Cellular and Molecular Life Sciences

, Volume 68, Issue 7, pp 1115–1129 | Cite as

Structure of the gap junction channel and its implications for its biological functions



Gap junctions consist of arrays of intercellular channels composed of integral membrane proteins called connexin in vertebrates. Gap junction channels regulate the passage of ions and biological molecules between adjacent cells and, therefore, are critically important in many biological activities, including development, differentiation, neural activity, and immune response. Mutations in connexin genes are associated with several human diseases, such as neurodegenerative disease, skin disease, deafness, and developmental abnormalities. The activity of gap junction channels is regulated by the membrane voltage, intracellular microenvironment, interaction with other proteins, and phosphorylation. Each connexin channel has its own property for conductance and molecular permeability. A number of studies have tried to reveal the molecular architecture of the channel pore that should confer the connexin-specific permeability/selectivity properties and molecular basis for the gating and regulation. In this review, we give an overview of structural studies and describe the structural and functional relationship of gap junction channels.


Gap junction Connexin Electron microscopy X-ray diffraction Gating Regulation Permeability Selectivity 



This work was supported in part by grants-in-aid for scientific research (16087101, 16087206, and 21227003), the GCOE program (A-041) from the Ministry of Education, Culture, Sports, Sciences, and Technology of Japan (to T.T.).


  1. 1.
    Alberts B (2008) Molecular biology of the cell (various pagings). Garland Science, New York, pp 1 vGoogle Scholar
  2. 2.
    Foote CI, Zhou L, Zhu X, Nicholson BJ (1998) The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol 140:1187–1197PubMedCrossRefGoogle Scholar
  3. 3.
    Bao X, Chen Y, Reuss L, Altenberg GA (2004) Functional expression in Xenopus oocytes of gap-junctional hemichannels formed by a cysteine-less connexin 43. J Biol Chem 279:9689–9692PubMedCrossRefGoogle Scholar
  4. 4.
    Bittman K, Owens DF, Kriegstein AR, LoTurco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17:7037–7044PubMedGoogle Scholar
  5. 5.
    Owens DF, Kriegstein AR (1998) Patterns of intracellular calcium fluctuation in precursor cells of the neocortical ventricular zone. J Neurosci 18:5374–5388PubMedGoogle Scholar
  6. 6.
    Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661PubMedCrossRefGoogle Scholar
  7. 7.
    Elias LA, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448:901–907PubMedCrossRefGoogle Scholar
  8. 8.
    Rozental R, Morales M, Mehler MF, Urban M, Kremer M, Dermietzel R, Kessler JA, Spray DC (1998) Changes in the properties of gap junctions during neuronal differentiation of hippocampal progenitor cells. J Neurosci 18:1753–1762PubMedGoogle Scholar
  9. 9.
    Donahue LM, Webster DR, Martinez I, Spray DC (1998) Decreased gap-junctional communication associated with segregation of the neuronal phenotype in the RT4 cell-line family. Cell Tissue Res 292:27–35PubMedCrossRefGoogle Scholar
  10. 10.
    Bani-Yaghoub M, Underhill TM, Naus CC (1999) Gap junction blockage interferes with neuronal and astroglial differentiation of mouse P19 embryonal carcinoma cells. Dev Genet 24:69–81PubMedCrossRefGoogle Scholar
  11. 11.
    Kaba RA, Coppen SR, Dupont E, Skepper JN, Elneil S, Haw MP, Pepper JR, Yacoub MH, Rothery S, Severs NJ (2001) Comparison of connexin 43, 40 and 45 expression patterns in the developing human and mouse hearts. Cell Commun Adhes 8:339–343PubMedCrossRefGoogle Scholar
  12. 12.
    Alcolea S, Theveniau-Ruissy M, Jarry-Guichard T, Marics I, Tzouanacou E, Chauvin JP, Briand JP, Moorman AF, Lamers WH, Gros DB (1999) Downregulation of connexin 45 gene products during mouse heart development. Circ Res 84:1365–1379PubMedGoogle Scholar
  13. 13.
    Van Kempen MJ, Vermeulen JL, Moorman AF, Gros D, Paul DL, Lamers WH (1996) Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc Res 32:886–900PubMedGoogle Scholar
  14. 14.
    Kumai M, Nishii K, Nakamura K, Takeda N, Suzuki M, Shibata Y (2000) Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 127:3501–3512PubMedGoogle Scholar
  15. 15.
    Kruger O, Plum A, Kim JS, Winterhager E, Maxeiner S, Hallas G, Kirchhoff S, Traub O, Lamers WH, Willecke K (2000) Defective vascular development in connexin 45-deficient mice. Development 127:4179–4193PubMedGoogle Scholar
  16. 16.
