Advertisement

Cellular and Molecular Life Sciences

, Volume 68, Issue 10, pp 1645–1656 | Cite as

Injury-induced neurogenesis in the mammalian forebrain

Review

Abstract

It has been accepted that new neurons are added to the olfactory bulb and the hippocampal dentate gyrus throughout life in the healthy adult mammalian brain. Recent studies have clarified that brain insult raises the proliferation of neural stem cells/neural progenitor cells existing in the subventricular zone and the subgranular zone, which become sources of new neurons for the olfactory bulb and the dentate gyrus, respectively. Interestingly, convincing data has shown that brain insult invokes neurogenesis in various brain regions, such as the hippocampal cornu ammonis region, striatum, and cortex. These reports suggest that neural stem cells/neural progenitor cells, which can be activated by brain injury, might be broadly located in the adult brain or that new neurons may migrate widely from the neurogenic regions. This review focuses on brain insult-induced neurogenesis in the mammalian forebrain, especially in the neocortex.

Keywords

Insult Ischemia Neurogenesis Stem cells Progenitor cell Proliferation 

Abbreviations

BrdU

Bromodeoxyuridine

CA

Cornu ammonis

L1-INP

Layer 1 inhibitory neuron progenitor

MGE

Medial ganglionic eminence

NSC

Neural stem cell

NPC

Neural progenitor cell

SGZ

Subgranular zone

SVZ

Subventricular zone

Notes

Acknowledgments

I thank Dr. Greta Anderson for critical reading of the manuscript. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology, Grants-in-Aid for Young Scientists (B), 21700384.

