Cellular and Molecular Life Sciences

, Volume 68, Issue 4, pp 567–586 | Cite as

When you can’t trust the DNA: RNA editing changes transcript sequences

Review

Abstract

RNA editing describes targeted sequence alterations in RNAs so that the transcript sequences differ from their DNA template. Since the original discovery of RNA editing in trypanosomes nearly 25 years ago more than a dozen such processes of nucleotide insertions, deletions, and exchanges have been identified in evolutionarily widely separated groups of the living world including plants, animals, fungi, protists, bacteria, and viruses. In many cases gene expression in mitochondria is affected, but RNA editing also takes place in chloroplasts and in nucleocytosolic genetic environments. While some RNA editing systems largely seem to repair defect genes (cryptogenes), others have obvious functions in modulating gene activities. The present review aims for an overview on the current states of research in the different systems of RNA editing by following a historic timeline along the respective original discoveries.

Keywords

RNA maturation Base deamination Editosomes PPR proteins Cryptogenes Pan-editing 

References

  1. 1.
    Benne R, Van Den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826PubMedCrossRefGoogle Scholar
  2. 2.
    Mandal D, Köhrer C, Su D, Russell SP, Krivos K, Castleberry CM, Blum P, Limbach PA, Söll D, RajBhandary UL (2010) Agmatidine, a modified cytidine in the anticodon of archaeal tRNAIle, base pairs with adenosine but not with guanosine. Proc Natl Acad Sci USA 107:2872–2877PubMedCrossRefGoogle Scholar
  3. 3.
    Feagin JE, Abraham JM, Stuart K (1988) Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 53:413–422PubMedCrossRefGoogle Scholar
  4. 4.
    Simpson L, Shaw J (1989) RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa. Cell 57:355–366PubMedCrossRefGoogle Scholar
  5. 5.
    Maslov DA, Sturm NR, Niner BM, Gruszynski ES, Peris M, Simpson L (1992) An intergenic G-rich region in Leishmania tarentolae kinetoplast maxicircle DNA is a pan-edited cryptogene encoding ribosomal protein S12. Mol Cell Biol 12:56–67PubMedGoogle Scholar
  6. 6.
    Blom D, de Haan A, Van den Berg M, Sloof P, Jirku M, Lukes J, Benne R (1998) RNA editing in the free-living bodonid Bodo saltans. Nucleic Acids Res 26:1205–1213PubMedCrossRefGoogle Scholar
  7. 7.
    Blum B, Bakalara N, Simpson L (1990) A model for RNA editing in kinetoplastid mitochondria: “guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60:189–198PubMedCrossRefGoogle Scholar
  8. 8.
    van der Spek H, Arts GJ, Zwaal RR, Van den Burg J, Sloof P, Benne R (1991) Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata. EMBO J 10:1217–1224PubMedGoogle Scholar
  9. 9.
    Sturm NR, Simpson L (1990) Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA. Cell 61:879–884PubMedCrossRefGoogle Scholar
  10. 10.
    Pollard VW, Rohrer SP, Michelotti EF, Hancock K, Hajduk SL (1990) Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell 63:783–790PubMedCrossRefGoogle Scholar
  11. 11.
    Blum B, Sturm NR, Simpson AM, Simpson L (1991) Chimeric gRNA-mRNA molecules with oligo(U) tails covalently linked at sites of RNA editing suggest that U addition occurs by transesterification. Cell 65:543–550PubMedCrossRefGoogle Scholar
  12. 12.
    Blum B, Simpson L (1990) Guide RNAs in kinetoplastid mitochondria have a nonencoded 3′ oligo(U) tail involved in recognition of the preedited region. Cell 62:391–397PubMedCrossRefGoogle Scholar
  13. 13.
    Harris ME, Hajduk SL (1992) Kinetoplastid RNA editing: in vitro formation of cytochrome b gRNA-mRNA chimeras from synthetic substrate RNAs. Cell 68:1091–1099PubMedCrossRefGoogle Scholar
  14. 14.
    Kable ML, Seiwert SD, Heidmann S, Stuart K (1996) RNA editing: a mechanism for gRNA-specified uridylate insertion into precursor mRNA. Science 273:1189–1195PubMedCrossRefGoogle Scholar
  15. 15.
    Golden DE, Hajduk SL (2005) The 3′-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA 11:29–37PubMedCrossRefGoogle Scholar
  16. 16.
    Koslowsky DJ, Göringer HU, Morales TH, Stuart K (1992) In vitro guide RNA/mRNA chimaera formation in Trypanosoma brucei RNA editing. Nature 356:807–809PubMedCrossRefGoogle Scholar
  17. 17.
    Pollard VW, Harris ME, Hajduk SL (1992) Native mRNA editing complexes from Trypanosoma brucei mitochondria. EMBO J 11:4429–4438PubMedGoogle Scholar
  18. 18.
    Seiwert SD, Stuart K (1994) RNA editing: transfer of genetic information from gRNA to precursor mRNA in vitro. Science 266:114–117PubMedCrossRefGoogle Scholar
  19. 19.
    Gao G, Rogers K, Li F, Guo Q, Osato D, Zhou SX, Falick AM, Simpson L (2010) Uridine insertion/deletion RNA editing in trypanosomatids: specific stimulation in vitro of Leishmania tarentolae REL1 RNA ligase activity by the MP63 zinc finger protein. Protist 161:489–496PubMedCrossRefGoogle Scholar
  20. 20.
    Alatortsev VS, Cruz-Reyes J, Zhelonkina AG, Sollner-Webb B (2008) Trypanosoma brucei RNA editing: coupled cycles of U deletion reveal processive activity of the editing complex. Mol Cell Biol 28:2437–2445PubMedCrossRefGoogle Scholar
  21. 21.
    Aphasizheva I, Ringpis GE, Weng J, Gershon PD, Lathrop RH, Aphasizhev R (2009) Novel TUTase associates with an editosome-like complex in mitochondria of Trypanosoma brucei. RNA 15:1322–1337PubMedCrossRefGoogle Scholar
  22. 22.
    Ringpis GE, Aphasizheva I, Wang X, Huang L, Lathrop RH, Hatfield GW, Aphasizhev R (2010) Mechanism of U insertion RNA editing in trypanosome mitochondria: the bimodal TUTase activity of the core complex. J Mol Biol doi:10.1016/j.jmb.2010.03.050
  23. 23.
    Blanc V, Alfonzo JD, Aphasizhev R, Simpson L (1999) The mitochondrial RNA ligase from Leishmania tarentolae can join RNA molecules bridged by a complementary RNA. J Biol Chem 274:24289–24296PubMedCrossRefGoogle Scholar
  24. 24.
    Corell RA, Read LK, Riley GR, Nellissery JK, Allen TE, Kable ML, Wachal MD, Seiwert SD, Myler PJ, Stuart KD (1996) Complexes from Trypanosoma brucei that exhibit deletion editing and other editing-associated properties. Mol Cell Biol 16:1410–1418PubMedGoogle Scholar
  25. 25.
    Seiwert SD, Heidmann S, Stuart K (1996) Direct visualization of uridylate deletion in vitro suggests a mechanism for kinetoplastid RNA editing. Cell 84:831–841PubMedCrossRefGoogle Scholar
  26. 26.
