Cellular and Molecular Life Sciences

, Volume 68, Issue 4, pp 613–634 | Cite as

Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes

  • Eva Biegel
  • Silke Schmidt
  • José M. González
  • Volker Müller
Review

Abstract

Microbes have a fascinating repertoire of bioenergetic enzymes and a huge variety of electron transport chains to cope with very different environmental conditions, such as different oxygen concentrations, different electron acceptors, pH and salinity. However, all these electron transport chains cover the redox span from NADH + H+ as the most negative donor to oxygen/H2O as the most positive acceptor or increments thereof. The redox range more negative than −320 mV has been largely ignored. Here, we have summarized the recent data that unraveled a novel ion-motive electron transport chain, the Rnf complex, that energetically couples the cellular ferredoxin to the pyridine nucleotide pool. The energetics of the complex and its biochemistry, as well as its evolution and cellular function in different microbes, is discussed.

Keywords

Acetobacterium woodii Ferredoxin Rnf Energy conservation Electron transport 

Supplementary material

18_2010_555_MOESM1_ESM.tif (78 kb)
Fig. S1Genomic organization of rnf genes. nth encodes for endonuclease III. Membrane-bound subunits are indicated by an asterisk. A rnf cluster ABCDGE, B rnf cluster CDGEAB, C rnf cluster BCDGEA, D rnf organization in archaea. x encodes for a hypothetical protein. R. capsulatus: Rhodobacter capsulatus, A. vinelandii: Azotobacter vinelandii, E. coli: Escherichia coli, V. cholerae: Vibrio cholerae, K. pneumoniae: Klebsiella pneumoniae, A. woodii: Acetobacterium woodii, C. tetani: Clostridium tetani, A. metalliredigens: Alkaliphilus metalliredigens, T. pseudethanolicus: Thermoanaerobacter pseudethanolicus, C. kluyveri: Clostridium kluyveri, R. torques: Ruminococcus torques, B. vulgatus: Bacteroides vulgatus, C. limicola: Chlorobium limicola, P. sp.: Parabacteroides sp., P. aestuarii: Prosthecochloris aestuarii, P. uenonsis: Porphyromonas uenonsis, M. acetivorans: Methanosarcina acetivorans, M. burtonii: Methanococcoides burtonii (TIFF 79 kb)
18_2010_555_MOESM2_ESM.tif (124 kb)
Fig. S2Topology model of RnfD (based on SOSUI prediction, [132]). The N- and C-termini are indicated. Threonine 157 is highlighted in grey as potential FMN-binding site. Aspartate 250 and glutamate 300 are highlighted (black) as potential amino acids involved in Na+ binding (TIFF 124 kb)
18_2010_555_MOESM3_ESM.tif (96 kb)
Fig. S3Topology model of RnfG (based on SOSUI prediction, [132]). The N- and C-termini are indicated. Threonine 185 is highlighted in grey as potential FMN-binding site (TIFF 97 kb)
18_2010_555_MOESM4_ESM.tif (105 kb)
Fig. S4Topology model of RnfE (based on Sääf et al. 1999). The N- and C-termini are indicated. Aspartate 129 is highlighted (black) as potential Na+ binding site (TIFF 106 kb)
18_2010_555_MOESM5_ESM.tif (104 kb)
Fig. S5Topology model of RnfA (based on Sääf et al. 1999). The N- and C-termini are indicated. Glutamate 88 is highlighted (black) as potential Na+ binding site (TIFF 105 kb)
18_2010_555_MOESM6_ESM.tif (131 kb)
Fig. S6Topology model of RnfB (based on SOSUI prediction, [132]). The N- and C-termini are indicated. Conserved cysteines are highlighted in grey, that might form the FeS cluster binding sites (TIFF 132 kb)
18_2010_555_MOESM7_ESM.tif (91 kb)
Fig. S7Alignment of RnfD and NqrB. Alignment was done using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html [133]). An asterisk indicates complete amino acid conservation. The arrow shows the potential Na+-binding site. VC-Vibrio cholerae, AW-Acetobacterium woodii (TIFF 91 kb)
18_2010_555_MOESM8_ESM.tif (61 kb)
Fig. S8Alignment of RnfE and NqrD. Alignment was done using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html [133]). An asterisk indicates complete amino acid conservation. The arrow shows the potential Na+-binding site. VC-Vibrio cholerae, AW-Acetobacterium woodii (TIFF 62 kb)
18_2010_555_MOESM9_ESM.tif (59 kb)
Fig. S9Alignment of RnfA and NqrE. Alignment was done using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html [133]). An asterisk indicates complete amino acid conservation. The arrow shows the potential Na+-binding site. VC-Vibrio cholerae, AW-Acetobacterium woodii (TIFF 59 kb)

References

  1. 1.