References

  1. 1.
    Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73PubMedGoogle Scholar
  2. 2.
    Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71PubMedGoogle Scholar
  3. 3.
    Gage FH (2000) Mammalian Neural Stem Cells. Science 287:1433–1438PubMedGoogle Scholar
  4. 4.
    Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569PubMedGoogle Scholar
  5. 5.
    Ming G, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250PubMedGoogle Scholar
  6. 6.
    Rochefort C, Gheusi G, Vincent J, Lledo P (2002) Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 22:2679–2689PubMedGoogle Scholar
  7. 7.
    Sultan S, Mandairon N, Kermen F, Garcia S, Sacquet J, Didier A (2010) Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory. FASEB J 24:2355–2363PubMedGoogle Scholar
  8. 8.
    Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362PubMedGoogle Scholar
  9. 9.
    Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161PubMedGoogle Scholar
  10. 10.
    Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29:13532–13542PubMedGoogle Scholar
  11. 11.
    Kokaia Z, Lindvall O (2003) Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13:127–132PubMedGoogle Scholar
  12. 12.
    Palmer TD, Ray J, Gage FH (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 6:474–486PubMedGoogle Scholar
  13. 13.
    Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716PubMedGoogle Scholar
  14. 14.
    Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061PubMedGoogle Scholar
  15. 15.
    Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93:14895–14900PubMedGoogle Scholar
  16. 16.
    Lois C, García-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981PubMedGoogle Scholar
  17. 17.
    Seki T, Arai Y (1993) Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci 13:2351–2358PubMedGoogle Scholar
  18. 18.
    Duan X, Kang E, Liu CY, Ming G, Song H (2008) Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18:108–115PubMedGoogle Scholar
  19. 19.
    Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660PubMedGoogle Scholar
  20. 20.
    Ge S, Sailor KA, Ming G, Song H (2008) Synaptic integration and plasticity of new neurons in the adult hippocampus. J Physiol 586:3759–3765PubMedGoogle Scholar
  21. 21.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  22. 22.
    Raichle ME (1983) The pathophysiology of brain ischemia. Ann Neurol 13:2–10PubMedGoogle Scholar
  23. 23.
    Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778PubMedGoogle Scholar
  24. 24.
    Bernabeu R, Sharp FR (2000) NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab 20:1669–1680PubMedGoogle Scholar
  25. 25.
    Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98:4710–4715PubMedGoogle Scholar
  26. 26.
    Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, Lapointe M, Chopp M (2001) A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann Neurol 50:602–611PubMedGoogle Scholar
  27. 27.
    Yagita Y, Kitagawa K, Ohtsuki T, Takasawa K, Miyata T, Okano H, Hori M, Matsumoto M (2001) Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32:1890–1896PubMedGoogle Scholar
  28. 28.
    Arvidsson A, Kokaia Z, Lindvall O (2001) N-methyl-d-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci 14:10–18PubMedGoogle Scholar
  29. 29.
    Zhang R, Wang Y, Zhang L, Zhang Z, Tsang W, Lu M, Zhang L, Chopp M (2002) Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke 33:2675–2680PubMedGoogle Scholar
  30. 30.
    Takasawa K, Kitagawa K, Yagita Y, Sasaki T, Tanaka S, Matsushita K, Ohstuki T, Miyata T, Okano H, Hori M, Matsumoto M (2002) Increased proliferation of neural progenitor cells but reduced survival of newborn cells in the contralateral hippocampus after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 22:299–307PubMedGoogle Scholar
  31. 31.
    Iwai M, Sato K, Omori N, Nagano I, Manabe Y, Shoji M, Abe K (2002) Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia. J Cereb Blood Flow Metab 22:411–419PubMedGoogle Scholar
  32. 32.
    Chen J, Zhang ZG, Li Y, Wang Y, Wang L, Jiang H, Zhang C, Lu M, Katakowski M, Feldkamp CS, Chopp M (2003) Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 53:743–751PubMedGoogle Scholar
  33. 33.
    Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851PubMedGoogle Scholar
  34. 34.
    Zhu DY, Liu SH, Sun HS, Lu YM (2003) Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J Neurosci 23:223–229PubMedGoogle Scholar