    Nishii K, Kumai M, Egashira K, Miwa T, Hashizume K, Miyano Y, Shibata Y (2003) Mice lacking connexin45 conditionally in cardiac myocytes display embryonic lethality similar to that of germline knockout mice without endocardial cushion defect. Cell Commun Adhes 10:365–369PubMedGoogle Scholar
  17. 17.
    Simon AM, Goodenough DA, Paul DL (1998) Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol 8:295–298PubMedCrossRefGoogle Scholar
  18. 18.
    Gu H, Smith FC, Taffet SM, Delmar M (2003) High incidence of cardiac malformations in connexin40-deficient mice. Circ Res 93:201–206PubMedCrossRefGoogle Scholar
  19. 19.
    Kirchhoff S, Kim JS, Hagendorff A, Thonnissen E, Kruger O, Lamers WH, Willecke K (2000) Abnormal cardiac conduction and morphogenesis in connexin40 and connexin43 double-deficient mice. Circ Res 87:399–405PubMedGoogle Scholar
  20. 20.
    Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834PubMedCrossRefGoogle Scholar
  21. 21.
    Huang GY, Cooper ES, Waldo K, Kirby ML, Gilula NB, Lo CW (1998) Gap junction-mediated cell-cell communication modulates mouse neural crest migration. J Cell Biol 143:1725–1734PubMedCrossRefGoogle Scholar
  22. 22.
    Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH (1995) Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med 332:1323–1329PubMedCrossRefGoogle Scholar
  23. 23.
    Chen P, Xie LJ, Huang GY, Zhao XQ, Chang C (2005) Mutations of connexin43 in fetuses with congenital heart malformations. Chin Med J (Engl) 118:971–976Google Scholar
  24. 24.
    Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH (2001) Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res 479:173–186PubMedCrossRefGoogle Scholar
  25. 25.
    Ahmad S, Chen S, Sun J, Lin X (2003) Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 307:362–368PubMedCrossRefGoogle Scholar
  26. 26.
    Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (2000) Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 32:163–166PubMedCrossRefGoogle Scholar
  27. 27.
    Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G (2003) Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J Comp Neurol 467:207–231PubMedCrossRefGoogle Scholar
  28. 28.
    Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83PubMedCrossRefGoogle Scholar
  29. 29.
    Grifa A, Wagner CA, D’Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P (1999) Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23:16–18PubMedGoogle Scholar
  30. 30.
    Goodenough DA (1992) The crystalline lens. A system networked by gap junctional intercellular communication. Semin Cell Biol 3:49–58PubMedCrossRefGoogle Scholar
  31. 31.
    White TW, Bruzzone R (2000) Intercellular communication in the eye: clarifying the need for connexin diversity. Brain Res Brain Res Rev 32:130–137PubMedCrossRefGoogle Scholar
  32. 32.
    Gerido DA, White TW (2004) Connexin disorders of the ear, skin, and lens. Biochim Biophys Acta 1662:159–170PubMedCrossRefGoogle Scholar
  33. 33.
    Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB (1997) Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91:833–843PubMedCrossRefGoogle Scholar
  34. 34.
    White TW, Bruzzone R, Goodenough DA, Paul DL (1992) Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol Biol Cell 3:711–720PubMedGoogle Scholar
  35. 35.
    Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089PubMedCrossRefGoogle Scholar
  36. 36.
    Dahm R, van Marle J, Prescott AR, Quinlan RA (1999) Gap junctions containing alpha8-connexin (MP70) in the adult mammalian lens epithelium suggests a re-evaluation of its role in the lens. Exp Eye Res 69:45–56PubMedCrossRefGoogle Scholar
  37. 37.
    Rong P, Wang X, Niesman I, Wu Y, Benedetti LE, Dunia I, Levy E, Gong X (2002) Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development 129:167–174PubMedGoogle Scholar
  38. 38.
    Donaldson P, Kistler J, Mathias RT (2001) Molecular solutions to mammalian lens transparency. News Physiol Sci 16:118–123PubMedGoogle Scholar
  39. 39.
    Mathias RT, Rae JL, Baldo GJ (1997) Physiological properties of the normal lens. Physiol Rev 77:21–50PubMedGoogle Scholar
  40. 40.
    Devi RR, Reena C, Vijayalakshmi P (2005) Novel mutations in GJA3 associated with autosomal dominant congenital cataract in the Indian population. Mol Vis 11:846–852PubMedGoogle Scholar
  41. 41.
    Devi RR, Vijayalakshmi P (2006) Novel mutations in GJA8 associated with autosomal dominant congenital cataract and microcornea. Mol Vis 12:190–195PubMedGoogle Scholar
  42. 42.
    Jiang H, Jin Y, Bu L, Zhang W, Liu J, Cui B, Kong X, Hu L (2003) A novel mutation in GJA3 (connexin46) for autosomal dominant congenital nuclear pulverulent cataract. Mol Vis 9:579–583PubMedGoogle Scholar
  43. 43.
    Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S (1998) A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62:526–532PubMedCrossRefGoogle Scholar
  44. 44.