    Aphasizhev R, Aphasizheva I, Nelson RE, Gao G, Simpson AM, Kang X, Falick AM, Sbicego S, Simpson L (2003) Isolation of a U-insertion/deletion editing complex from Leishmania tarentolae mitochondria. EMBO J 22:913–924PubMedCrossRefGoogle Scholar
  27. 27.
    Golas MM, Böhm C, Sander B, Effenberger K, Brecht M, Stark H, Göringer HU (2009) Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo. EMBO J 28:766–778PubMedCrossRefGoogle Scholar
  28. 28.
    Panigrahi AK, Schnaufer A, Stuart KD (2007) Isolation and compositional analysis of trypanosomatid editosomes. Methods Enzymol 424:3–24PubMedGoogle Scholar
  29. 29.
    Schnaufer A, Wu M, Park YJ, Nakai T, Deng J, Proff R, Hol WG, Stuart KD (2010) A protein–protein interaction map of trypanosome 20S editosomes. J Biol Chem 285:5282–5295PubMedCrossRefGoogle Scholar
  30. 30.
    Osato D, Rogers K, Guo Q, Li F, Richmond G, Klug F, Simpson L (2009) Uridine insertion/deletion RNA editing in trypanosomatid mitochondria: in search of the editosome. RNA 15:1338–1344PubMedCrossRefGoogle Scholar
  31. 31.
    Li F, Ge P, Hui WH, Atanasov I, Rogers K, Guo Q, Osato D, Falick AM, Zhou ZH, Simpson L (2009) Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria. Proc Natl Acad Sci USA 106:12306–12310PubMedCrossRefGoogle Scholar
  32. 32.
    Rogers K, Gao G, Simpson L (2007) Uridylate-specific 3′ 5′-exoribonucleases involved in uridylate-deletion RNA editing in trypanosomatid mitochondria. J Biol Chem 282:29073–29080PubMedCrossRefGoogle Scholar
  33. 33.
    Niemann M, Kaibel H, Schlüter E, Weitzel K, Brecht M, Göringer HU (2009) Kinetoplastid RNA editing involves a 3′ nucleotidyl phosphatase activity. Nucleic Acids Res 37:1897–1906PubMedCrossRefGoogle Scholar
  34. 34.
    Hans J, Hajduk SL, Madison-Antenucci S (2007) RNA-editing-associated protein 1 null mutant reveals link to mitochondrial RNA stability. RNA 13:881–889PubMedCrossRefGoogle Scholar
  35. 35.
    Carnes J, Trotter JR, Peltan A, Fleck M, Stuart K (2008) RNA editing in Trypanosoma brucei requires three different editosomes. Mol Cell Biol 28:122–130PubMedCrossRefGoogle Scholar
  36. 36.
    Cruz-Reyes J, Zhelonkina AG, Huang CE, Sollner-Webb B (2002) Distinct functions of two RNA ligases in active Trypanosoma brucei RNA editing complexes. Mol Cell Biol 22:4652–4660PubMedCrossRefGoogle Scholar
  37. 37.
    Gao G, Simpson L (2003) Is the Trypanosoma brucei REL1 RNA ligase specific for U-deletion RNA editing, and is the REL2 RNA ligase specific for U-insertion editing? J Biol Chem 278:27570–27574PubMedCrossRefGoogle Scholar
  38. 38.
    Feagin JE, Jasmer DP, Stuart K (1987) Developmentally regulated addition of nucleotides within apocytochrome b transcripts in Trypanosoma brucei. Cell 49:337–345PubMedCrossRefGoogle Scholar
  39. 39.
    Ochsenreiter T, Hajduk SL (2006) Alternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity. EMBO Rep 7:1128–1133PubMedCrossRefGoogle Scholar
  40. 40.
    Ochsenreiter T, Cipriano M, Hajduk SL (2008) Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS One 3:e1566PubMedCrossRefGoogle Scholar
  41. 41.
    Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50:831–840PubMedCrossRefGoogle Scholar
  42. 42.
    Hospattankar AV, Higuchi K, Law SW, Meglin N, Brewer HB Jr (1987) Identification of a novel in-frame translational stop codon in human intestine apoB mRNA. Biochem Biophys Res Commun 148:279–285PubMedCrossRefGoogle Scholar
  43. 43.
    Chen SH, Habib G, Yang CY, Gu ZW, Lee BR, Weng SA, Silberman SR, Cai SJ, Deslypere JP, Rosseneu M (1987) Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238:363–366PubMedCrossRefGoogle Scholar
  44. 44.
    Driscoll DM, Wynne JK, Wallis SC, Scott J (1989) An in vitro system for the editing of apolipoprotein B mRNA. Cell 58:519–525PubMedCrossRefGoogle Scholar
  45. 45.
    Cho SJ, Blanc V, Davidson NO (2007) Mouse models as tools to explore cytidine-to-uridine RNA editing. Methods Enzymol 424:417–435PubMedCrossRefGoogle Scholar
  46. 46.
    Smith HC, Gott JM, Hanson MR (1997) A guide to RNA editing. RNA 3:1105–1123PubMedGoogle Scholar
  47. 47.
    Meier JC, Henneberger C, Melnick I, Racca C, Harvey RJ, Heinemann U, Schmieden V, Grantyn R (2005) RNA editing produces glycine receptor alpha3(P185L), resulting in high agonist potency. Nat Neurosci 8:736–744PubMedCrossRefGoogle Scholar
  48. 48.
    Legendre P, Forstera B, Juttner R, Meier JC (2009) Glycine receptors caught between genome and proteome—functional implications of RNA editing and splicing. Front Mol Neurosci 2:23PubMedGoogle Scholar
  49. 49.
    Navaratnam N, Patel D, Shah RR, Greeve JC, Powell LM, Knott TJ, Scott J (1991) An additional editing site is present in apolipoprotein B mRNA. Nucleic Acids Res 19:1741–1744PubMedCrossRefGoogle Scholar
  50. 50.
    Yamanaka S, Poksay KS, Arnold KS, Innerarity TL (1997) A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev 11:321–333PubMedCrossRefGoogle Scholar
  51. 51.
    Skuse GR, Cappione AJ, Sowden M, Metheny LJ, Smith HC (1996) The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 24:478–485PubMedCrossRefGoogle Scholar
  52. 52.
    Mukhopadhyay D, Anant S, Lee RM, Kennedy S, Viskochil D, Davidson NO (2002) C→U editing of neurofibromatosis 1 mRNA occurs in tumors that express both the type II transcript and apobec-1, the catalytic subunit of the apolipoprotein B mRNA-editing enzyme. Am J Hum Genet 70:38–50PubMedCrossRefGoogle Scholar
  53. 53.
    Greeve J, Lellek H, Apostel F, Hundoegger K, Barialai A, Kirsten R, Welker S, Greten H (1999) Absence of APOBEC-1 mediated mRNA editing in human carcinomas. Oncogene 18:6357–6366PubMedCrossRefGoogle Scholar
  54. 54.
    Conticello SG, Langlois MA, Yang Z, Neuberger MS (2007) DNA deamination in immunity: AID in the context of its APOBEC relatives. Adv Immunol 94:37–73PubMedCrossRefGoogle Scholar
  55. 55.
    Wedekind JE, Dance GS, Sowden MP, Smith HC (2003) Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet 19:207–216PubMedCrossRefGoogle Scholar
  56. 56.