  35. 35.
    Tonchev AB, Yamashima T, Zhao L, Okano HJ, Okano H (2003) Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Mol Cell Neurosci 23:292–301PubMedGoogle Scholar
  36. 36.
    Jin K, Sun Y, Xie L, Childs J, Mao XO, Greenberg DA (2004) Post-ischemic administration of heparin-binding epidermal growth factor-like growth factor (HB-EGF) reduces infarct size and modifies neurogenesis after focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 24:399–408PubMedGoogle Scholar
  37. 37.
    Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737PubMedGoogle Scholar
  38. 38.
    Kawai T, Takagi N, Miyake-Takagi K, Okuyama N, Mochizuki N, Takeo S (2004) Characterization of BrdU-positive neurons induced by transient global ischemia in adult hippocampus. J Cereb Blood Flow Metab 24:548–555PubMedGoogle Scholar
  39. 39.
    Zhu DY, Lau L, Liu SH, Wei JS, Lu YM (2004) Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 101:9453–9457PubMedGoogle Scholar
  40. 40.
    Komitova M, Mattsson B, Johansson BB, Eriksson PS (2005) Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36:1278–1282PubMedGoogle Scholar
  41. 41.
    Darsalia V, Heldmann U, Lindvall O, Kokaia Z (2005) Stroke-induced neurogenesis in aged brain. Stroke 36:1790–1795PubMedGoogle Scholar
  42. 42.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826PubMedGoogle Scholar
  43. 43.
    Kobayashi T, Ahlenius H, Thored P, Kobayashi R, Kokaia Z, Lindvall O (2006) Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke 37:2361–2367PubMedGoogle Scholar
  44. 44.
    Koketsu D, Furuichi Y, Maeda M, Matsuoka N, Miyamoto Y, Hisatsune T (2006) Increased number of new neurons in the olfactory bulb and hippocampus of adult non-human primates after focal ischemia. Exp Neurol 199:92–102PubMedGoogle Scholar
  45. 45.
    Macas J, Nern C, Plate KH, Momma S (2006) Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci 26:13114–13119PubMedGoogle Scholar
  46. 46.
    Leker RR, Soldner F, Velasco I, Gavin DK, Androutsellis-Theotokis A, McKay RD (2007) Long-lasting regeneration after ischemia in the cerebral cortex. Stroke 38:153–161PubMedGoogle Scholar
  47. 47.
    Liu XS, Zhang ZG, Zhang RL, Gregg S, Morris DC, Wang Y, Chopp M (2007) Stroke induces gene profile changes associated with neurogenesis and angiogenesis in adult subventricular zone progenitor cells. J Cereb Blood Flow Metab 27:564–574PubMedGoogle Scholar
  48. 48.
    Suzuki S, Gerhold LM, Böttner M, Rau SW, Dela Cruz C, Yang E, Zhu H, Yu J, Cashion AB, Kindy MS, Merchenthaler I, Gage FH, Wise PM (2007) Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol 500:1064–1075PubMedGoogle Scholar
  49. 49.
    Wang Y, Jin K, Mao XO, Xie L, Banwait S, Marti HH, Greenberg DA (2007) VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res 85:740–747PubMedGoogle Scholar
  50. 50.
    Lu L, Tonchev AB, Kaplamadzhiev DB, Boneva NB, Mori Y, Sahara S, Ma D, Nakaya MA, Kikuchi M, Yamashita T (2008) Expression of matrix metalloproteinases in the neurogenic niche of the adult monkey hippocampus after ischemia. Hippocampus 18:1074–1084PubMedGoogle Scholar
  51. 51.
    Wang L, Chopp M, Zhang R, Zhang L, LeTourneau Y, Feng YF, Jiang A, Morris DC, Zhang ZG (2009) The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience 158:1356–1363PubMedGoogle Scholar
  52. 52.
    Wang X, Mao X, Xie L, Greenberg DA, Jin K (2009) Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J Cereb Blood Flow Metab 29:1644–1654PubMedGoogle Scholar
  53. 53.
    Tian H, Huang B, Zhao J, Hu X, Guo J, Li LX (2009) Non-receptor tyrosine kinase Src is required for ischemia-stimulated neuronal cell proliferation via Raf/ERK/CREB activation in the dentate gyrus. BMC Neurosci 10:139PubMedGoogle Scholar
  54. 54.
    Marti-Fabregas J, Romaguera-Ros M, Gomez-Pinedo U, Martinez-Ramirez S, Jimenez-Xarrie E, Marín R, Martí-Vilalta JL, García-Verdugo JM (2010) Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology 74:357–365PubMedGoogle Scholar
  55. 55.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970PubMedGoogle Scholar
  56. 56.
    Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813PubMedGoogle Scholar
  57. 57.
    Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189PubMedGoogle Scholar
  58. 58.
    Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24:739–747PubMedGoogle Scholar
  59. 59.
