Advertisement

Cellular and Molecular Life Sciences

, Volume 68, Issue 2, pp 235–242 | Cite as

Intron creation and DNA repair

  • Hermann RaggEmail author
Review

Abstract

The genesis of the exon–intron patterns of eukaryotic genes persists as one of the most enigmatic questions in molecular genetics. In particular, the origin and mechanisms responsible for creation of spliceosomal introns have remained controversial. Now the issue appears to have taken a turn. The formation of novel introns in eukaryotes, including some vertebrate lineages, is not as rare as commonly assumed. Moreover, introns appear to have been gained in parallel at closely spaced sites and even repeatedly at the same position. Based on these discoveries, novel hypotheses of intron creation have been developed. The new concepts posit that DNA repair processes are a major source of intron formation. Here, after summarizing the current views of intron gain mechanisms, I review findings in support of the DNA repair hypothesis that provides a global mechanistic scenario for intron creation. Some implications on our perception of the mosaic structure of eukaryotic genes are also discussed.

Keywords

Intron creation DNA repair Splicing 

References

  1. 1.
    Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74:3171–3175CrossRefPubMedGoogle Scholar
  2. 2.
    Chow LT, Gelinas RE, Broker TR, Roberts RJ (1977) An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12:1–8CrossRefPubMedGoogle Scholar
  3. 3.
    Evans RM, Fraser N, Ziff E, Weber J, Wilson M, Darnell JE (1977) The initiation sites for RNA transcription in Ad2 DNA. Cell 12:733–739CrossRefPubMedGoogle Scholar
  4. 4.
    Wahl MC, Will CL, Lührmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 36:701–718CrossRefGoogle Scholar
  5. 5.
    Collins L, Penny D (2005) Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066CrossRefPubMedGoogle Scholar
  6. 6.
    Russell AG, Charette JM, Spencer DF, Gray MW (2006) An early evolutionary origin for the minor spliceosome. Nature 443:863–866CrossRefPubMedGoogle Scholar
  7. 7.
    Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221PubMedGoogle Scholar
  8. 8.
    Koonin EV (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 1:22CrossRefPubMedGoogle Scholar
  9. 9.
    Penny D, Hoeppner MP, Poole AM, Jeffares DC (2009) An overview of the introns-first theory. J Mol Evol 69:527–540CrossRefPubMedGoogle Scholar
  10. 10.
    Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier D, Benes V, de Jong P, Weissenbach J, Bork P, Arendt D (2005) Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310:1325–1326CrossRefPubMedGoogle Scholar
  11. 11.
    Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94CrossRefPubMedGoogle Scholar
  12. 12.
    Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22CrossRefPubMedGoogle Scholar
  13. 13.
    Carmel L, Wolf YI, Rogozin IB, Koonin EV (2007) Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 17:1034–1044CrossRefPubMedGoogle Scholar
  14. 14.
    Logsdon JM Jr, Tyshenko MG, Dixon C, D-Jafari J, Walker VK, Palmer JD (1995) Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the introns-late theory. Proc Natl Acad Sci USA 92:8507–8511CrossRefPubMedGoogle Scholar
  15. 15.
    Ragg H, Lokot T, Kamp PB, Atchley WR, Dress A (2001) Vertebrate serpins: construction of a conflict-free phylogeny by combining exon–intron and diagnostic site analyses. Mol Biol Evol 18:577–584PubMedGoogle Scholar
  16. 16.
    Qiu WG, Schisler N, Stoltzfus A (2004) The evolutionary gain of spliceosomal introns: sequence and phase preferences. Mol Biol Evol 21:1252–1263CrossRefPubMedGoogle Scholar
  17. 17.
    Edvardsen RB, Lerat E, Maeland AD, Flåt M, Tewari R, Jensen MF, Lehrach H, Reinhardt R, Seo HC, Chourrout D (2004) Hypervariable and highly divergent intron–exon organizations in the chordate Oikopleura dioica. J Mol Evol 59:448–457CrossRefPubMedGoogle Scholar