    Drake HL, Daniel S, Küsel K, Matthies C, Kuhner C, Braus-Strohmeyer S (1997) Acetogenic bacteria: what are the in situ consequences of their diverse metabolic diversities? Biofactors 1:13–24Google Scholar
  2. 2.
    Müller V, Imkamp F, Rauwolf A, Küsel K, Drake HL (2004) Molecular and cellular biology of acetogenic bacteria. In: Nakano MM, Zuber P (eds) Strict and facultative anaerobes. Medical and environmental aspects. Horizon Biosciences, Norfolk, pp 251–281Google Scholar
  3. 3.
    Ragsdale SW (2008) Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136PubMedGoogle Scholar
  4. 4.
    Diekert G, Wohlfarth G (1994) Metabolism of homoacetogens. Antonie van Leeuwenhoek Int J Gen M 66:209–221Google Scholar
  5. 5.
    Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898PubMedGoogle Scholar
  6. 6.
    Eichler B, Schink B (1984) Oxidation of primary aliphatic alcolhols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140:147–152Google Scholar
  7. 7.
    Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261Google Scholar
  8. 8.
    Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353PubMedGoogle Scholar
  9. 9.
    Imkamp F, Müller V (2002) Chemiosmotic energy conservation with Na+ as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii. J Bacteriol 184:1947–1951PubMedGoogle Scholar
  10. 10.
    Heise R, Müller V, Gottschalk G (1992) Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur J Biochem 206:553–557PubMedGoogle Scholar
  11. 11.
    Reidlinger J, Müller V (1994) Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1FO-type enzyme. Eur J Biochem 223:275–283PubMedGoogle Scholar
  12. 12.
    Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Müller DJ, Meier T, Müller V (2008) An intermediate step in the evolution of ATPases: a hybrid F1FO rotor in a bacterial Na+ F1FO ATP synthase. FEBS J 275:1999–2007PubMedGoogle Scholar
  13. 13.
    Fritz M, Müller V (2007) An intermediate step in the evolution of ATPases: the F1FO-ATPase from Acetobacterium woodii contains F-type and V-type rotor subunits and is capable of ATP synthesis. FEBS J 274:3421–3428PubMedGoogle Scholar
  14. 14.
    Müller V, Bowien S (1995) Differential effects of sodium ions on motility in the homoacetogenic bacteria Acetobacterium woodii and Sporomusa sphaeroides. Arch Microbiol 164:363–369Google Scholar
  15. 15.
    Schmidt S, Biegel E, Müller V (2009) The ins and outs of Na+ bioenergetics in Acetobacterium woodii. Biochim Biophys Acta 1787:691–696PubMedGoogle Scholar
  16. 16.
    Seifritz C, Daniel SL, Gössner A, Drake HL (1993) Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol 175:8008–8013PubMedGoogle Scholar
  17. 17.
    Fröstl JM, Seifritz C, Drake HL (1996) Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum. J Bacteriol 178:4597–4603PubMedGoogle Scholar
  18. 18.
    Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167Google Scholar
  19. 19.
    Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S (2008) Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 1125:137–146PubMedGoogle Scholar
  20. 20.
    Blum U, Wentworth TR, Klein K, Worsham AD, King LD, Gerig TM, Lyu S-W (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J Chem Ecol 17:1045–1068Google Scholar
  21. 21.