    Navaratnam N, Sarwar R (2006) An overview of cytidine deaminases. Int J Hematol 83:195–200PubMedCrossRefGoogle Scholar
  57. 57.
    Smith HC (2007) Measuring editing activity and identifying cytidine-to-uridine mRNA editing factors in cells and biochemical isolates. Methods Enzymol 424:389–416PubMedGoogle Scholar
  58. 58.
    Prochnow C, Bransteitter R, Klein MG, Goodman MF, Chen XS (2007) The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature 445:447–451PubMedCrossRefGoogle Scholar
  59. 59.
    Sato Y, Probst HC, Tatsumi R, Ikeuchi Y, Neuberger MS, Rada C (2010) Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy. J Biol Chem 285:7111–7118PubMedCrossRefGoogle Scholar
  60. 60.
    Bogerd HP, Wiegand HL, Doehle BP, Cullen BR (2007) The intrinsic antiretroviral factor APOBEC3B contains two enzymatically active cytidine deaminase domains. Virology 364:486–493PubMedCrossRefGoogle Scholar
  61. 61.
    Wiegand HL, Cullen BR (2007) Inhibition of alpharetrovirus replication by a range of human APOBEC3 proteins. J Virol 81:13694–13699PubMedCrossRefGoogle Scholar
  62. 62.
    Biasin M, Piacentini L, Lo CS, Kanari Y, Magri G, Trabattoni D, Naddeo V, Lopalco L, Clivio A, Cesana E, Fasano F, Bergamaschi C, Mazzotta F, Miyazawa M, Clerici M (2007) Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G: a possible role in the resistance to HIV of HIV-exposed seronegative individuals. J Infect Dis 195:960–964PubMedCrossRefGoogle Scholar
  63. 63.
    Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y, Shindo K, Harris RS, Matsuo H (2008) Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452:116–119PubMedCrossRefGoogle Scholar
  64. 64.
    Thomas SM, Lamb RA, Paterson RG (1988) Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5. Cell 54:891–902PubMedCrossRefGoogle Scholar
  65. 65.
    Cattaneo R, Kaelin K, Baczko K, Billeter MA (1989) Measles virus editing provides an additional cysteine-rich protein. Cell 56:759–764PubMedCrossRefGoogle Scholar
  66. 66.
    Vidal S, Curran J, Kolakofsky D (1990) Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity. J Virol 64:239–246PubMedGoogle Scholar
  67. 67.
    Vidal S, Curran J, Kolakofsky D (1990) A stuttering model for paramyxovirus P mRNA editing. EMBO J 9:2017–2022PubMedGoogle Scholar
  68. 68.
    Kolakofsky D, Roux L, Garcin D, Ruigrok RW (2005) Paramyxovirus mRNA editing, the “rule of six” and error catastrophe: a hypothesis. J Gen Virol 86:1869–1877PubMedCrossRefGoogle Scholar
  69. 69.
    Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk HD (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214:421–430PubMedCrossRefGoogle Scholar
  70. 70.
    Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291:1965–1969PubMedCrossRefGoogle Scholar
  71. 71.
    Bankamp B, Lopareva EN, Kremer JR, Tian Y, Clemens MS, Patel R, Fowlkes AL, Kessler JR, Muller CP, Bellini WJ, Rota PA (2008) Genetic variability and mRNA editing frequencies of the phosphoprotein genes of wild-type measles viruses. Virus Res 135:298–306PubMedCrossRefGoogle Scholar
  72. 72.
    Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341:662–666PubMedCrossRefGoogle Scholar
  73. 73.
    Gualberto JM, Lamattina L, Bonnard G, Weil JH, Grienenberger JM (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341:660–662PubMedCrossRefGoogle Scholar
  74. 74.
    Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246:1632–1634PubMedCrossRefGoogle Scholar
  75. 75.
    Schuster W, Wissinger B, Unseld M, Brennicke A (1990) Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria. EMBO J 9:263–269PubMedGoogle Scholar
  76. 76.
    Gualberto JM, Bonnard G, Lamattina L, Grienenberger JM (1991) Expression of the wheat mitochondrial nad3-rps12 transcription unit: correlation between editing and mRNA maturation. Plant Cell 3:1109–1120PubMedCrossRefGoogle Scholar
  77. 77.
    Gualberto JM, Weil JH, Grienenberger JM (1990) Editing of the wheat coxIII transcript: evidence for twelve C to U and one U to C conversions and for sequence similarities around editing sites. Nucleic Acids Res 18:3771–3776PubMedCrossRefGoogle Scholar
  78. 78.
    Sper-Whitis GL, Russell AL, Vaughn JC (1994) Mitochondrial RNA editing of cytochrome c oxidase subunit II (coxII) in the primitive vascular plant Psilotum nudum. Biochim Biophys Acta 1218:218–220PubMedGoogle Scholar
  79. 79.
    Sper-Whitis GL, Moody JL, Vaughn JC (1996) Universality of mitochondrial RNA editing in cytochrome-c oxidase subunit I (coxI) among the land plants. Biochim Biophys Acta 1307:301–308PubMedGoogle Scholar
  80. 80.
    Hiesel R, Combettes B, Brennicke A (1994) Evidence for RNA editing in mitochondria of all major groups of land plants except the Bryophyta. Proc Natl Acad Sci USA 91:629–633PubMedCrossRefGoogle Scholar
  81. 81.
    Malek O, Lättig K, Hiesel R, Brennicke A, Knoop V (1996) RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J 15:1403–1411PubMedGoogle Scholar
  82. 82.
    Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing: extreme in hornworts and dividing the liverworts? J Mol Evol 48:303–312PubMedCrossRefGoogle Scholar
  83. 83.
    Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7PubMedCrossRefGoogle Scholar
  84. 84.
    Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366, 924 nucleotides. Nat Genet 15:57–61PubMedCrossRefGoogle Scholar
  85. 85.
    Groth-Malonek M, Wahrmund U, Polsakiewicz M, Knoop V (2007) Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Mol Biol Evol 24:1068–1074PubMedCrossRefGoogle Scholar
  86. 86.
    Schuster W, Hiesel R, Wissinger B, Brennicke A (1990) RNA editing in the cytochrome b locus of the higher plant Oenothera berteriana includes a U-to-C transition. Mol Cell Biol 10:2428–2431PubMedGoogle Scholar
  87. 87.
    Vangerow S, Teerkorn T, Knoop V (1999) Phylogenetic information in the mitochondrial nad5 gene of pteridophytes: RNA editing and intron sequences. Plant Biol 1:235–243CrossRefGoogle Scholar
  88. 88.
    Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37:5093–5104PubMedCrossRefGoogle Scholar
  89. 89.
    Yoshinaga K, Iinuma H, Masuzawa T, Uedal K (1996) Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 24:1008–1014PubMedCrossRefGoogle Scholar
  90. 90.
    Groth-Malonek M, Pruchner D, Grewe F, Knoop V (2005) Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Mol Biol Evol 22:117–125PubMedCrossRefGoogle Scholar
  91. 91.
    Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516PubMedCrossRefGoogle Scholar
  92. 92.
    Hoch B, Maier RM, Appel K, Igloi GL, Kössel H (1991) Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353:178–180PubMedCrossRefGoogle Scholar
  93. 93.
    Freyer R, Kiefer-Meyer M-C, Kössel H (1997) Occurrence of plastid RNA editing in all major lineages of land plants. Proc Natl Acad Sci USA 94:6285–6290PubMedCrossRefGoogle Scholar
  94. 94.