    Yamashita T, Ninomiya M, Hernández Acosta P, García-Verdugo JM, Sunabori T, Sakaguchi M, Adachi K, Kojima T, Hirota Y, Kawase T, Araki N, Abe K, Okano H, Sawamoto K (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26:6627–6636PubMedGoogle Scholar
  60. 60.
    Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28:545–554PubMedGoogle Scholar
  61. 61.
    Buchholtz A (1890) Ueber das Vorkommen von Karyokinesen in Zellen des Centralnervensystems von neugeborenen und jungen Hunden u. Kaninchen. Neurol Centralbl 9:140–142Google Scholar
  62. 62.
    Sclavunos G (1899) Ueber Keimzellen in d. weissen Substanz d. Ruckenmarks von alteren Embryonen und Neugeborenen. Anat Anz 16:467–473Google Scholar
  63. 63.
    Hamilton A (1901) The division of differentiated cells in the central nervous system of the white rat. J Comp Neurol 11:297–320Google Scholar
  64. 64.
    Allen E (1912) The cessation of mitosis in the central nervous system of the albino rat. J Comp Neurol 22:547–568Google Scholar
  65. 65.
    Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591PubMedGoogle Scholar
  66. 66.
    Kaplan MS (1981) Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol 195:323–338PubMedGoogle Scholar
  67. 67.
    Rakic P (1974) Neurons in rhesus visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–427PubMedGoogle Scholar
  68. 68.
    Rakic P (1982) Early developmental events: cell lineages, acquisition of neuronal positions, and areal and laminar development. Neurosci Res Program Bull 20:439–451PubMedGoogle Scholar
  69. 69.
    Rakic P (1985) Limits of neurogenesis in primates. Science 227:1054–1056PubMedGoogle Scholar
  70. 70.
    Cameron HA, Dayer AG (2008) New interneurons in the adult neocortex: small, sparse, but significant? Biol Psychiatry 63:650–655PubMedGoogle Scholar
  71. 71.
    Gould E, Reeves AJ, Graziano MSA, Gross CG (1999) Neurogenesis in the neocortex of adult primates. Science 286:548–552PubMedGoogle Scholar
  72. 72.
    Gould E, Vail N, Wagers M, Gross CG (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA 98:10910–10917PubMedGoogle Scholar
  73. 73.
    Bernier PJ, Bédard A, Vinet J, Lévesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA 99:11464–11469PubMedGoogle Scholar
  74. 74.
    Koketsu D, Mikami A, Miyamoto Y, Hisatsune T (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J Neurosci 23:937–942PubMedGoogle Scholar
  75. 75.
    Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168:415–427PubMedGoogle Scholar
  76. 76.
    Kimura K, Shimizu K, Hayashi M, Ishikawa T, Ago Y (2000) Pituitary–adrenocortical responses to the first dyadic encounters in male rhesus monkeys: effect of dominance relationship. Am J Primatol 50:247–256PubMedGoogle Scholar
  77. 77.
    Kozorovitskiy Y, Gould E (2004) Dominance hierarchy influences adult neurogenesis in the dentate gyrus. J Neurosci 24:6755–6759PubMedGoogle Scholar
  78. 78.
    Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128PubMedGoogle Scholar
  79. 79.
    Altman J (1966) Autoradiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 128:431–473Google Scholar
  80. 80.
    Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955PubMedGoogle Scholar
  81. 81.
    Gu W, Brannstrom T, Wester P (2000) Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J Cereb Blood Flow Metab 20:1166–1173PubMedGoogle Scholar
  82. 82.
    Kornack DR, Rakic P (2001) Cell proliferation without neurogenesis in adult primate neocortex. Science 294:2127–2130PubMedGoogle Scholar
  83. 83.
    Jiang W, Gu W, Brannstrom T, Rosqvist R, Wester P (2001) Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 32:1201–1207PubMedGoogle Scholar
  84. 84.
    Zhang RL, Zhang ZG, Zhang L, Chopp M (2001) Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105:33–41PubMedGoogle Scholar
  85. 85.
    Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA 99:11464–11469PubMedGoogle Scholar
  86. 86.
    Ehninger D, Kempermann G (2003) Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex 13:845–851PubMedGoogle Scholar
  87. 87.
    Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G II, Jiang L, Kang J, Nedergaard M, Goldman SA (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9:439–447PubMedGoogle Scholar
  88. 88.
    Chen J, Magavi SSP, Macklis JD (2004) Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci USA 101:16357–16362PubMedGoogle Scholar
  89. 89.
