedCrossRefGoogle Scholar
  103. 103.
    Ober C et al (1998) HLA-G1 protein expression is not essential for fetal survival. Placenta 19:127–132PubMedCrossRefGoogle Scholar
  104. 104.
    Vercammen MJ, Verloes A, Van de Velde H, Haentjens P (2008) Accuracy of soluble human leukocyte antigen-G for predicting pregnancy among women undergoing infertility treatment: meta-analysis. Hum Reprod Update 14:209–218PubMedCrossRefGoogle Scholar
  105. 105.
    Criscuoli L et al (2005) Lack of histocompatibility leukocyte antigen-G expression in early embryos is not related to germinal defects or impairment of interleukin-10 production by embryos. Gynecol Endocrinol 20:264–269PubMedCrossRefGoogle Scholar
  106. 106.
    Desai N, Filipovits J, Goldfarb J (2006) Secretion of soluble HLA-G by day 3 human embryos associated with higher pregnancy and implantation rates: assay of culture media using a new ELISA kit. Reprod Biomed Online 13:272–277PubMedCrossRefGoogle Scholar
  107. 107.
    Fisch JD, Keskintepe L, Ginsburg M, Adamowicz M, Sher G (2007) Graduated Embryo Score and soluble human leukocyte antigen-G expression improve assisted reproductive technology outcomes and suggest a basis for elective single-embryo transfer. Fertil Steril 87:757–763PubMedCrossRefGoogle Scholar
  108. 108.
    Fuzzi B et al (2002) HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur J Immunol 32:311–315PubMedCrossRefGoogle Scholar
  109. 109.
    Noci I et al (2005) Embryonic soluble HLA-G as a marker of developmental potential in embryos. Hum Reprod 20:138–146PubMedCrossRefGoogle Scholar
  110. 110.
    Rebmann V, Switala M, Eue I, Grosse-Wilde H (2010) Soluble HLA-G is an independent factor for the prediction of pregnancy outcome after ART: a German multi-centre study. Hum Reprod 25(7):1691–1698PubMedCrossRefGoogle Scholar
  111. 111.
    Rebmann V, Switala M, Eue I, Schwahn E, Merzenich M, Grosse-Wilde H (2007) Rapid evaluation of soluble HLA-G levels in supernatants of in vitro fertilized embryos. Hum Immunol 68:251–258PubMedCrossRefGoogle Scholar
  112. 112.
    Rizzo R et al (2007) Soluble HLA-G molecules in follicular fluid: a tool for oocyte selection in IVF? J Reprod Immunol 74:133–142PubMedCrossRefGoogle Scholar
  113. 113.
    Sageshima N et al (2007) Soluble HLA-G is absent from human embryo cultures: a reassessment of sHLA-G detection methods. J Reprod Immunol 75:11–22PubMedCrossRefGoogle Scholar
  114. 114.
    Sher G, Keskintepe L, Batzofin J, Fisch J, Acacio B, Ahlering P, Ginsburg M (2005) Influence of early ICSI-derived embryo sHLA-G expression on pregnancy and implantation rates: a prospective study. Hum Reprod 20:1359–1363PubMedCrossRefGoogle Scholar
  115. 115.
    Sher G, Keskintepe L, Fisch JD, Acacio BA, Ahlering P, Batzofin J, Ginsburg M (2005) Soluble human leukocyte antigen G expression in phase I culture media at 46 hours after fertilization predicts pregnancy and implantation from day 3 embryo transfer. Fertil Steril 83:1410–1413PubMedCrossRefGoogle Scholar
  116. 116.
    Sher G, Keskintepe L, Nouriani M, Roussev R, Batzofin J (2004) Expression of sHLA-G in supernatants of individually cultured 46-h embryos: a potentially valuable indicator of ‘embryo competency’ and IVF outcome. Reprod Biomed Online 9:74–78PubMedCrossRefGoogle Scholar
  117. 117.
    Tabiasco J et al (2009) Soluble HLA-G in IVF/ICSI embryo culture supernatants does not always predict implantation success: a multicentre study. Reprod Biomed Online 18:374–381PubMedCrossRefGoogle Scholar
  118. 118.
    Yie SM, Balakier H, Motamedi G, Librach CL (2005) Secretion of human leukocyte antigen-G by human embryos is associated with a higher in vitro fertilization pregnancy rate. Fertil Steril 83:30–36PubMedCrossRefGoogle Scholar
  119. 119.