    Tsudzuki T, Wakasugi T, Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 53:327–332PubMedCrossRefGoogle Scholar
  95. 95.
    Inada M, Sasaki T, Yukawa M, Tsudzuki T, Sugiura M (2004) A systematic search for RNA editing sites in pea chloroplasts: an editing event causes diversification from the evolutionarily conserved amino acid sequence. Plant Cell Physiol 45:1615–1622PubMedCrossRefGoogle Scholar
  96. 96.
    Sasaki T, Yukawa Y, Miyamoto T, Obokata J, Sugiura M (2003) Identification of RNA editing sites in chloroplast transcripts from the maternal and paternal progenitors of tobacco (Nicotiana tabacum): comparative analysis shows the involvement of distinct trans-factors for ndhB editing. Mol Biol Evol 20:1028–1035PubMedCrossRefGoogle Scholar
  97. 97.
    Tillich M, Schmitz-Linneweber C, Herrmann RG, Maier RM (2001) The plastid chromosome of maize (Zea mays): update of the complete sequence and transcript editing sites. Maize Genet Coop Newsl 75:42–44Google Scholar
  98. 98.
    Tillich M, Funk HT, Schmitz-Linneweber C, Poltnigg P, Sabater B, Martin M, Maier RM (2005) Editing of plastid RNA in Arabidopsis thaliana ecotypes. Plant J 43:708–715PubMedCrossRefGoogle Scholar
  99. 99.
    Zeng WH, Liao SC, Chang CC (2007) Identification of RNA editing sites in chloroplast transcripts of Phalaenopsis aphrodite and comparative analysis with those of other seed plants. Plant Cell Physiol 48:362–368PubMedCrossRefGoogle Scholar
  100. 100.
    Giegé P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96:15324–15329PubMedCrossRefGoogle Scholar
  101. 101.
    Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genome 268:434–445CrossRefGoogle Scholar
  102. 102.
    Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916PubMedCrossRefGoogle Scholar
  103. 103.
    Mower JP, Palmer JD (2006) Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris. Mol Genet Genome 276:285–293CrossRefGoogle Scholar
  104. 104.
    Bentolila S, Elliott LE, Hanson MR (2008) Genetic architecture of mitochondrial editing in Arabidopsis thaliana. Genetics 178:1693–1708PubMedCrossRefGoogle Scholar
  105. 105.
    Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97PubMedCrossRefGoogle Scholar
  106. 106.
    Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423PubMedCrossRefGoogle Scholar
  107. 107.
    Chaw SM, Chun-Chieh SA, Wang D, Wu YW, Liu SM, Chou TY (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615PubMedCrossRefGoogle Scholar
  108. 108.
    Lenz H, Rüdinger M, Volkmar U, Fischer S, Herres S, Grewe F, Knoop V (2009) Introducing the plant RNA editing prediction and analysis computer tool PREPACT and an update on RNA editing site nomenclature. Curr Genet 56:189–201PubMedCrossRefGoogle Scholar
  109. 109.
    Rüdinger M, Funk HT, Rensing SA, Maier UG, Knoop V (2009) RNA editing: 11 sites only in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol Genet Genome 281:473–481CrossRefGoogle Scholar
  110. 110.
    Miyata Y, Sugita M (2004) Tissue- and stage-specific RNA editing of rps14 transcripts in moss (Physcomitrella patens) chloroplasts. J Plant Physiol 161:113–115PubMedCrossRefGoogle Scholar
  111. 111.
    Lutz KA, Maliga P (2007) Transformation of the plastid genome to study RNA editing. Methods Enzymol 424:501–518PubMedCrossRefGoogle Scholar
  112. 112.
    Bock R (2004) Studying RNA editing in transgenic chloroplasts of higher plants. Methods Mol Biol 265:345–356PubMedGoogle Scholar
  113. 113.
    Bock R, Kössel H, Maliga P (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J 13:4623–4628PubMedGoogle Scholar
  114. 114.
    Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90:2370–2374PubMedCrossRefGoogle Scholar
  115. 115.
    Bock R, Hermann M, Kössel H (1996) In vivo dissection of cis-acting determinants for plastid RNA editing. EMBO J 15:5052–5059PubMedGoogle Scholar
  116. 116.
    Bock R, Hermann M, Fuchs M (1997) Identification of critical nucleotide positions for plastid RNA editing site recognition. RNA 3:1194–1200PubMedGoogle Scholar
  117. 117.
    Chaudhuri S, Carrer H, Maliga P (1995) Site-specific factor involved in the editing of the psbL mRNA in tobacco plastids. EMBO J 14:2951–2957PubMedGoogle Scholar
  118. 118.
    Sutton CA, Zoubenko OV, Hanson MR, Maliga P (1995) A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited. Mol Cell Biol 15:1377–1381PubMedGoogle Scholar
  119. 119.
    Chaudhuri S, Maliga P (1996) Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site. EMBO J 15:5958–5964PubMedGoogle Scholar
  120. 120.
    Heller WP, Hayes ML, Hanson MR (2008) Cross-competition in editing of chloroplast RNA transcripts in vitro implicates sharing of trans-factors between different C targets. J Biol Chem 283:7314–7319PubMedCrossRefGoogle Scholar
  121. 121.
    Mulligan RM, Williams MA, Shanahan MT (1999) RNA editing site recognition in higher plant mitochondria. J Hered 90:338–344PubMedCrossRefGoogle Scholar
  122. 122.
    Farré JC, Choury D, Araya A (2007) In organello gene expression and RNA editing studies by electroporation-mediated transformation of isolated plant mitochondria. Methods Enzymol 424:483–500PubMedCrossRefGoogle Scholar
  123. 123.
    Staudinger M, Bolle N, Kempken F (2005) Mitochondrial electroporation and in organello RNA editing of chimeric atp6 transcripts. Mol Genet Genome 273:130–136CrossRefGoogle Scholar
  124. 124.
    Neuwirt J, Takenaka M, van der Merwe JA, Brennicke A (2005) An in vitro RNA editing system from cauliflower mitochondria: editing site recognition parameters can vary in different plant species. RNA 11:1563–1570PubMedCrossRefGoogle Scholar
  125. 125.
    van der Merwe JA, Takenaka M, Neuwirt J, Verbitskiy D, Brennicke A (2006) RNA editing sites in plant mitochondria can share cis-elements. FEBS Lett 580:268–272PubMedCrossRefGoogle Scholar
  126. 126.
    Hirose T, Sugiura M (2001) Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J 20:1144–1152PubMedCrossRefGoogle Scholar
  127. 127.
    Miyamoto T, Obokata J, Sugiura M (2002) Recognition of RNA editing sites is directed by unique proteins in chloroplasts: biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts. Mol Cell Biol 22:6726–6734PubMedCrossRefGoogle Scholar
  128. 128.
    Miyamoto T, Obokata J, Sugiura M (2004) A site-specific factor interacts directly with its cognate RNA editing site in chloroplast transcripts. Proc Natl Acad Sci USA 101:48–52PubMedCrossRefGoogle Scholar
  129. 129.
    Hegeman CE, Hayes ML, Hanson MR (2005) Substrate and cofactor requirements for RNA editing of chloroplast transcripts in Arabidopsis in vitro. Plant J 42:124–132PubMedCrossRefGoogle Scholar
  130. 130.