    Tonchev AB, Yamashima T, Sawamoto K, Okano H (2005) Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia. J Neurosci Res 81:776–788PubMedGoogle Scholar
  90. 90.
    Sundholm-Peters NL, Yang HKC, Goings GE, Walker AS, Szele FG (2005) Subventricular zone neuroblasts emigrate toward cortical lesions. J Neuropathol Exp Neurol 64:1089–1100PubMedGoogle Scholar
  91. 91.
    Takemura N (2005) Evidence for neurogenesis within the white matter beneath the temporal neocortex of the adult rat brain. Neuroscience 134:121–132PubMedGoogle Scholar
  92. 92.
    Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Björk-Eriksson T, Nordborg C, Gage FH, Druid H, Eriksson PS, Frisén J (2006) Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci USA 103:12564–12568PubMedGoogle Scholar
  93. 93.
    Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y, Banwait S, Greenberg DA (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA 103:13198–13202PubMedGoogle Scholar
  94. 94.
    Tamura Y, Kataoka Y, Cui Y, Takamori Y, Watanabe Y, Yamada H (2007) Multi-directional differentiation of doublecortin- and NG2-immunopositive progenitor cells in the adult rat neocortex in vivo. Eur J Neurosci 25:3489–3498PubMedGoogle Scholar
  95. 95.
    Li W, Yu SP, Ogle ME, Ding XS, Wei L (2008) Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice. Dev Neurobiol 68:1474–1486PubMedGoogle Scholar
  96. 96.
    Sirko S, Neitz A, Mittmann T, Horvat-Bröcker A, von Holst A, Eysel UT, Faissner A (2009) Focal laser-lesions activate an endogenous population of neural stem/progenitor cells in the adult visual cortex. Brain 132:2252–2264PubMedGoogle Scholar
  97. 97.
    Xue J, Yanamoto H, Nakajo Y, Tohnai N, Nakano Y, Hori T, Iihara K, Miyamoto S (2009) Induced spreading depression evokes cell division of astrocytes in the subpial zone, generating neural precursor-like cells and new immature neurons in the adult cerebral cortex. Stroke 40:e606–e613PubMedGoogle Scholar
  98. 98.
    Nakayama D, Matsuyama T, Ishibashi-Ueda H, Nakagomi T, Kasahara Y, Hirose H, Kikuchi-Taura A, Stern DM, Mori H, Taguchi A (2010) Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex. Eur J Neurosci 31:90–98PubMedGoogle Scholar
  99. 99.
    Ohira K, Furuta T, Hioki H, Nakamura KC, Kuramoto E, Tanaka Y, Funatsu N, Shimizu K, Oishi T, Hayashi M, Miyakawa T, Kaneko T, Nakamura S (2010) Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nat Neurosci 13:173–179PubMedGoogle Scholar
  100. 100.
    Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442PubMedGoogle Scholar
  101. 101.
    Komitova M, Zhu X, Serwanski DR, Nishiyama A (2009) NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol 512:702–716PubMedGoogle Scholar
  102. 102.
    Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9–22PubMedGoogle Scholar
  103. 103.
    Platel J, Gordon V, Heintz T, Bordey A (2009) GFAP–GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia 57:66–78PubMedGoogle Scholar
  104. 104.
    Belachew S, Chittajallu R, Aguirre AA, Yuan X, Kirby M, Anderson S, Gallo V (2003) Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161:169–186PubMedGoogle Scholar
  105. 105.
    Aguirre A, Gallo V (2004) Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci 24:10530–10541PubMedGoogle Scholar
  106. 106.
    Aguirre AA, Chittajallu R, Belachew S, Gallo V (2004) NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J Cell Biol 165:575–589PubMedGoogle Scholar
  107. 107.
    Ohira K, Kaneko T (2010) Injection of virus vectors into the neocortical layer 1. Nat Protoc. doi: 10.1038/nproc.2010.21
  108. 108.
    Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA (2004) Origins of cortical interneuron subtypes. J Neurosci 24:2612–2622PubMedGoogle Scholar
  109. 109.
    Cobos I, Long JE, Thwin MT, Rubenstein JL (2006) Cellular patterns of transcription factor expression in developing cortical interneurons. Cereb Cortex 16:i82–i88PubMedGoogle Scholar
  110. 110.
    Costa MR, Kessaris N, Richardson WD, Gotz M, Hedin-Pereira C (2007) The marginal zone/layer I as a novel niche for neurogenesis and gliogenesis in developing cerebral cortex. J Neurosci 27:11376–11388PubMedGoogle Scholar
  111. 111.
    Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888PubMedGoogle Scholar
  112. 112.
    Zecevic N, Rakic P (2001) Development of layer I neurons in the primate cerebral cortex. J Neurosci 21:5607–5619PubMedGoogle Scholar
  113. 113.