    Hansen B, Bokranz M, Schönheit P, Kröger A (1988) ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii NZva16. Arch Microbiol 150:447–451Google Scholar
  22. 22.
    Imkamp F, Biegel E, Jayamani E, Buckel W, Müller V (2007) Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: indications for a Rnf-type NADH dehydrogenase as coupling site. J Bacteriol 189:8145–8153PubMedGoogle Scholar
  23. 23.
    Ragsdale SW, Ljungdahl LG (1984) Hydrogenase from Acetobacterium woodii. Arch Microbiol 139:361–365PubMedGoogle Scholar
  24. 24.
    Biegel E, Müller V (2010) A bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci USA 107:18138–18142Google Scholar
  25. 25.
    Biegel E, Schmidt S, Müller V (2009) Genetic, immunological and biochemical evidence of a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 11:1438–1443PubMedGoogle Scholar
  26. 26.
    Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615PubMedGoogle Scholar
  27. 27.
    Jouanneau Y, Jeong HS, Hugo N, Meyer C, Willison JC (1998) Overexpression in Escherichia coli of the rnf genes from Rhodobacter capsulatus: characterization of two membrane-bound iron-sulfur proteins. Eur J Biochem 251:54–64PubMedGoogle Scholar
  28. 28.
    Koo MS, Lee JH, Rah SY, Yeo WS, Lee JW, Lee KL, Koh YS, Kang SO, Roe JH (2003) A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J 22:2614–2622PubMedGoogle Scholar
  29. 29.
    Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105:7564–7569PubMedGoogle Scholar
  30. 30.
    Curatti L, Brown CS, Ludden PW, Rubio LM (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci USA 102:6291–6296PubMedGoogle Scholar
  31. 31.
    Gifford CM, Wallace SS (2000) The genes encoding endonuclease VIII and endonuclease III in Escherichia coli are transcribed as the terminal genes in operons. Nucleic Acids Res 28:762–769PubMedGoogle Scholar
  32. 32.
    Brüggemann H, Bäumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100:1316–1321PubMedGoogle Scholar
  33. 33.
    Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA 105:2128–2133PubMedGoogle Scholar
  34. 34.
    Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188:702–710PubMedGoogle Scholar
  35. 35.
    Jeong HS, Jouanneau Y (2000) Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol 182:1208–1214PubMedGoogle Scholar
  36. 36.
    Kumagai H, Fujiwara T, Matsubara H, Saeki K (1997) Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry 36:5509–5521PubMedGoogle Scholar
  37. 37.
    Boiangiu CD, Jayamani E, Brügel D, Herrmann G, Kim J, Forzi L, Hedderich R, Vgenopoulou I, Pierik AJ, Steuber J, Buckel W (2005) Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J Mol Microbiol Biotechnol 10:105–119PubMedGoogle Scholar
  38. 38.
    Kim J, Hetzel M, Boiangiu CD, Buckel W (2004) Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria. FEMS Microbiol Rev 28:455–468PubMedGoogle Scholar
  39. 39.
    Nakayama Y, Yasui M, Sugahara K, Hayashi M, Unemoto T (2000) Covalently bound flavin in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 474:165–168PubMedGoogle Scholar
  40. 40.
    Yagi T (1993) The bacterial energy-transducing NADH-quinone oxidoreductases. Biochim Biophys Acta 1141:1–17PubMedGoogle Scholar
  41. 41.
    Yagi T, Yano T, Matsuno-Yagi A (1993) Characteristics of the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans as revealed by biochemical, biophysical, and molecular biological approaches. J Bioenerg Biomembr 25:339–345PubMedGoogle Scholar
  42. 42.
    Walker JE (1992) The NADH: ubiquinone oxidoreductase (Complex-I) of respiratory chains. Q Rev Biophys 25:253–324PubMedGoogle Scholar
  43. 43.
    Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140:105–134PubMedGoogle Scholar
  44. 44.
    Tran-Betcke A, Warnecke U, Böcker C, Zaborosch C, Friedrich B (1990) Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 172:2920–2929PubMedGoogle Scholar
  45. 45.
    Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F, Bothe H (1995) Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria. Eur J Biochem 233:266–276PubMedGoogle Scholar
  46. 46.
    Malki S, Saimmaime I, De Luca G, Rousset M, Dermoun Z, Belaich JP (1995) Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 177:2628–2636PubMedGoogle Scholar
  47. 47.
    Backiel J, Juarez O, Zagorevski DV, Wang Z, Nilges MJ, Barquera B (2008) Covalent binding of flavins to RnfG and RnfD in the Rnf complex from Vibrio cholerae. Biochemistry 47:11273–11284PubMedGoogle Scholar
  48. 48.
    Duffy EB, Barquera B (2006) Membrane topology mapping of the Na+-pumping NADH: quinone oxidoreductase from Vibrio cholerae by PhoA-green fluorescent protein fusion analysis. J Bacteriol 188:8343–8351PubMedGoogle Scholar
  49. 49.
    Sääf A, Johansson M, Wallin E, von Heijne G (1999) Divergent evolution of membrane protein topology: the Escherichia coli RnfA and RnfE homologues. Proc Natl Acad Sci USA 96:8540–8544PubMedGoogle Scholar
  50. 50.
    Otaka E, Ooi T (1987) Examination of protein sequence homologies: IV. Twenty-seven bacterial ferredoxins. J Mol Evol 26:257–267PubMedGoogle Scholar
  51. 51.
    Quinkal I, Davasse V, Gaillard J, Moulis JM (1994) On the role of conserved proline residues in the structure and function of Clostridium pasteurianum 2[4Fe-4S] ferredoxin. Protein Eng 7:681–687PubMedGoogle Scholar
  52. 52.
    Kerscher S, Dröse S, Zickermann V, Brandt U (2008) The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 45:185–222PubMedGoogle Scholar
  53. 53.
    Juarez O, Athearn K, Gillespie P, Barquera B (2009) Acid residues in the transmembrane helices of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae involved in sodium translocation. Biochemistry 48:9516–9524PubMedGoogle Scholar
  54. 54.
    Meier T, Krah A, Bond PJ, Pogoryelov D, Diederichs K, Faraldo-Gomez JD (2009) Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases. J Mol Biol 391:498–507PubMedGoogle Scholar
  55. 55.
    Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science 308:659–662PubMedGoogle Scholar
  56. 56.
    Rahlfs S, Aufurth S, Müller V (1999) The Na+-F1FO-ATPase operon from Acetobacterium woodii. Operon structure and presence of multiple copies of atpE which encode proteolipids of 8- and 18-kDa. J Biol Chem 274:33999–34004PubMedGoogle Scholar
  57. 57.
    Rahlfs S, Müller V (1997) Sequence of subunit c of the Na+-translocating F1FO ATPase of Acetobacterium woodii: proposal for determinants of Na+ specificity as revealed by sequence comparisons. FEBS Lett 404:269–271PubMedGoogle Scholar
  58. 58.
    Rahlfs S, Müller V (1999) Sequence of subunit a of the Na+-translocating F1FO-ATPase of Acetobacterium woodii: proposal for residues involved in Na+ binding. FEBS Lett 453:35–40PubMedGoogle Scholar
  59. 59.
    Altendorf K, Siebers A, Epstein W (1992) The Kdp ATPase of Escherichia coli. In: Scarpa A, Carafoli E, Papa S (eds) Ion: motive ATPases: structure, function, and regulation, vol 671. Annals of the New York Academy of Sciences, New York, NY, USA, pp 228–243Google Scholar
  60. 60.
    Deckers-Hebestreit G, Altendorf K (1996) The F0F1-type ATP synthases of bacteria: structure and function of the FO complex. Annu Rev Microbiol 50:791–824PubMedGoogle Scholar
  61. 61.
    Fillingame RH (1997) Coupling H+ transport and ATP synthesis ln F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine. J Exp Biol 200:217–224PubMedGoogle Scholar
  62. 62.
    Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bact Rev 41:100–180PubMedGoogle Scholar
  63. 63.
    Anthony C (1988) Quinoproteins and energy transduction. In: Anthony C (ed) Bacterial energy transduction. Academic, New York, pp 293–316Google Scholar
  64. 64.
    Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek 71:59–67PubMedGoogle Scholar
  65. 65.
    Poughon L, Dussap CG, Gros JB (2001) Energy model and metabolic flux analysis for autotrophic nitrifiers. Biotechnol Bioeng 72:416–433PubMedGoogle Scholar
  66. 66.
    Aleem MI (1966) Generation of reducing power in chemosynthesis. II. Energy-linked reduction of pyridine nucleotides in the chemoautotroph, Nitrosomonas europaea. Biochim Biophys Acta 113:216–224PubMedGoogle Scholar
  67. 67.
    Arp DJ, Stein LY (2003) Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38:471–495PubMedGoogle Scholar
  68. 68.
    Wood PM (1986) Nitrification as a bacterial energy source. In: Prosser JI (ed) Nitrification. IRL, Oxford, pp 39–62Google Scholar
  69. 69.
    Eck RV, Dayhoff MO (1966) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366PubMedGoogle Scholar
  70. 70.
    Blaschkowski HP, Neuer G, Ludwig-Festl M, Knappe J (1982) Routes of flavodoxin and ferredoxin reduction in Escherichia coli. CoA-acylating pyruvate: flavodoxin and NADPH: flavodoxin oxidoreductases participating in the activation of pyruvate formate-lyase. Eur J Biochem 123:563–569PubMedGoogle Scholar
  71. 71.
    Furdui C, Ragsdale SW (2000) The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood–Ljungdahl pathway. J Biol Chem 275:28494–28499PubMedGoogle Scholar
  72. 72.
    Shanmugasundaram T, Wood HG (1992) Interaction of ferredoxin with carbon monoxide dehydrogenase from Clostridium thermoaceticum. J Biol Chem 267:897–900PubMedGoogle Scholar
  73. 73.
    Jungermann K, Kirchniawy H, Thauer RK (1970) Ferredoxin dependent CO2 reduction to formate in Clostridium pasteurianum. Biochem Biophys Res Commun 41:682–689PubMedGoogle Scholar
  74. 74.
    Thauer RK, Rupprecht E, Jungermann K (1970) The synthesis of one-carbon units from CO2 via a new ferredoxin dependent monocarboxylic acid cycle. FEBS Lett 8:304–307PubMedGoogle Scholar
  75. 75.
    Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536PubMedGoogle Scholar
  76. 76.
    Hedderich R (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36:65–75PubMedGoogle Scholar
  77. 77.
    Bott M, Eikmanns B, Thauer RK (1986) Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur J Biochem 159:393–398PubMedGoogle Scholar
  78. 78.
    Bott M, Thauer RK (1989) Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur J Biochem 179:469–472PubMedGoogle Scholar
  79. 79.
    Welte C, Krätzer C, Deppenmeier U (2010) Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei. FEBS J 277:3396–3403Google Scholar
  80. 80.
    Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591PubMedGoogle Scholar
  81. 81.
    Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283PubMedGoogle Scholar
  82. 82.
    Deppenmeier U, Müller V (2008) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ 45:123–152PubMedGoogle Scholar
  83. 83.
    Sapra R, Bagramyan K, Adams MWW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 100:7545–7550PubMedGoogle Scholar
  84. 84.
    Pisa KY, Huber H, Thomm M, Müller V (2007) A sodium ion-dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus. FEBS J 274:3928–3938PubMedGoogle Scholar
  85. 85.
    Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5PubMedGoogle Scholar
  86. 86.
    Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187:529–540PubMedGoogle Scholar
  87. 87.
    Vignais PM, Colbeau A (2004) Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6:159–188PubMedGoogle Scholar
  88. 88.
    Brandt U, Kerscher S, Dröse S, Zwicker K, Zickermann V (2003) Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 545:9–17PubMedGoogle Scholar
  89. 89.