  18. 18.
    Roy SW, Penny D (2006) Smoke without fire: most reported cases of intron gain in nematodes instead reflect intron losses. Mol Biol Evol 23:2259–2262CrossRefPubMedGoogle Scholar
  19. 19.
    Knowles DG, McLysaght A (2006) High rate of recent intron gain and loss in simultaneously duplicated Arabidopsis genes. Mol Biol Evol 23:1548–1557CrossRefPubMedGoogle Scholar
  20. 20.
    Roy SW, Penny D (2007) A very high fraction of unique intron positions in the intron-rich diatom Thalassiosira pseudonana indicates widespread intron gain. Mol Biol Evol 24:1447–1457CrossRefPubMedGoogle Scholar
  21. 21.
    Farlow A, Meduri E, Dolezal M, Hua L, Schlötterer C (2010) Nonsense-mediated decay enables intron gain in Drosophila. PLoS Genet 6:e1000819CrossRefPubMedGoogle Scholar
  22. 22.
    Omilian AR, Scofield DG, Lynch M (2008) Intron presence–absence polymorphisms in Daphnia. Mol Biol Evol 25:2129–2139CrossRefPubMedGoogle Scholar
  23. 23.
    Li WL, Tucker AE, Sung W, Thomas WK, Lynch M (2009) Extensive, recent intron gains in Daphnia populations. Science 326:1260–1262CrossRefPubMedGoogle Scholar
  24. 24.
    Schiöth HB, Haitina T, Fridmanis D, Klovins J (2005) Unusual genomic structure: melanocortin receptors in Fugu. Ann NY Acad Sci 1040:460–463CrossRefPubMedGoogle Scholar
  25. 25.
    Moriyama S, Oda M, Yamazaki T, Yamaguchi K, Amiya N, Takahashi A, Amano M, Goto T, Nozaki M, Meguro H, Kawauchi H (2008) Gene structure and functional characterization of growth hormone in dogfish, Squalus acanthias. Zool Sci 25:604–613CrossRefPubMedGoogle Scholar
  26. 26.
    Hussain A, Saraiva LR, Korsching SI (2009) Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc Natl Acad Sci USA 106:4313–4318CrossRefPubMedGoogle Scholar
  27. 27.
    Ragg H, Kumar A, Köster K, Bentele C, Wang Y, Frese MA, Prib N, Krüger O (2009) Multiple gains of spliceosomal introns in a superfamily of vertebrate protease inhibitor genes. BMC Evol Biol 9:208CrossRefPubMedGoogle Scholar
  28. 28.
    Coulombe-Huntington J, Majewski J (2007) Intron loss and gain in Drosophila. Mol Biol Evol 24:2842–2850CrossRefPubMedGoogle Scholar
  29. 29.
    Zhuo D, Madden R, Elela SA, Chabot B (2007) Modern origin of numerous alternatively spliced human introns from tandem arrays. Proc Natl Acad Sci USA 104:882–886CrossRefPubMedGoogle Scholar
  30. 30.
    Roy SW, Irimia M (2008) When good transcripts go bad: artifactual RT-PCR ‘splicing’ and genome analysis. Bioessays 30:601–605 (comment in: Bioessays 30:1256; author reply 1257–1258)CrossRefPubMedGoogle Scholar
  31. 31.
    Rodríguez-Trelles F, Tarrío R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76CrossRefPubMedGoogle Scholar
  32. 32.
    Irimia M, Rukov JL, Penny D, Vinther J, Garcia-Fernandez J, Roy SW (2008) Origin of introns by ‘intronization’ of exonic sequences. Trends Genet 24:378–381CrossRefPubMedGoogle Scholar
  33. 33.
    Roy SW, Irimia M (2009) Mystery of intron gain: new data and new models. Trends Genet 25:67–73CrossRefPubMedGoogle Scholar
  34. 34.
    Fridell RA, Pret AM, Searles LL (1990) A retrotransposon 412 insertion within an exon of the Drosophila melanogaster vermilion gene is spliced from the precursor RNA. Genes Dev 4:559–566CrossRefPubMedGoogle Scholar
  35. 35.
    Giroux MJ, Clancy M, Baier J, Ingham L, McCarty D, Hannah LC (1994) De novo synthesis of an intron by the maize transposable element Dissociation. Proc Natl Acad Sci USA 91:12150–12154CrossRefPubMedGoogle Scholar
  36. 36.
    Rushforth AM, Anderson P (1996) Splicing removes the Caenorhabditis elegans transposon Tc1 from most mutant pre-mRNAs. Mol Cell Biol 16:422–429PubMedGoogle Scholar
  37. 37.
    Coghlan A, Wolfe KH (2004) Origins of recently gained introns in Caenorhabditis. Proc Natl Acad Sci USA 101:11362–11367CrossRefPubMedGoogle Scholar
  38. 38.
    Fedorov A, Roy S, Fedorova L, Gilbert W (2003) Mystery of intron gain. Genome Res 13:2236–2241CrossRefPubMedGoogle Scholar