    Hayes ML, Reed ML, Hegeman CE, Hanson MR (2006) Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivo and in vitro. Nucleic Acids Res 34:3742–3754PubMedCrossRefGoogle Scholar
  131. 131.
    Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330PubMedCrossRefGoogle Scholar
  132. 132.
    Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103PubMedCrossRefGoogle Scholar
  133. 133.
    Andrés C, Lurin C, Small ID (2007) The multifarious roles of PPR proteins in plant mitochondrial gene expression. Phys Plant 129:14–22CrossRefGoogle Scholar
  134. 134.
    Rivals E, Bruyere C, Toffano-Nioche C, Lecharny A (2006) Formation of the Arabidopsis pentatricopeptide repeat family. Plant Phys 141:825–839CrossRefGoogle Scholar
  135. 135.
    O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128PubMedCrossRefGoogle Scholar
  136. 136.
    Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670PubMedCrossRefGoogle Scholar
  137. 137.
    Salone V, Rüdinger M, Polsakiewicz M, Hoffmann B, Groth-Malonek M, Szurek B, Small I, Knoop V, Lurin C (2007) A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138PubMedCrossRefGoogle Scholar
  138. 138.
    Rüdinger M, Polsakiewicz M, Knoop V (2008) Organellar RNA editing and plant-specific extensions of pentatricopeptide repeat (PPR) proteins in jungermanniid but not in marchantiid liverworts. Mol Biol Evol 25:1405–1414PubMedCrossRefGoogle Scholar
  139. 139.
    Zhou W, Cheng Y, Yap A, Chateigner-Boutin AL, Delannoy E, Hammani K, Small I, Huang J (2008) The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J 58:82–96CrossRefGoogle Scholar
  140. 140.
    Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G (2009) Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. Plant J 59:738–749PubMedCrossRefGoogle Scholar
  141. 141.
    Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M (2009) A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell 21:558–567PubMedCrossRefGoogle Scholar
  142. 142.
    Robbins JC, Heller WP, Hanson MR (2009) A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript. RNA 15:1142–1153PubMedCrossRefGoogle Scholar
  143. 143.
    Yu QB, Jiang Y, Chong K, Yang ZN (2009) AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J 59:1011–1023PubMedCrossRefGoogle Scholar
  144. 144.
    Hammani K, Okuda K, Tanz SK, Chateigner-Boutin AL, Shikanai T, Small I (2009) A study of new Arabidopsis chloroplast RNA editing mutants reveals general features of editing factors and their target sites. Plant Cell 21:3686–3699PubMedCrossRefGoogle Scholar
  145. 145.
    Cai W, Ji D, Peng L, Guo J, Ma J, Zou M, Lu C, Zhang L (2009) LPA66 is required for editing psbF chloroplast transcripts in Arabidopsis. Plant Physiol 150:1260–1271PubMedCrossRefGoogle Scholar
  146. 146.
    Okuda K, Chateigner-Boutin AL, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T (2009) Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell 21:146–156PubMedCrossRefGoogle Scholar
  147. 147.
    Okuda K, Hammani K, Tanz SK, Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T (2010) The pentatricopeptide repeat protein OTP82 is required for RNA editing of plastid ndhB and ndhG transcripts. Plant J 61:339–349PubMedCrossRefGoogle Scholar
  148. 148.
    Tasaki E, Hattori M, Sugita M (2010) The moss pentatricopeptide repeat protein with a DYW domain is responsible for RNA editing of mitochondrial ccmFc transcript. Plant J 62:560–570PubMedCrossRefGoogle Scholar
  149. 149.
    Verbitskiy D, Zehrmann A, van der Merwe JA, Brennicke A, Takenaka M (2010) The PPR protein encoded by the LOVASTATIN INSENSITIVE 1 gene is involved in RNA editing at three sites in mitochondria of Arabidopsis thaliana. Plant J 61:446–455PubMedCrossRefGoogle Scholar
  150. 150.
    Tseng CC, Sung TY, Li YC, Hsu SJ, Lin CL, Hsieh MH (2010) Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. Plant Mol Biol 73:309–323PubMedCrossRefGoogle Scholar
  151. 151.
    Chateigner-Boutin AL, Ramos-Vega M, Guevara-García A, Andrés C, de la Luz Gutiérrez-Nava M, Cantero A, Delannoy E, Jiménez LF, Lurin C, Small I, León P (2008) CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts. Plant J 56:590–602PubMedCrossRefGoogle Scholar
  152. 152.
    Takenaka M (2010) MEF9, an E-subclass pentatricopeptide repeat protein, is required for an RNA editing event in the nad7 transcript in mitochondria of Arabidopsis. Plant Physiol 152:939–947PubMedCrossRefGoogle Scholar
  153. 153.
    Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA 104:8178–8183PubMedCrossRefGoogle Scholar
  154. 154.
    Sung TY, Tseng CC, Hsieh MH (2010) The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria. Plant J. doi:10.1111/j.1365-313X.2010.04258.x
  155. 155.
    Nakamura T, Sugita M (2008) A conserved DYW domain of the pentatricopeptide repeat protein possesses a novel endoribonuclease activity. FEBS Lett 582:4163–4168PubMedCrossRefGoogle Scholar
  156. 156.
    Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin I, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69PubMedCrossRefGoogle Scholar
  157. 157.
    Verbitskiy D, Zehrmann A, Brennicke A, Takenaka M (2010) A truncated MEF11 protein shows site-specific effects on mitochondrial RNA editing. Plant Signal Behav 5:558–560Google Scholar
  158. 158.
    Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647PubMedCrossRefGoogle Scholar
  159. 159.
    Chateigner-Boutin AL, Small I (2010) Plant RNA editing. RNA Biol 7:213–219PubMedCrossRefGoogle Scholar
  160. 160.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedCrossRefGoogle Scholar
  161. 161.
    Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501PubMedCrossRefGoogle Scholar
  162. 162.
    Bock R, Hagemann R, Kössel H, Kudla J (1993) Tissue- and stage-specific modulation of RNA editing of the psbF and psbL transcript from spinach plastids—a new regulatory mechanism? Mol Gen Genet 240:238–244PubMedCrossRefGoogle Scholar
  163. 163.
    Hirose T, Kusumegi T, Tsudzuki T, Sugiura M (1999) RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet 262:462–467PubMedCrossRefGoogle Scholar
  164. 164.
    Karcher D, Bock R (2002) The amino acid sequence of a plastid protein is developmentally regulated by RNA editing. J Biol Chem 277:5570–5574PubMedCrossRefGoogle Scholar
  165. 165.
    Mahendran R, Spottswood MR, Miller DL (1991) RNA editing by cytidine insertion in mitochondria of Physarum polycephalum. Nature 349:434–438PubMedCrossRefGoogle Scholar
  166. 166.
    Mahendran R, Spottswood MS, Ghate A, Ling ML, Jeng K, Miller DL (1994) Editing of the mitochondrial small subunit rRNA in Physarum polycephalum. EMBO J 13:232–240PubMedGoogle Scholar
  167. 167.
    Antes T, Costandy H, Mahendran R, Spottswood M, Miller D (1998) Insertional editing of mitochondrial tRNAs of Physarum polycephalum and Didymium nigripes. Mol Cell Biol 18:7521–7527PubMedGoogle Scholar
  168. 168.