    Burdon KP, Wirth MG, Mackey DA, Russell-Eggitt IM, Craig JE, Elder JE, Dickinson JL, Sale MM (2004) A novel mutation in the connexin 46 gene causes autosomal dominant congenital cataract with incomplete penetrance. J Med Genet 41:e106PubMedCrossRefGoogle Scholar
  45. 45.
    Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML (2005) Defective gap junctional intercellular communication in the carcinogenic process. Biochim Biophys Acta 1719:125–145PubMedCrossRefGoogle Scholar
  46. 46.
    Haefliger JA, Nicod P, Meda P (2004) Contribution of connexins to the function of the vascular wall. Cardiovasc Res 62:345–356PubMedCrossRefGoogle Scholar
  47. 47.
    Hill CE, Rummery N, Hickey H, Sandow SL (2002) Heterogeneity in the distribution of vascular gap junctions and connexins: implications for function. Clin Exp Pharmacol Physiol 29:620–625PubMedCrossRefGoogle Scholar
  48. 48.
    Simon AM, Goodenough DA (1998) Diverse functions of vertebrate gap junctions. Trends Cell Biol 8:477–483PubMedCrossRefGoogle Scholar
  49. 49.
    Levin M (2007) Gap junctional communication in morphogenesis. Prog Biophys Mol Biol 94:186–206PubMedCrossRefGoogle Scholar
  50. 50.
    Handel A, Yates A, Pilyugin SS, Antia R (2007) Gap junction-mediated antigen transport in immune responses. Trends Immunol 28:463–466PubMedCrossRefGoogle Scholar
  51. 51.
    Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543PubMedCrossRefGoogle Scholar
  52. 52.
    Sohl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–200PubMedCrossRefGoogle Scholar
  53. 53.
    Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232PubMedCrossRefGoogle Scholar
  54. 54.
    Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400PubMedGoogle Scholar
  55. 55.
    Robertson JD (1963) The occurrence of a subunit pattern in the unit membranes of club endings in mauthner cell synapses in goldfish brains. J Cell Biol 19:201–221PubMedCrossRefGoogle Scholar
  56. 56.
    Benedetti EL, Emmelot P (1965) Electron microscopic observations on negatively stained plasma membranes isolated from rat liver. J Cell Biol 26:299–305PubMedCrossRefGoogle Scholar
  57. 57.
    Zampighi G, Unwin PN (1979) Two forms of isolated gap junctions. J Mol Biol 135:451–464PubMedCrossRefGoogle Scholar
  58. 58.
    Unwin PN, Zampighi G (1980) Structure of the junction between communicating cells. Nature 283:545–549PubMedCrossRefGoogle Scholar
  59. 59.
    Yeager M (1995) Electron microscopic image analysis of cardiac gap junction membrane crystals. Microsc Res Tech 31:452–466PubMedCrossRefGoogle Scholar
  60. 60.
    Yeager M (1998) Structure of cardiac gap junction intercellular channels. J Struct Biol 121:231–245PubMedCrossRefGoogle Scholar
  61. 61.
    Unger VM, Kumar NM, Gilula NB, Yeager M (1999) Expression, two-dimensional crystallization, and electron cryo-crystallography of recombinant gap junction membrane channels. J Struct Biol 128:98–105PubMedCrossRefGoogle Scholar
  62. 62.
    Unger VM, Kumar NM, Gilula NB, Yeager M (1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283:1176–1180PubMedCrossRefGoogle Scholar
  63. 63.
    Fleishman SJ, Unger VM, Yeager M, Ben-Tal N (2004) A Calpha model for the transmembrane alpha helices of gap junction intercellular channels. Mol Cell 15:879–888PubMedCrossRefGoogle Scholar
  64. 64.
    Oshima A, Tani K, Hiroaki Y, Fujiyoshi Y, Sosinsky GE (2007) Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule. Proc Natl Acad Sci USA 104:10034–10039PubMedCrossRefGoogle Scholar
  65. 65.
    Makowski L, Caspar DL, Phillips WC, Goodenough DA (1977) Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol 74:629–645PubMedCrossRefGoogle Scholar
  66. 66.
    Tibbitts TT, Caspar DL, Phillips WC, Goodenough DA (1990) Diffraction diagnosis of protein folding in gap junction connexons. Biophys J 57:1025–1036PubMedCrossRefGoogle Scholar
  67. 67.
    Unwin PN, Ennis PD (1983) Calcium-mediated changes in gap junction structure: evidence from the low angle X-ray pattern. J Cell Biol 97:1459–1466PubMedCrossRefGoogle Scholar
  68. 68.
    Yu J, Bippes CA, Hand GM, Muller DJ, Sosinsky GE (2007) Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J Biol Chem 282:8895–8904PubMedCrossRefGoogle Scholar
  69. 69.
    Muller DJ, Hand GM, Engel A, Sosinsky GE (2002) Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J 21:3598–3607PubMedCrossRefGoogle Scholar
  70. 70.
    Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC (2004) Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. J Biol Chem 279:54695–54701PubMedCrossRefGoogle Scholar
  71. 71.
    Purnick PE, Benjamin DC, Verselis VK, Bargiello TA, Dowd TL (2000) Structure of the amino terminus of a gap junction protein. Arch Biochem Biophys 381:181–190PubMedCrossRefGoogle Scholar
  72. 72.
    Duffy HS, Sorgen PL, Girvin ME, O’Donnell P, Coombs W, Taffet SM, Delmar M, Spray DC (2002) pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277:36706–36714PubMedCrossRefGoogle Scholar
  73. 73.
    Sorgen PL, Duffy HS, Spray DC, Delmar M (2004) pH-dependent dimerization of the carboxyl terminal domain of Cx43. Biophys J 87:574–581PubMedCrossRefGoogle Scholar
  74. 74.
    Oh S, Verselis VK, Bargiello TA (2008) Charges dispersed over the permeation pathway determine the charge selectivity and conductance of a Cx32 chimeric hemichannel. J Physiol 586:2445–2461PubMedCrossRefGoogle Scholar
  75. 75.
    Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK (2003) Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels. J Gen Physiol 122:389–405PubMedCrossRefGoogle Scholar
  76. 76.
    Skerrett IM, Aronowitz J, Shin JH, Cymes G, Kasperek E, Cao FL, Nicholson BJ (2002) Identification of amino acid residues lining the pore of a gap junction channel. J Cell Biol 159:349–360PubMedCrossRefGoogle Scholar
  77. 77.
    Suchyna TM, Xu LX, Gao F, Fourtner CR, Nicholson BJ (1993) Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature 365:847–849PubMedCrossRefGoogle Scholar
  78. 78.
    Hirst-Jensen BJ, Sahoo P, Kieken F, Delmar M, Sorgen PL (2007) Characterization of the pH-dependent interaction between the gap junction protein connexin43 carboxyl terminus and cytoplasmic loop domains. J Biol Chem 282:5801–5813PubMedCrossRefGoogle Scholar
  79. 79.
    Morley GE, Ek-Vitorin JF, Taffet SM, Delmar M (1997) Structure of connexin43 and its regulation by pHi. J Cardiovasc Electrophysiol 8:939–951PubMedCrossRefGoogle Scholar
  80. 80.
    Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T (2009) Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458:597–602PubMedCrossRefGoogle Scholar
  81. 81.
    Suga M, Maeda S, Nakagawa S, Yamashita E, Tsukihara T (2009) A description of the structural determination procedures of a gap junction channel at 3.5 A resolution. Acta Crystallogr D Biol Crystallogr 65:758–766PubMedCrossRefGoogle Scholar
  82. 82.
    Sosinsky G (1995) Mixing of connexins in gap junction membrane channels. Proc Natl Acad Sci USA 92:9210–9214PubMedCrossRefGoogle Scholar
  83. 83.
    Perkins G, Goodenough D, Sosinsky G (1997) Three-dimensional structure of the gap junction connexon. Biophys J 72:533–544PubMedCrossRefGoogle Scholar
  84. 84.
    Cascio M, Gogol E, Wallace BA (1990) The secondary structure of gap junctions. Influence of isolation methods and proteolysis. J Biol Chem 265:2358–2364PubMedGoogle Scholar
  85. 85.
    Kuraoka A, Iida H, Hatae T, Shibata Y, Itoh M, Kurita T (1993) Localization of gap junction proteins, connexins 32 and 26, in rat and guinea pig liver as revealed by quick-freeze, deep-etch immunoelectron microscopy. J Histochem Cytochem 41:971–980PubMedCrossRefGoogle Scholar
  86. 86.
    Sosinsky GE (1992) Image analysis of gap junction structures. Electron Microsc Rev 5:59–76PubMedCrossRefGoogle Scholar
  87. 87.
    White TW, Paul DL, Goodenough DA, Bruzzone R (1995) Functional analysis of selective interactions among rodent connexins. Mol Biol Cell 6:459–470PubMedGoogle Scholar
  88. 88.
    Hertzberg EL, Disher RM, Tiller AA, Zhou Y, Cook RG (1988) Topology of the Mr 27, 000 liver gap junction protein. Cytoplasmic localization of amino- and carboxyl termini and a hydrophilic domain which is protease-hypersensitive. J Biol Chem 263:19105–19111PubMedGoogle Scholar
  89. 89.
    Zimmer DB, Green CR, Evans WH, Gilula NB (1987) Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures. J Biol Chem 262:7751–7763PubMedGoogle Scholar
  90. 90.
    Morley GE, Taffet SM, Delmar M (1996) Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J 70:1294–1302PubMedCrossRefGoogle Scholar
  91. 91.