    Jiménez D, Rivera R, López-Mascaraque L, De Carlos JA (2003) Origin of the cortical layer I in rodents. Dev Neurosci 25:105–115PubMedGoogle Scholar
  114. 114.
    Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176PubMedGoogle Scholar
  115. 115.
    Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483PubMedGoogle Scholar
  116. 116.
    Kroll TT, O’Leary DDM (2005) Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc Natl Acad Sci USA 102:7374–7379PubMedGoogle Scholar
  117. 117.
    Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717PubMedGoogle Scholar
  118. 118.
    Bédard A, Cossette M, Lévesque M, Parent A (2002) Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci Lett 328:213–216PubMedGoogle Scholar
  119. 119.
    Luzzati F, De Marchis S, Fasolo A, Peretto P (2006) Neurogenesis in the caudate nucleus of the adult rabbit. J Neurosci 26:609–621PubMedGoogle Scholar
  120. 120.
    Keilhoff G, Becker A, Grecksch G, Bernstein H, Wolf G (2006) Cell proliferation is influenced by bulbectomy and normalized by imipramine treatment in a region-specific manner. Neuropsychopharmacology 31:1165–1176PubMedGoogle Scholar
  121. 121.
    Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Déglon N, Kostic C, Zurn A, Aebischer P (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 170:48–62PubMedGoogle Scholar
  122. 122.
    Fowler CD, Liu Y, Ouimet C, Wang Z (2002) The effects of social environment on adult neurogenesis in the female prairie vole. J Neurobiol 51:115–128PubMedGoogle Scholar
  123. 123.
    Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441PubMedGoogle Scholar
  124. 124.
    Huang L, DeVries GJ, Bittman EL (1998) Photoperiod regulates neuronal bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J Neurobiol 36:410–420PubMedGoogle Scholar
  125. 125.
    Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683PubMedGoogle Scholar
  126. 126.
    Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C (2005) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192:251–264PubMedGoogle Scholar
  127. 127.
    Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisén J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100:7925–7930PubMedGoogle Scholar
  128. 128.
    Ponti G, Peretto P, Bonfanti L (2006) A subpial, transitory germinal zone forms chains of neuronal precursors in the rabbit cerebellum. Dev Biol 294:168–180PubMedGoogle Scholar
  129. 129.
    Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609PubMedGoogle Scholar
  130. 130.
    Kehl LJ, Fairbanks CA, Laughlin TM, Wilcox GL (1997) Neurogenesis in postnatal rat spinal cord: a study in primary culture. Science 276:586–589PubMedGoogle Scholar
  131. 131.
    Shihabuddin LS, Ray J, Gage FH (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol 148:577–586PubMedGoogle Scholar
  132. 132.
    Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34PubMedGoogle Scholar
  133. 133.
    Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228PubMedGoogle Scholar
  134. 134.
    Shihabuddin LS, Horner PJ, Ray J, Gage FH (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20:8727–8735PubMedGoogle Scholar
  135. 135.
    Bédard A, Lévesque M, Bernier PJ, Parent A (2002) The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci 16:1917–1924PubMedGoogle Scholar
  136. 136.
    Pekcec A, Löscher W, Potschka H (2006) Neurogenesis in the adult rat piriform cortex. Neuroreport 17:571–574PubMedGoogle Scholar
  137. 137.
    Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488PubMedGoogle Scholar
  138. 138.
    Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 101:10177–10182PubMedGoogle Scholar
  139. 139.
    Cooper O, Isacson O (2004) Intrastriatal transforming growth factor alpha delivery to a model of Parkinson’s disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J Neurosci 24:8924–8931PubMedGoogle Scholar
  140. 140.
    Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287:1442–1446PubMedGoogle Scholar
  141. 141.
    Donovan PJ, Gearhart J (2001) The end of the beginning for pluripotent stem cells. Nature 414:92–97PubMedGoogle Scholar
  142. 142.
    Selvaraj V, Plane JM, Williams AJ, Deng W (2010) Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends Biotechnol 28:214–223PubMedGoogle Scholar
  143. 143.
    Okita K, Yamanaka S (2010) Induction of pluripotency by defined factors. Exp Cell Res 316:2565–2570PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan

Personalised recommendations