    Gott JM, Somerlot BH, Gray MW (2010) Two forms of RNA editing are required for tRNA maturation in Physarum mitochondria. RNA 16:482–488PubMedCrossRefGoogle Scholar
  169. 169.
    Horton TL, Landweber LF (2000) Evolution of four types of RNA editing in myxomycetes. RNA 6:1339–1346PubMedCrossRefGoogle Scholar
  170. 170.
    Horton TL, Landweber LF (2002) Rewriting the information in DNA: RNA editing in kinetoplastids and myxomycetes. Curr Opin Microbiol 5:620–626PubMedCrossRefGoogle Scholar
  171. 171.
    Gott JM, Visomirski LM, Hunter JL (1993) Substitutional and insertional RNA editing of the cytochrome c oxidase subunit 1 mRNA of Physarum polycephalum. J Biol Chem 268:25483–25486PubMedGoogle Scholar
  172. 172.
    Hendrickson PG, Silliker ME (2010) RNA editing in six mitochondrial ribosomal protein genes of Didymium iridis. Curr Genet 56:203–213PubMedCrossRefGoogle Scholar
  173. 173.
    Visomirski-Robic LM, Gott JM (1995) Accurate and efficient insertional RNA editing in isolated Physarum mitochondria. RNA 1:681–691PubMedGoogle Scholar
  174. 174.
    Wang SS, Mahendran R, Miller DL (1999) Editing of cytochrome b mRNA in Physarum mitochondria. J Biol Chem 274:2725–2731PubMedCrossRefGoogle Scholar
  175. 175.
    Visomirski-Robic LM, Gott JM (1997) Insertional editing in isolated Physarum mitochondria is linked to RNA synthesis. RNA 3:821–837PubMedGoogle Scholar
  176. 176.
    Visomirski-Robic LM, Gott JM (1997) Insertional editing of nascent mitochondrial RNAs in Physarum. Proc Natl Acad Sci USA 94:4324–4329PubMedCrossRefGoogle Scholar
  177. 177.
    Cheng YW, Visomirski-Robic LM, Gott JM (2001) Non-templated addition of nucleotides to the 3′ end of nascent RNA during RNA editing in Physarum. EMBO J 20:1405–1414PubMedCrossRefGoogle Scholar
  178. 178.
    Miller ML, Antes TJ, Qian F, Miller DL (2006) Identification of a putative mitochondrial RNA polymerase from Physarum polycephalum: characterization, expression, purification, and transcription in vitro. Curr Genet 49:259–271PubMedCrossRefGoogle Scholar
  179. 179.
    Miller ML, Miller DL (2008) Non-DNA-templated addition of nucleotides to the 3′ end of RNAs by the mitochondrial RNA polymerase of Physarum polycephalum. Mol Cell Biol 28:5795–5802PubMedCrossRefGoogle Scholar
  180. 180.
    Rhee AC, Somerlot BH, Parimi N, Gott JM (2009) Distinct roles for sequences upstream of and downstream from Physarum editing sites. RNA 15:1753–1765PubMedCrossRefGoogle Scholar
  181. 181.
    Byrne EM, Stout A, Gott JM (2002) Editing site recognition and nucleotide insertion are separable processes in Physarum mitochondria. EMBO J 21:6154–6161PubMedCrossRefGoogle Scholar
  182. 182.
    Byrne EM, Gott JM (2002) Cotranscriptional editing of Physarum mitochondrial RNA requires local features of the native template. RNA 8:1174–1185PubMedCrossRefGoogle Scholar
  183. 183.
    Byrne EM, Gott JM (2004) Unexpectedly complex editing patterns at dinucleotide insertion sites in Physarum mitochondria. Mol Cell Biol 24:7821–7828PubMedCrossRefGoogle Scholar
  184. 184.
    Byrne EM (2004) Chimeric templates and assays used to study Physarum cotranscriptional insertional editing in vitro. Methods Mol Biol 265:293–314PubMedGoogle Scholar
  185. 185.
    Byrne EM, Visomirski-Robic L, Cheng YW, Rhee AC, Gott JM (2007) RNA editing in Physarum mitochondria: assays and biochemical approaches. Methods Enzymol 424:143–172PubMedGoogle Scholar
  186. 186.
    Krishnan U, Barsamian A, Miller DL (2007) Evolution of RNA editing sites in the mitochondrial small subunit rRNA of the Myxomycota. Methods Enzymol 424:197–220PubMedCrossRefGoogle Scholar
  187. 187.
    Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19PubMedCrossRefGoogle Scholar
  188. 188.
    Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089–1098PubMedCrossRefGoogle Scholar
  189. 189.
    Jin Y, Zhang W, Li Q (2009) Origins and evolution of ADAR-mediated RNA editing. IUBMB Life 61:572–578PubMedCrossRefGoogle Scholar
  190. 190.
    Keegan LP, Rosenthal JJ, Roberson LM, O’Connell MA (2007) Purification and assay of ADAR activity. Methods Enzymol 424:301–317PubMedCrossRefGoogle Scholar
  191. 191.
    Riedmann EM, Schopoff S, Hartner JC, Jantsch MF (2008) Specificity of ADAR-mediated RNA editing in newly identified targets. RNA 14:1110–1118PubMedCrossRefGoogle Scholar
  192. 192.
    Eisenberg E, Li JB, Levanon EY (2010) Sequence based identification of RNA editing sites. RNA Biol 7:248–252PubMedCrossRefGoogle Scholar
  193. 193.
    Pullirsch D, Jantsch MF (2010) Proteome diversification by adenosine to inosine RNA-editing. RNA Biol 7:205–212PubMedCrossRefGoogle Scholar
  194. 194.
    Nishimoto Y, Yamashita T, Hideyama T, Tsuji S, Suzuki N, Kwak S (2008) Determination of editors at the novel A-to-I editing positions. Neurosci Res 61:201–206PubMedCrossRefGoogle Scholar
  195. 195.
    Li JB, Levanon EY, Yoon JK, Aach J, Xie B, Leproust E, Zhang K, Gao Y, Church GM (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324:1210–1213PubMedCrossRefGoogle Scholar
  196. 196.
    Stapleton M, Carlson JW, Celniker SE (2006) RNA editing in Drosophila melanogaster: new targets and functional consequences. RNA 12:1922–1932PubMedCrossRefGoogle Scholar
  197. 197.
    Tan BZ, Huang H, Lam R, Soong TW (2009) Dynamic regulation of RNA editing of ion channels and receptors in the mammalian nervous system. Mol Brain 2:13PubMedCrossRefGoogle Scholar
  198. 198.
    Grohmann M, Hammer P, Walther M, Paulmann N, Buttner A, Eisenmenger W, Baghai TC, Schule C, Rupprecht R, Bader M, Bondy B, Zill P, Priller J, Walther DJ (2010) Alternative splicing and extensive RNA editing of human TPH2 transcripts. PLoS One 5:e8956PubMedCrossRefGoogle Scholar
  199. 199.
    Jepson JE, Reenan RA (2008) RNA editing in regulating gene expression in the brain. Biochim Biophys Acta 1779:459–470PubMedGoogle Scholar
  200. 200.