    Rahman S, Evans WH (1991) Topography of connexin32 in rat liver gap junctions. Evidence for an intramolecular disulphide linkage connecting the two extracellular peptide loops. J Cell Sci 100(Pt 3):567–578PubMedGoogle Scholar
  92. 92.
    Zhang JT, Nicholson BJ (1994) The topological structure of connexin 26 and its distribution compared to connexin 32 in hepatic gap junctions. J Membr Biol 139:15–29PubMedGoogle Scholar
  93. 93.
    Yeager M, Gilula NB (1992) Membrane topology and quaternary structure of cardiac gap junction ion channels. J Mol Biol 223:929–948PubMedCrossRefGoogle Scholar
  94. 94.
    Yancey SB, John SA, Lal R, Austin BJ, Revel JP (1989) The 43-kD polypeptide of heart gap junctions: immunolocalization, topology, and functional domains. J Cell Biol 108:2241–2254PubMedCrossRefGoogle Scholar
  95. 95.
    Beyer EC, Kistler J, Paul DL, Goodenough DA (1989) Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 108:595–605PubMedCrossRefGoogle Scholar
  96. 96.
    Goodenough DA, Paul DL, Jesaitis L (1988) Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions. J Cell Biol 107:1817–1824PubMedCrossRefGoogle Scholar
  97. 97.
    Milks LC, Kumar NM, Houghten R, Unwin N, Gilula NB (1988) Topology of the 32-kd liver gap junction protein determined by site-directed antibody localizations. EMBO J 7:2967–2975PubMedGoogle Scholar
  98. 98.
    Zhou XW, Pfahnl A, Werner R, Hudder A, Llanes A, Luebke A, Dahl G (1997) Identification of a pore lining segment in gap junction hemichannels. Biophys J 72:1946–1953PubMedCrossRefGoogle Scholar
  99. 99.
    Trexler EB, Bukauskas FF, Kronengold J, Bargiello TA, Verselis VK (2000) The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels. Biophys J 79:3036–3051PubMedCrossRefGoogle Scholar
  100. 100.
    Hu X, Ma M, Dahl G (2006) Conductance of connexin hemichannels segregates with the first transmembrane segment. Biophys J 90:140–150PubMedCrossRefGoogle Scholar
  101. 101.
    Tang Q, Dowd TL, Verselis VK, Bargiello TA (2009) Conformational changes in a pore-forming region underlie voltage-dependent “loop gating” of an unapposed connexin hemichannel. J Gen Physiol 133:555–570PubMedCrossRefGoogle Scholar
  102. 102.
    Musa H, Fenn E, Crye M, Gemel J, Beyer EC, Veenstra RD (2004) Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions. J Physiol 557:863–878PubMedCrossRefGoogle Scholar
  103. 103.
    Baldwin JM (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J 12:1693–1703PubMedGoogle Scholar
  104. 104.
    Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302PubMedCrossRefGoogle Scholar
  105. 105.
    Dahl G, Werner R, Levine E, Rabadan-Diehl C (1992) Mutational analysis of gap junction formation. Biophys J 62:172–180 (discussion 180–182)Google Scholar
  106. 106.
    Dahl G, Levine E, Rabadan-Diehl C, Werner R (1991) Cell/cell channel formation involves disulfide exchange. Eur J Biochem 197:141–144PubMedCrossRefGoogle Scholar
  107. 107.
    John SA, Revel JP (1991) Connexon integrity is maintained by non-covalent bonds: intramolecular disulfide bonds link the extracellular domains in rat connexin-43. Biochem Biophys Res Commun 178:1312–1318PubMedCrossRefGoogle Scholar
  108. 108.
    Vanslyke JK, Naus CC, Musil LS (2009) Conformational maturation and post-ER multisubunit assembly of gap junction proteins. Mol Biol Cell 20:2451–2463PubMedCrossRefGoogle Scholar
  109. 109.
    Musil LS, Goodenough DA (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74:1065–1077PubMedCrossRefGoogle Scholar
  110. 110.
    Das Sarma J, Wang F, Koval M (2002) Targeted gap junction protein constructs reveal connexin-specific differences in oligomerization. J Biol Chem 277:20911–20918PubMedCrossRefGoogle Scholar
  111. 111.
    Maza J, Das Sarma J, Koval M (2005) Defining a minimal motif required to prevent connexin oligomerization in the endoplasmic reticulum. J Biol Chem 280:21115–21121PubMedCrossRefGoogle Scholar
  112. 112.
    Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418PubMedCrossRefGoogle Scholar
  113. 113.
    Mackay D, Ionides A, Kibar Z, Rouleau G, Berry V, Moore A, Shiels A, Bhattacharya S (1999) Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet 64:1357–1364PubMedCrossRefGoogle Scholar
  114. 114.
    Macari F, Landau M, Cousin P, Mevorah B, Brenner S, Panizzon R, Schorderet DF, Hohl D, Huber M (2000) Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am J Hum Genet 67:1296–1301PubMedGoogle Scholar
  115. 115.