  39. 39.
    Rogers JH (1989) How were introns inserted into nuclear genes? Trends Genet 5:213–216CrossRefPubMedGoogle Scholar
  40. 40.
    Figueroa F, Ono H, Tichy H, O’Huigin C, Klein J (1995) Evidence for insertion of a new intron into an Mhc gene of perch-like fish. Proc Biol Sci 259:325–330CrossRefPubMedGoogle Scholar
  41. 41.
    Roy SW (2009) Intronization, de-intronization and intron sliding are rare in Cryptococcus. BMC Evol Biol 9:192CrossRefPubMedGoogle Scholar
  42. 42.
    Gao X, Lynch M (2009) Ubiquitous internal gene duplication and intron creation in eukaryotes. Proc Natl Acad Sci USA 106:20818–20823CrossRefPubMedGoogle Scholar
  43. 43.
    Krull M, Brosius J, Schmitz J (2005) Alu-SINE exonization: en route to protein-coding function. Mol Biol Evol 22:1702–1711CrossRefPubMedGoogle Scholar
  44. 44.
    Schmidt EE, Davies CJ (2007) The origins of polypeptide domains. Bioessays 29:262–270CrossRefPubMedGoogle Scholar
  45. 45.
    Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G (2007) RNA-editing-mediated exon evolution. Genome Biol 8:R29CrossRefPubMedGoogle Scholar
  46. 46.
    Sorek R (2007) The birth of new exons: mechanisms and evolutionary consequences. RNA 13:1603–1608CrossRefPubMedGoogle Scholar
  47. 47.
    Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213CrossRefPubMedGoogle Scholar
  48. 48.
    Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci USA 105:5139–5144CrossRefPubMedGoogle Scholar
  49. 49.
    Mark Welch DB, Mark Welch JL, Meselson M (2008) Evidence for degenerate tetraploidy in bdelloid rotifers. Proc Natl Acad Sci USA 105:5145–5149CrossRefPubMedGoogle Scholar
  50. 50.
    Hur JH, Van Doninck K, Mandigo ML, Meselson M (2009) Degenerate tetraploidy was established before bdelloid rotifer families diverged. Mol Biol Evol 26:375–383CrossRefPubMedGoogle Scholar
  51. 51.
    Seo HC, Kube M, Edvardsen RB, Jensen MF, Beck A, Spriet E, Gorsky G, Thompson EM, Lehrach H, Reinhardt R, Chourrout D (2001) Miniature genome in the marine chordate Oikopleura dioica. Science 294:2506 [Erratum in: Science 295:45 (2002)]CrossRefPubMedGoogle Scholar
  52. 52.
    Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393CrossRefPubMedGoogle Scholar
  53. 53.
    Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 100:12866–12871CrossRefGoogle Scholar
  54. 54.
    Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4:712–720CrossRefPubMedGoogle Scholar
  55. 55.
    Haber JE (1999) DNA recombination: the replication connection. Trends Biochem Sci 24:271–275CrossRefPubMedGoogle Scholar
  56. 56.
    Pardo B, Gómez-González B, Aguilera A (2009) DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 66:1039–1056CrossRefPubMedGoogle Scholar
  57. 57.
    Hartlerode AJ, Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423:157–168CrossRefPubMedGoogle Scholar
  58. 58.
    Wells RD, Dere R, Hebert ML, Napierala M, Son LS (2005) Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res 33:3785–3798CrossRefPubMedGoogle Scholar
  59. 59.
    Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM (2009) Large-scale expansions of Friedreich’s ataxia GAA repeats in yeast. Mol Cell 35:82–92CrossRefPubMedGoogle Scholar
  60. 60.
    Sasaki M, Lange J, Keeney S (2010) Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 11:182–195PubMedGoogle Scholar
  61. 61.
    Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417:639–650CrossRefPubMedGoogle Scholar
  62. 62.
    Lieber MR, Lu H, Gu J, Schwarz K (2008) Flexibility in the order of action and in the enzymology of the nuclease, polymerases, and ligase of vertebrate non-homologous DNA end joining: relevance to cancer, aging, and the immune system. Cell Res 18:125–133CrossRefPubMedGoogle Scholar
  63. 63.
    Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211CrossRefPubMedGoogle Scholar
  64. 64.