    Sawada J, Yamashita T, Aizawa H, Aburakawa Y, Hasebe N, Kwak S (2009) Effects of antidepressants on GluR2 Q/R site-RNA editing in modified HeLa cell line. Neurosci Res 64:251–258PubMedCrossRefGoogle Scholar
  201. 201.
    Dracheva S, Patel N, Woo DA, Marcus SM, Siever LJ, Haroutunian V (2008) Increased serotonin 2C receptor mRNA editing: a possible risk factor for suicide. Mol Psychiatry 13:1001–1010PubMedCrossRefGoogle Scholar
  202. 202.
    Rosenzweig-Lipson S, Dunlop J, Marquis KL (2007) 5-HT2C receptor agonists as an innovative approach for psychiatric disorders. Drug News Perspect 20:565–571PubMedCrossRefGoogle Scholar
  203. 203.
    Yang Y, Lv J, Gui B, Yin H, Wu X, Zhang Y, Jin Y (2008) A-to-I RNA editing alters less-conserved residues of highly conserved coding regions: implications for dual functions in evolution. RNA 14:1516–1525PubMedCrossRefGoogle Scholar
  204. 204.
    Chen LL, Carmichael GG (2008) Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 7:3294–3301PubMedCrossRefGoogle Scholar
  205. 205.
    Orlowski RJ, O’Rourke KS, Olorenshaw I, Hawkins GA, Maas S, Laxminarayana D (2008) Altered editing in cyclic nucleotide phosphodiesterase 8A1 gene transcripts of systemic lupus erythematosus T lymphocytes. Immunology 125:408–419PubMedCrossRefGoogle Scholar
  206. 206.
    Doria M, Neri F, Gallo A, Farace MG, Michienzi A (2009) Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 37:5848–5858PubMedCrossRefGoogle Scholar
  207. 207.
    Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL (2009) The fraction of RNA that folds into the correct branched secondary structure determines hepatitis delta virus type 3 RNA editing levels. RNA 15:1177–1187PubMedCrossRefGoogle Scholar
  208. 208.
    Nishikura K (2006) Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol 7:919–931PubMedCrossRefGoogle Scholar
  209. 209.
    Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob-Hirsch J, Amariglio N, Eisenberg E, Rechavi G (2010) Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci USA 107:12174–12179PubMedCrossRefGoogle Scholar
  210. 210.
    Lonergan KM, Gray MW (1993) Editing of transfer RNAs in Acanthamoeba castellanii mitochondria. Science 259:812–816PubMedCrossRefGoogle Scholar
  211. 211.
    Burger G, Plante I, Lonergan KM, Gray MW (1995) The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J Mol Biol 245:522–537PubMedCrossRefGoogle Scholar
  212. 212.
    Price DH, Gray MW (1999) Confirmation of predicted edits and demonstration of unpredicted edits in Acanthamoeba castellanii mitochondrial tRNAs. Curr Genet 35:23–29PubMedCrossRefGoogle Scholar
  213. 213.
    Price DH, Gray MW (1999) A novel nucleotide incorporation activity implicated in the editing of mitochondrial transfer RNAs in Acanthamoeba castellanii. RNA 5:302–317PubMedCrossRefGoogle Scholar
  214. 214.
    Laforest MJ, Roewer I, Lang BF (1997) Mitochondrial tRNAs in the lower fungus Spizellomyces punctatus: tRNA editing and UAG ‘stop’ codons recognized as leucine. Nucleic Acids Res 25:626–632PubMedCrossRefGoogle Scholar
  215. 215.
    Forget L, Ustinova J, Wang Z, Huss VA, Franz LB (2002) Hyaloraphidium curvatum: a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi. Mol Biol Evol 19:310–319PubMedGoogle Scholar
  216. 216.
    Ustinova I, Krienitz L, Huss VA (2000) Hyaloraphidium curvatum is not a green alga, but a lower fungus; Amoebidium parasiticum is not a fungus, but a member of the DRIPs. Protist 151:253–262PubMedCrossRefGoogle Scholar
  217. 217.
    Bullerwell CE, Gray MW (2005) In vitro characterization of a tRNA editing activity in the mitochondria of Spizellomyces punctatus, a Chytridiomycete fungus. J Biol Chem 280:2463–2470PubMedCrossRefGoogle Scholar
  218. 218.
    Laforest MJ, Bullerwell CE, Forget L, Lang BF (2004) Origin, evolution, and mechanism of 5′ tRNA editing in Chytridiomycete fungi. RNA 10:1191–1199PubMedCrossRefGoogle Scholar
  219. 219.
    Janke A, Pääbo S (1993) Editing of a tRNA anticodon in marsupial mitochondria changes its codon recognition. Nucleic Acids Res 21:1523–1525PubMedCrossRefGoogle Scholar
  220. 220.
    Börner GV, Mörl M, Janke A, Pääbo S (1996) RNA editing changes the identity of a mitochondrial tRNA in marsupials. EMBO J 15:5949–5957PubMedGoogle Scholar
  221. 221.
    Börner GV, Pääbo S (1996) Evolutionary fixation of RNA editing. Nature 383:225PubMedCrossRefGoogle Scholar
  222. 222.
    Hatzoglou E, Rodakis GC, Lecanidou R (1995) Complete sequence and gene organization of the mitochondrial genome of the land snail Albinaria coerulea. Genetics 140:1353–1366PubMedGoogle Scholar
  223. 223.
    Yokobori S, Pääbo S (1995) Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci USA 92:10432–10435PubMedCrossRefGoogle Scholar
  224. 224.
    Tomita K, Ueda T, Watanabe K (1996) RNA editing in the acceptor stem of squid mitochondrial tRNA(Tyr). Nucleic Acids Res 24:4987–4991PubMedCrossRefGoogle Scholar
  225. 225.
    Yokobori S, Pääbo S (1997) Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNA(Tyr). J Mol Biol 265:95–99PubMedCrossRefGoogle Scholar
  226. 226.
    Börner GV, Yokobori S, Mörl M, Dörner M, Pääbo S (1997) RNA editing in metazoan mitochondria: staying fit without sex. FEBS Lett 409:320–324PubMedCrossRefGoogle Scholar
  227. 227.
    Yokobori SI, Pääbo S (1995) tRNA editing in metazoans. Nature 377:490PubMedCrossRefGoogle Scholar
  228. 228.
    Lavrov DV, Brown WM, Boore JL (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA 97:13738–13742PubMedCrossRefGoogle Scholar
  229. 229.
    Leigh J, Lang BF (2004) Mitochondrial 3′ tRNA editing in the jakobid Seculamonas ecuadoriensis: a novel mechanism and implications for tRNA processing. RNA 10:615–621PubMedCrossRefGoogle Scholar
  230. 230.
    Alfonzo JD, Blanc V, Estevez AM, Rubio MA, Simpson L (1999) C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J 18:7056–7062PubMedCrossRefGoogle Scholar
  231. 231.
    Simpson L, Thiemann OH, Savill NJ, Alfonzo JD, Maslov DA (2000) Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci USA 97:6986–6993PubMedCrossRefGoogle Scholar
  232. 232.
    Rubio MA, Ragone FL, Gaston KW, Ibba M, Alfonzo JD (2006) C to U editing stimulates A to I editing in the anticodon loop of a cytoplasmic threonyl tRNA in Trypanosoma brucei. J Biol Chem 281:115–120PubMedCrossRefGoogle Scholar
  233. 233.