    Richard G, Smith LE, Bailey RA, Itin P, Hohl D, Epstein EH Jr, DiGiovanna JJ, Compton JG, Bale SJ (1998) Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 20:366–369PubMedCrossRefGoogle Scholar
  116. 116.
    Maestrini E, Korge BP, Ocana-Sierra J, Calzolari E, Cambiaghi S, Scudder PM, Hovnanian A, Monaco AP, Munro CS (1999) A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel’s syndrome) in three unrelated families. Hum Mol Genet 8:1237–1243PubMedCrossRefGoogle Scholar
  117. 117.
    Richard G, Rouan F, Willoughby CE, Brown N, Chung P, Ryynanen M, Jabs EW, Bale SJ, DiGiovanna JJ, Uitto J, Russell L (2002) Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am J Hum Genet 70:1341–1348PubMedCrossRefGoogle Scholar
  118. 118.
    Bruzzone R, Gomes D, Denoyelle E, Duval N, Perea J, Veronesi V, Weil D, Petit C, Gabellec MM, D’Andrea P, White TW (2001) Functional analysis of a dominant mutation of human connexin26 associated with nonsyndromic deafness. Cell Commun Adhes 8:425–431PubMedCrossRefGoogle Scholar
  119. 119.
    Paznekas WA, Karczeski B, Vermeer S, Lowry RB, Delatycki M, Laurence F, Koivisto PA, Van Maldergem L, Boyadjiev SA, Bodurtha JN, Jabs EW (2009) GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum Mutat 30:724–733PubMedCrossRefGoogle Scholar
  120. 120.
    Zhao HB, Kikuchi T, Ngezahayo A, White TW (2006) Gap junctions and cochlear homeostasis. J Membr Biol 209:177–186PubMedCrossRefGoogle Scholar
  121. 121.
    Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Mila M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609PubMedCrossRefGoogle Scholar
  122. 122.
    Martin PE, Coleman SL, Casalotti SO, Forge A, Evans WH (1999) Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness. Hum Mol Genet 8:2369–2376PubMedCrossRefGoogle Scholar
  123. 123.
    Thonnissen E, Rabionet R, Arbones ML, Estivill X, Willecke K, Ott T (2002) Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet 111:190–197PubMedCrossRefGoogle Scholar
  124. 124.
    Oshima A, Doi T, Mitsuoka K, Maeda S, Fujiyoshi Y (2003) Roles of Met-34, Cys-64, and Arg-75 in the assembly of human connexin 26. Implication for key amino acid residues for channel formation and function. J Biol Chem 278:1807–1816PubMedCrossRefGoogle Scholar
  125. 125.
    Chen Y, Deng Y, Bao X, Reuss L, Altenberg GA (2005) Mechanism of the defect in gap-junctional communication by expression of a connexin 26 mutant associated with dominant deafness. FASEB J 19:1516–1518PubMedGoogle Scholar
  126. 126.
    Deng Y, Chen Y, Reuss L, Altenberg GA (2006) Mutations of connexin 26 at position 75 and dominant deafness: essential role of arginine for the generation of functional gap-junctional channels. Hear Res 220:87–94PubMedCrossRefGoogle Scholar
  127. 127.
    Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388PubMedCrossRefGoogle Scholar
  128. 128.
    Koval M (2006) Pathways and control of connexin oligomerization. Trends Cell Biol 16:159–166PubMedCrossRefGoogle Scholar
  129. 129.
    Cottrell GT, Burt JM (2005) Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease. Biochim Biophys Acta 1711:126–141PubMedCrossRefGoogle Scholar
  130. 130.
    Palacios-Prado N, Bukauskas FF (2009) Heterotypic gap junction channels as voltage-sensitive valves for intercellular signaling. Proc Natl Acad Sci USAGoogle Scholar
  131. 131.
    Elenes S, Martinez AD, Delmar M, Beyer EC, Moreno AP (2001) Heterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43. Biophys J 81:1406–1418PubMedCrossRefGoogle Scholar
  132. 132.
    Valiunas V, Weingart R, Brink PR (2000) Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 86:E42–E49PubMedGoogle Scholar
  133. 133.
    Cottrell GT, Burt JM (2001) Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons. Am J Physiol Cell Physiol 281:C1559–C1567PubMedGoogle Scholar
  134. 134.
    Hopperstad MG, Srinivas M, Spray DC (2000) Properties of gap junction channels formed by Cx46 alone and in combination with Cx50. Biophys J 79:1954–1966PubMedCrossRefGoogle Scholar
  135. 135.
    White TW, Bruzzone R, Wolfram S, Paul DL, Goodenough DA (1994) Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J Cell Biol 125:879–892PubMedCrossRefGoogle Scholar
  136. 136.
    Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24:4313–4323PubMedCrossRefGoogle Scholar
  137. 137.