    Liang F, Han M, Romanienko PJ, Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 95:5172–5177CrossRefPubMedGoogle Scholar
  65. 65.
    Haviv-Chesner A, Kobayashi Y, Gabriel A, Kupiec M (2007) Capture of linear fragments at a double-strand break in yeast. Nucleic Acids Res 35:5192–5202CrossRefPubMedGoogle Scholar
  66. 66.
    Lin Y, Waldman AS (2001) Capture of DNA sequences at double-strand breaks in mammalian chromosomes. Genetics 158:1665–1674PubMedGoogle Scholar
  67. 67.
    Lin Y, Waldman AS (2001) Promiscuous patching of broken chromosomes in mammalian cells with extrachromosomal DNA. Nucleic Acids Res 29:3975–3981PubMedGoogle Scholar
  68. 68.
    Odersky A, Panyutin IV, Panyutin IG, Schunck C, Feldmann E, Goedecke W, Neumann RD, Obe G, Pfeiffer P (2002) Repair of sequence-specific 125I-induced double-strand breaks by nonhomologous DNA end joining in mammalian cell-free extracts. J Biol Chem 277:11756–11764CrossRefPubMedGoogle Scholar
  69. 69.
    Jensen-Seaman MI, Wildschutte JH, Soto-Calderón ID, Anthony NM (2009) A comparative approach shows differences in patterns of numt insertion during hominoid evolution. J Mol Evol 68:688–699CrossRefPubMedGoogle Scholar
  70. 70.
    Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E (2008) Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res 122:219–228CrossRefPubMedGoogle Scholar
  71. 71.
    Leister D (2005) Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet 21:655–663CrossRefPubMedGoogle Scholar
  72. 72.
    Hazkani-Covo E, Covo S (2008) Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet 4:e1000237CrossRefPubMedGoogle Scholar
  73. 73.
    Gu J, Lu H, Tippin B, Shimazaki N, Goodman MF, Lieber MR (2007) XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO J 26:1010–1023 (Erratum in: EMBO J 26:3506–3507)CrossRefPubMedGoogle Scholar
  74. 74.
    Moon AF, Garcia-Diaz M, Bebenek K, Davis BJ, Zhong X, Ramsden DA, Kunkel TA, Pedersen LC (2007) Structural insight into the substrate specificity of DNA polymerase μ. Nat Struct Mol Biol 14:45–53CrossRefPubMedGoogle Scholar
  75. 75.
    Gozalbo-López B, Andrade P, Terrados G, de Andrés B, Serrano N, Cortegano I, Palacios B, Bernad A, Blanco L, Marcos MA, Gaspar ML (2009) A role for DNA polymerase μ in the emerging DJH rearrangements of the postgastrulation mouse embryo. Mol Cell Biol 29:1266–1275CrossRefPubMedGoogle Scholar
  76. 76.
    Andrade P, Martín MJ, Juárez R, López de Saro F, Blanco L (2009) Limited terminal transferase in human DNA polymerase μ defines the required balance between accuracy and efficiency in NHEJ. Proc Natl Acad Sci USA 106:16203–16208CrossRefPubMedGoogle Scholar
  77. 77.
    Burgers PM, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF, Copeland WC, Friedberg EC, Hanaoka F, Hinkle DC, Lawrence CW, Nakanishi M, Ohmori H, Prakash L, Prakash S, Reynaud CA, Sugino A, Todo T, Wang Z, Weill JC, Woodgate R (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276:43487–43490CrossRefPubMedGoogle Scholar
  78. 78.
    Yu AM, McVey M (2010) Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. doi: 10.1093/nar/gkq379
  79. 79.
    Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R (2006) Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res 34:3955–3967CrossRefPubMedGoogle Scholar
  80. 80.
    Lin CF, Mount SM, Jarmolowski A, Makalowski W (2010) Evolutionary dynamics of U12-type spliceosomal introns. BMC Evol Biol 10:47CrossRefPubMedGoogle Scholar
  81. 81.
    Stalder L, Mühlemann O (2008) The meaning of nonsense. Trends Cell Biol 18:315–321CrossRefPubMedGoogle Scholar
  82. 82.
    Catania F, Lynch M (2008) Where do introns come from? PLoS Biol 6:e283CrossRefPubMedGoogle Scholar
  83. 83.
    Bowater R, Doherty AJ (2006) Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2:e8CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of Biotechnology, Faculty of TechnologyUniversity of BielefeldBielefeldGermany

Personalised recommendations