    Tokuda H, Unemoto T (1984) Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J Biol Chem 259:7785–7790PubMedGoogle Scholar
  90. 90.
    Tokuda H, Unemoto T (1985) The Na+-motive respiratory chain of marine bacteria. Microbiol Sci 2:65–71PubMedGoogle Scholar
  91. 91.
    Barquera B, Hellwig P, Zhou W, Morgan JE, Hase CC, Gosink KK, Nilges M, Bruesehoff PJ, Roth A, Lancaster CR, Gennis RB (2002) Purification and characterization of the recombinant Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 41:3781–3789PubMedGoogle Scholar
  92. 92.
    Tokuda H, Udagawa T, Unemoto T (1985) Generation of the electrochemical potential of Na+ by the Na+-motive NADH oxidase in inverted membrane vesicles of Vibrio alginolyticus. FEBS Lett 183:95–98PubMedGoogle Scholar
  93. 93.
    Steuber J (2001) Na+-translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps. Biochim Biophys Acta 1505:45–56PubMedGoogle Scholar
  94. 94.
    Hayashi M, Nakayama Y, Unemoto T (2001) Recent progress in the Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biochim Biophys Acta 1505:37–44PubMedGoogle Scholar
  95. 95.
    Hayashi M, Nakayama Y, Yasui M, Maeda M, Furuishi K, Unemoto T (2001) FMN is covalently attached to a threonine residue in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 488:5–8PubMedGoogle Scholar
  96. 96.
    Barquera B, Zhou W, Morgan JE, Gennis RB (2002) Riboflavin is a component of the Na+-pumping NADH-quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci USA 99:10322–10324PubMedGoogle Scholar
  97. 97.
    Pfenninger-Li XD, Albracht SPJ, Vanbelzen R, Dimroth P (1996) NADH:Ubiquinone oxidoreductase of Vibrio alginolyticus: Purification, properties, and reconstitution of the Na+ pump. Biochemistry 35:6233–6242PubMedGoogle Scholar
  98. 98.
    Zhou W, Bertsova YV, Feng B, Tsatsos P, Verkhovskaya ML, Gennis RB, Bogachev AV, Barquera B (1999) Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry 38:16246–16252PubMedGoogle Scholar
  99. 99.
    Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92PubMedGoogle Scholar
  100. 100.
    Türk K, Puhar A, Neese F, Bill E, Fritz G, Steuber J (2004) NADH oxidation by the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae: functional role of the NqrF subunit. J Biol Chem 279:21349–21355PubMedGoogle Scholar
  101. 101.
    Häse CC, Barquera B (2001) Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 1505:169–178PubMedGoogle Scholar
  102. 102.
    Häse CC, Mekalanos JJ (1999) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 96:3183–3187PubMedGoogle Scholar
  103. 103.
    Müller V, Aufurth S, Rahlfs S (2001) The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+-translocating F1FO-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim Biophys Acta 1505:108–120PubMedGoogle Scholar
  104. 104.
    Müller V, Gottschalk G (1994) The sodium ion cycle in acetogenic and methanogenic bacteria: generation and utilization of a primary electrochemical sodium ion gradient. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York, pp 127–156Google Scholar
  105. 105.
    Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092PubMedGoogle Scholar
  106. 106.
    Stolpe S, Friedrich T (2004) The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem 279:18377–18383PubMedGoogle Scholar
  107. 107.
    Krebs W, Steuber J, Gemperli AC, Dimroth P (1999) Na+-translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae. Mol Microbiol 33:590–598PubMedGoogle Scholar
  108. 108.
    Gemperli AC, Dimroth P, Steuber J (2003) Sodium ion cycling mediates energy coupling between complex I and ATP synthase. Proc Natl Acad Sci USA 100:839–844PubMedGoogle Scholar
  109. 109.
    Efiok BJ, Webster DA (1990) A cytochrome that can pump sodium ion. Biochem Biophys Res Commun 173:370–375PubMedGoogle Scholar
  110. 110.