    Haubrich S, Schwarz HJ, Bukauskas F, Lichtenberg-Frate H, Traub O, Weingart R, Willecke K (1996) Incompatibility of connexin 40 and 43 Hemichannels in gap junctions between mammalian cells is determined by intracellular domains. Mol Biol Cell 7:1995–2006PubMedGoogle Scholar
  138. 138.
    Srinivas M, Rozental R, Kojima T, Dermietzel R, Mehler M, Condorelli DF, Kessler JA, Spray DC (1999) Functional properties of channels formed by the neuronal gap junction protein connexin36. J Neurosci 19:9848–9855PubMedGoogle Scholar
  139. 139.
    Teubner B, Degen J, Sohl G, Guldenagel M, Bukauskas FF, Trexler EB, Verselis VK, De Zeeuw CI, Lee CG, Kozak CA, Petrasch-Parwez E, Dermietzel R, Willecke K (2000) Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J Membr Biol 176:249–262PubMedCrossRefGoogle Scholar
  140. 140.
    Veenstra RD, Wang HZ, Beyer EC, Ramanan SV, Brink PR (1994) Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities. Biophys J 66:1915–1928PubMedCrossRefGoogle Scholar
  141. 141.
    Kumari SS, Varadaraj K, Valiunas V, Ramanan SV, Christensen EA, Beyer EC, Brink PR (2000) Functional expression and biophysical properties of polymorphic variants of the human gap junction protein connexin37. Biochem Biophys Res Commun 274:216–224PubMedCrossRefGoogle Scholar
  142. 142.
    Veenstra RD (1996) Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 28:327–337PubMedCrossRefGoogle Scholar
  143. 143.
    Suchyna TM, Nitsche JM, Chilton M, Harris AL, Veenstra RD, Nicholson BJ (1999) Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels. Biophys J 77:2968–2987PubMedCrossRefGoogle Scholar
  144. 144.
    Gong XQ, Nicholson BJ (2001) Size selectivity between gap junction channels composed of different connexins. Cell Commun Adhes 8:187–192PubMedCrossRefGoogle Scholar
  145. 145.
    Qu Y, Dahl G (2004) Accessibility of cx46 hemichannels for uncharged molecules and its modulation by voltage. Biophys J 86:1502–1509PubMedCrossRefGoogle Scholar
  146. 146.
    Ma M, Dahl G (2006) Cosegregation of permeability and single-channel conductance in chimeric connexins. Biophys J 90:151–163PubMedCrossRefGoogle Scholar
  147. 147.
    Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459PubMedCrossRefGoogle Scholar
  148. 148.
    Ayad WA, Locke D, Koreen IV, Harris AL (2006) Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J Biol Chem 281:16727–16739PubMedCrossRefGoogle Scholar
  149. 149.
    Bevans CG, Kordel M, Rhee SK, Harris AL (1998) Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 273:2808–2816PubMedCrossRefGoogle Scholar
  150. 150.
    Niessen H, Harz H, Bedner P, Kramer K, Willecke K (2000) Selective permeability of different connexin channels to the second messenger inositol 1, 4, 5-trisphosphate. J Cell Sci 113(Pt 8):1365–1372PubMedGoogle Scholar
  151. 151.
    Bedner P, Niessen H, Odermatt B, Kretz M, Willecke K, Harz H (2006) Selective permeability of different connexin channels to the second messenger cyclic AMP. J Biol Chem 281:6673–6681PubMedCrossRefGoogle Scholar
  152. 152.
    Veenstra RD, Wang HZ, Beblo DA, Chilton MG, Harris AL, Beyer EC, Brink PR (1995) Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circ Res 77:1156–1165PubMedGoogle Scholar
  153. 153.
    Nicholson BJ, Weber PA, Cao F, Chang H, Lampe P, Goldberg G (2000) The molecular basis of selective permeability of connexins is complex and includes both size and charge. Braz J Med Biol Res 33:369–378PubMedCrossRefGoogle Scholar
  154. 154.
    Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94:120–143PubMedCrossRefGoogle Scholar
  155. 155.
    Veenstra RD, Wang HZ, Beyer EC, Brink PR (1994) Selective dye and ionic permeability of gap junction channels formed by connexin45. Circ Res 75:483–490PubMedGoogle Scholar
  156. 156.
    Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ (2004) The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 87:958–973PubMedCrossRefGoogle Scholar
  157. 157.
    Goldberg GS, Valiunas V, Brink PR (2004) Selective permeability of gap junction channels. Biochim Biophys Acta 1662:96–101PubMedCrossRefGoogle Scholar
  158. 158.
    Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472PubMedGoogle Scholar
  159. 159.
    Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G (2004) Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 13:1703–1714PubMedCrossRefGoogle Scholar
  160. 160.
    Shibayama J, Paznekas W, Seki A, Taffet S, Jabs EW, Delmar M, Musa H (2005) Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia. Circ Res 96:e83–e91PubMedCrossRefGoogle Scholar
  161. 161.