    Gaston KW, Rubio MA, Spears JL, Pastar I, Papavasiliou FN, Alfonzo JD (2007) C to U editing at position 32 of the anticodon loop precedes tRNA 5′ leader removal in trypanosomatids. Nucleic Acids Res 35:6740–6749PubMedCrossRefGoogle Scholar
  234. 234.
    Karcher D, Bock R (2009) Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme. RNA 15:1251–1257PubMedCrossRefGoogle Scholar
  235. 235.
    Delannoy E, Le Ret M, Faivre-Nitschke E, Estavillo GM, Bergdoll M, Taylor NL, Pogson BJ, Small I, Imbault P, Gualberto JM (2009) Arabidopsis tRNA adenosine deaminase arginine edits the wobble nucleotide of chloroplast tRNAArg(ACG) and is essential for efficient chloroplast translation. Plant Cell 21:2058–2071PubMedCrossRefGoogle Scholar
  236. 236.
    Wolf J, Gerber AP, Keller W (2002) tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J 21:3841–3851PubMedCrossRefGoogle Scholar
  237. 237.
    Lin S, Zhang H, Spencer DF, Norman JE, Gray MW (2002) Widespread and extensive editing of mitochondrial mRNAS in dinoflagellates. J Mol Biol 320:727–739PubMedCrossRefGoogle Scholar
  238. 238.
    Zauner S, Greilinger D, Laatsch T, Kowallik KV, Maier UG (2004) Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate Ceratium horridum. FEBS Lett 577:535–538PubMedCrossRefGoogle Scholar
  239. 239.
    Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400:155–159PubMedCrossRefGoogle Scholar
  240. 240.
    Jackson CJ, Norman JE, Schnare MN, Gray MW, Keeling PJ, Waller RF (2007) Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol 5:41PubMedCrossRefGoogle Scholar
  241. 241.
    Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245PubMedCrossRefGoogle Scholar
  242. 242.
    Dang Y, Green BR (2009) Substitutional editing of Heterocapsa triquetra chloroplast transcripts and a folding model for its divergent chloroplast 16S rRNA. Gene 442:73–80PubMedCrossRefGoogle Scholar
  243. 243.
    Slamovits CH, Saldarriaga JF, Larocque A, Keeling PJ (2007) The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J Mol Biol 372:356–368PubMedCrossRefGoogle Scholar
  244. 244.
    Burger G, Yan Y, Javadi P, Lang BF (2009) Group I intron trans-splicing and mRNA editing in the mitochondria of placozoan animals. Trends Genet 25:381–386PubMedCrossRefGoogle Scholar
  245. 245.
    Randau L, Stanley BJ, Kohlway A, Mechta S, Xiong Y, Soll D (2009) A cytidine deaminase edits C to U in transfer RNAs in Archaea. Science 324:657–659PubMedCrossRefGoogle Scholar
  246. 246.
    Novo FJ, Kruszewski A, MacDermot KD, Goldspink G, Gorecki DC (1995) Editing of human alpha-galactosidase RNA resulting in a pyrimidine to purine conversion. Nucleic Acids Res 23:2636–2640PubMedCrossRefGoogle Scholar
  247. 247.
    Barth C, Greferath U, Kotsifas M, Fisher PR (1999) Polycistronic transcription and editing of the mitochondrial small subunit (SSU) ribosomal RNA in Dictyostelium discoideum. Curr Genet 36:55–61PubMedCrossRefGoogle Scholar
  248. 248.
    Kobayashi M, Sakuradani E, Shimizu S (1999) Genetic analysis of cytochrome b5 from arachidonic acid-producing fungus, Mortierella alpina 1S-4: cloning, RNA editing and expression of the gene in Escherichia coli, and purification and characterization of the gene product. J Biochem 125:1094–1103PubMedGoogle Scholar
  249. 249.
    Sharma PM, Bowman M, Madden SL, Rauscher FJ III, Sukumar S (1994) RNA editing in the Wilms’ tumor susceptibility gene, WT1. Genes Dev 8:720–731PubMedCrossRefGoogle Scholar
  250. 250.
    Mrowka C, Schedl A (2000) Wilms’ tumor suppressor gene WT1: from structure to renal pathophysiologic features. J Am Soc Nephrol 11(Suppl 16):S106–S115PubMedGoogle Scholar
  251. 251.
    Gunning KB, Cohn SL, Tomlinson GE, Strong LC, Huff V (1996) Analysis of possible WT1 RNA processing in primary Wilms tumors. Oncogene 13:1179–1185PubMedGoogle Scholar
  252. 252.
    Kondo N, Matsui E, Kaneko H, Aoki M, Kato Z, Fukao T, Kasahara K, Morimoto N (2004) RNA editing of interleukin-12 receptor beta2, 2451 C-to-U (Ala 604 Val) conversion, associated with atopy. Clin Exp Allergy 34:363–368PubMedCrossRefGoogle Scholar
  253. 253.
    Kim EJ, Lee WM, Ha JS, Ryoo NH, Jeon DS, Kim JR (2006) mRNA expression and RNA editing (2451 C-to-U) of IL-12 receptor beta2 in adult atopic patients. J Korean Med Sci 21:1070–1074PubMedCrossRefGoogle Scholar
  254. 254.
    Amberg R, Urban C, Reuner B, Scharff P, Pomerantz SC, McCloskey JA, Gross HJ (1993) Editing does not exist for mammalian selenocysteine tRNAs. Nucleic Acids Res 21:5583–5588PubMedCrossRefGoogle Scholar
  255. 255.
    Tomita K, Ueda T, Watanabe K (1996) Two nucleotides 5′-adjacent to the anticodon of rat cytoplasmic tRNA(Asp) are not edited. Biochimie 78:1001–1006PubMedCrossRefGoogle Scholar
  256. 256.
    Lukeš J, Leander BS, Keeling PJ (2009) Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc Natl Acad Sci USA 106(Suppl 1):9963–9970PubMedCrossRefGoogle Scholar
  257. 257.
    Simpson L, Maslov DA (1999) Evolution of the U-insertion/deletion RNA editing in mitochondria of kinetoplastid protozoa. Ann N Y Acad Sci 870:190–205PubMedCrossRefGoogle Scholar
  258. 258.
    Tillich M, Lehwark P, Morton BR, Maier UG (2006) The evolution of chloroplast RNA editing. Mol Biol Evol 23:1912–1921PubMedCrossRefGoogle Scholar
  259. 259.
    Jobson RW, Qiu YL (2008) Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift? Biol Direct 3:43PubMedCrossRefGoogle Scholar
  260. 260.
    Covello PS, Gray MW (1993) On the evolution of RNA editing. Trends Genet 9:265–268PubMedCrossRefGoogle Scholar
  261. 261.
    Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49:169–181PubMedCrossRefGoogle Scholar
  262. 262.
    Gray MW (2001) Speculations on the origin and evolution of RNA editing. In: Bass BL (ed) RNA editing. Oxford University Press, Oxford, UK, pp 160–184Google Scholar
  263. 263.
    Jacob F (1977) Evolution and tinkering. Science 196:1161–1166PubMedCrossRefGoogle Scholar
  264. 264.
    Grosjean H, Benne R (1998) Modification and editing of RNA. ASM Press, WashingtonGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Abteilung Molekulare EvolutionInstitut für Zelluläre und Molekulare Botanik (IZMB)BonnGermany

Personalised recommendations