    Hallenbeck PC, Vignais PM (1981) The effect of electron transport inhibitors on nitrogenase activity in the photosynthetic bacterium, Rhodopseudomonas capsulata. FEMS Microbiol Lett 12:15–18Google Scholar
  111. 111.
    Schmidt GW, Matlin KS, Chua NH (1977) A rapid procedure for selective enrichment of photosynthetic electron transport mutants. Proc Natl Acad Sci USA 74:610–614PubMedGoogle Scholar
  112. 112.
    Saeki K, Kumagai H (1998) The rnf gene products in Rhodobacter capsulatus play an essential role in nitrogen fixation during anaerobic DMSO-dependent growth in the dark. Arch Microbiol 169:464–467PubMedGoogle Scholar
  113. 113.
    Desnoues N, Lin M, Guo X, Ma L, Carreño-Lopez R, Elmerich C (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251–2262PubMedGoogle Scholar
  114. 114.
    Cunningham RP, Asahara H, Bank JF, Scholes CP, Salerno JC, Surerus K, Munck E, McCracken J, Peisach J, Emptage MH (1989) Endonuclease III is an iron-sulfur protein. Biochemistry 28:4450–4455PubMedGoogle Scholar
  115. 115.
    Faruque SM, Nair GB (2002) Molecular ecology of toxigenic Vibrio cholerae. Microbiol Immunol 46:59–66PubMedGoogle Scholar
  116. 116.
    Brüggemann H, Gottschalk G (2004) Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 10:53–68PubMedGoogle Scholar
  117. 117.
    Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850PubMedGoogle Scholar
  118. 118.
    Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190:784–791PubMedGoogle Scholar
  119. 119.
    Brandt U (1996) Bifurcated ubihydroquinone oxidation in the cytochrome bc1 complex by proton-gated charge transfer. FEBS Lett 387:1–6PubMedGoogle Scholar
  120. 120.
    Schut GJ, Adams MW (2009) The iron hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457 Google Scholar
  121. 121.
    McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci USA 104:7600–7605PubMedGoogle Scholar
  122. 122.
    Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49PubMedGoogle Scholar
  123. 123.
    Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch Microbiol 117:209–214PubMedGoogle Scholar
  124. 124.
    Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, Henne A, Fricke WF, Martinez-Arias R, Bartels D, Goesmann A, Krause L, Pühler A, Klenk HP, Richter M, Schüler M, Glöckner FO, Meyerdierks A, Gottschalk G, Amann R (2009) Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ Microbiol 11:1038–1055PubMedGoogle Scholar
  125. 125.
    Ferry JG (1992) Biochemistry of methanogenesis. Crit Rev Biochem Mol Biol 27:473–503PubMedGoogle Scholar
  126. 126.
    Rother M (2010) Methanogenesis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 483–499Google Scholar
  127. 127.
    Müller V, Winner C, Gottschalk G (1988) Electron transport-driven sodium extrusion during methanogenesis from formaldehyde + H2 by Methanosarcina barkeri. Eur J Biochem 178:519–525PubMedGoogle Scholar
  128. 128.
    Gottschalk G, Thauer RK (2001) The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505:28–36PubMedGoogle Scholar
  129. 129.
    Deppenmeier U (2002) Redox-driven proton translocation in methanogenic archaea. Cell Mol Life Sci 59:1–21Google Scholar
  130. 130.
    Rohlin L, Gunsalus RP (2010) Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A. BMC Microbiol 10:62PubMedGoogle Scholar
  131. 131.
    Franzmann PD, Springer N, Ludwig W, Conway de Macario E, Rohde M (1992) A methanogenic archaeon from Ace lake, antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581Google Scholar
  132. 132.
    Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379PubMedGoogle Scholar
  133. 133.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Eva Biegel
    • 1
  • Silke Schmidt
    • 1
  • José M. González
    • 2
  • Volker Müller
    • 1
  1. 1.Molecular Microbiology and Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe University Frankfurt/MainFrankfurtGermany
  2. 2.Department of Microbiology and Cell BiologyUniversity of La LagunaLa LagunaSpain

Personalised recommendations