    Gemel J, Lin X, Veenstra RD, Beyer EC (2006) N-terminal residues in Cx43 and Cx40 determine physiological properties of gap junction channels, but do not influence heteromeric assembly with each other or with Cx26. J Cell Sci 119:2258–2268PubMedCrossRefGoogle Scholar
  162. 162.
    Kyle JW, Minogue PJ, Thomas BC, Domowicz DA, Berthoud VM, Hanck DA, Beyer EC (2008) An intact connexin N-terminus is required for function but not gap junction formation. J Cell Sci 121:2744–2750PubMedCrossRefGoogle Scholar
  163. 163.
    Dong L, Liu X, Li H, Vertel BM, Ebihara L (2006) Role of the N-terminus in permeability of chicken connexin45.6 gap junctional channels. J Physiol 576:787–799PubMedCrossRefGoogle Scholar
  164. 164.
    Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662:42–60PubMedCrossRefGoogle Scholar
  165. 165.
    Rackauskas M, Kreuzberg MM, Pranevicius M, Willecke K, Verselis VK, Bukauskas FF (2007) Gating properties of heterotypic gap junction channels formed of connexins 40, 43, and 45. Biophys J 92:1952–1965PubMedCrossRefGoogle Scholar
  166. 166.
    Verselis VK, Trelles MP, Rubinos C, Bargiello TA, Srinivas M (2009) Loop gating of connexin hemichannels involves movement of pore-lining residues in the first extracellular loop domain. J Biol Chem 284:4484–4493PubMedCrossRefGoogle Scholar
  167. 167.
    Verselis VK, Ginter CS, Bargiello TA (1994) Opposite voltage gating polarities of two closely related connexins. Nature 368:348–351PubMedCrossRefGoogle Scholar
  168. 168.
    Tong JJ, Liu X, Dong L, Ebihara L (2004) Exchange of gating properties between rat cx46 and chicken cx45.6. Biophys J 87:2397–2406PubMedCrossRefGoogle Scholar
  169. 169.
    Oh S, Rivkin S, Tang Q, Verselis VK, Bargiello TA (2004) Determinants of gating polarity of a connexin 32 hemichannel. Biophys J 87:912–928PubMedCrossRefGoogle Scholar
  170. 170.
    Oh S, Abrams CK, Verselis VK, Bargiello TA (2000) Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J Gen Physiol 116:13–31PubMedCrossRefGoogle Scholar
  171. 171.
    Oshima A, Tani K, Hiroaki Y, Fujiyoshi Y, Sosinsky GE (2008) Projection structure of a N-terminal deletion mutant of connexin 26 channel with decreased central pore density. Cell Commun Adhes 15:85–93PubMedCrossRefGoogle Scholar
  172. 172.
    Tong JJ, Ebihara L (2006) Structural determinants for the differences in voltage gating of chicken Cx56 and Cx45.6 gap-junctional hemichannels. Biophys J 91:2142–2154PubMedCrossRefGoogle Scholar
  173. 173.
    Bukauskas FF, Peracchia C (1997) Two distinct gating mechanisms in gap junction channels: CO2-sensitive and voltage-sensitive. Biophys J 72:2137–2142PubMedCrossRefGoogle Scholar
  174. 174.
    Bukauskas FF, Weingart R (1994) Voltage-dependent gating of single gap junction channels in an insect cell line. Biophys J 67:613–625PubMedCrossRefGoogle Scholar
  175. 175.
    Bukauskas FF, Elfgang C, Willecke K, Weingart R (1995) Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance. Pflugers Arch 429:870–872PubMedCrossRefGoogle Scholar
  176. 176.
    Purnick PE, Oh S, Abrams CK, Verselis VK, Bargiello TA (2000) Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32. Biophys J 79:2403–2415PubMedCrossRefGoogle Scholar
  177. 177.
    Bukauskas FF, Bukauskiene A, Bennett MV, Verselis VK (2001) Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophys J 81:137–152PubMedCrossRefGoogle Scholar
  178. 178.
    Shibayama J, Gutierrez C, Gonzalez D, Kieken F, Seki A, Carrion JR, Sorgen PL, Taffet SM, Barrio LC, Delmar M (2006) Effect of charge substitutions at residue his-142 on voltage gating of connexin43 channels. Biophys J 91:4054–4063PubMedCrossRefGoogle Scholar
  179. 179.
    Smart OS, Goodfellow JM, Wallace BA (1993) The pore dimensions of gramicidin A. Biophys J 65:2455–2460PubMedCrossRefGoogle Scholar
  180. 180.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  181. 181.
    Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Institute for Protein ResearchOsaka University, OLABBSuitaJapan
  2. 2.Department of Life ScienceUniversity of HyogoAkohJapan
  3. 3.Paul Scherrer InstitutBiology and Chemistry OFLG 101VilligenSwitzerland

Personalised recommendations