    Vercammen M, Verloes A, Haentjens P, Van de Velde H (2009) Can soluble human leucocyte antigen-G predict successful pregnancy in assisted reproductive technology? Curr Opin Obstet Gynecol 21:285–290PubMedCrossRefGoogle Scholar
  120. 120.
    Menezo Y, Elder K, Viville S (2006) Soluble HLA-G release by the human embryo: an interesting artefact? Reprod Biomed Online 13:763–764PubMedCrossRefGoogle Scholar
  121. 121.
    Rizzo R et al (2009) Production of sHLA-G molecules by in vitro matured cumulus-oocyte complex. Int J Mol Med 24:523–530PubMedGoogle Scholar
  122. 122.
    della Ragione T, Verheyen G, Papanikolaou EG, Van Landuyt L, Devroey P, Van Steirteghem A (2007) Developmental stage on day-5 and fragmentation rate on day-3 can influence the implantation potential of top-quality blastocysts in IVF cycles with single embryo transfer. Reprod Biol Endocrinol 5:2PubMedCrossRefGoogle Scholar
  123. 123.
    Assou S et al (2008) A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod 14:711–719PubMedCrossRefGoogle Scholar
  124. 124.
    McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, Amato P, Matzuk MM (2004) Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod 19:2869–2874PubMedCrossRefGoogle Scholar
  125. 125.
    Botros L, Sakkas D, Seli E (2008) Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod 14:679–690PubMedCrossRefGoogle Scholar
  126. 126.
    Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG (2008) Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod 14:667–672PubMedCrossRefGoogle Scholar
  127. 127.
    Singh AP, Castranio T, Scott G, Guo D, Harris MA, Ray M, Harris SE, Mishina Y (2008) Influences of reduced expression of maternal bone morphogenetic protein 2 on mouse embryonic development. Sex Dev 2:134–141PubMedCrossRefGoogle Scholar
  128. 128.
    Selmani Z, Naji A, Gaiffe E, Obert L, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2009) HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation 87:S62–S66PubMedCrossRefGoogle Scholar
  129. 129.
    Selmani Z et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222PubMedCrossRefGoogle Scholar
  130. 130.
    Drukker M (2006) Immunogenicity of embryonic stem cells and their progeny. Methods Enzymol 420:391–409PubMedCrossRefGoogle Scholar
  131. 131.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95PubMedGoogle Scholar
  132. 132.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  133. 133.
    Shih CC, Forman SJ, Chu P, Slovak M (2007) Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev 16:893–902PubMedCrossRefGoogle Scholar
  134. 134.
    Gertow K et al (2004) Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev 13:421–435PubMedCrossRefGoogle Scholar
  135. 135.
    Heins N et al (2004) Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22:367–376PubMedCrossRefGoogle Scholar
  136. 136.
    Drukker M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869PubMedCrossRefGoogle Scholar
  137. 137.
    Grinnemo KH et al (2006) Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online 13:712–724PubMedCrossRefGoogle Scholar
  138. 138.
    Li L et al (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22:448–456PubMedCrossRefGoogle Scholar
  139. 139.
    Das P, Ezashi T, Schulz LC, Westfall SD, Livingston KA, Roberts RM (2007) Effects of fgf2 and oxygen in the bmp4-driven differentiation of trophoblast from human embryonic stem cells. Stem Cell Res 1:61–74PubMedGoogle Scholar
  140. 140.
    Yen BL, Chang CJ, Liu KJ, Chen YC, Hu HI, Bai CH, Yen ML (2009) Brief report—human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells 27:451–456PubMedCrossRefGoogle Scholar
  141. 141.
    Schulz LC, Ezashi T, Das P, Westfall SD, Livingston KA, Roberts RM (2008) Human embryonic stem cells as models for trophoblast differentiation. Placenta 29(Suppl A):S10–S16PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Roberta Rizzo
    • 1
  • Martine Vercammen
    • 2
  • Hilde van de Velde
    • 3
    • 4
  • Peter A. Horn
    • 5
  • Vera Rebmann
    • 5
  1. 1.Department of Experimental and Diagnostic Medicine, Section of Medical GeneticsUniversity of FerraraFerraraItaly
  2. 2.Department of HematologyUniversitair Ziekenhuis (UZ) BrusselBrusselsBelgium
  3. 3.Centre for Reproductive MedicineUniversitair Ziekenhuis (UZ) BrusselBrusselsBelgium
  4. 4.Department of Reproduction and GeneticsUniversitair Ziekenhuis (UZ) BrusselBrusselsBelgium
  5. 5.Institute for Transfusion MedicineUniversity Hospital of EssenEssenGermany

Personalised recommendations