Cellular and Molecular Life Sciences

, Volume 68, Issue 5, pp 877–892 | Cite as

Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo

  • Renat Shaykhiev
  • Fouad Otaki
  • Prince Bonsu
  • David T. Dang
  • Matthew Teater
  • Yael Strulovici-Barel
  • Jacqueline Salit
  • Ben-Gary Harvey
  • Ronald G. Crystal
Research Article


The apical junctional complex (AJC), composed of tight and adherens junctions, maintains epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating airway epithelial AJC integrity. Transcriptome analysis revealed global down-regulation of physiological AJC gene expression in the airway epithelium of healthy smokers (n = 59) compared to nonsmokers (n = 53) in association with changes in canonical epithelial differentiation pathways such as PTEN signaling accompanied by induction of cancer-related AJC components. The overall expression of AJC-related genes was further decreased in COPD smokers (n = 23). Exposure of airway epithelial cells to cigarette smoke extract in vitro resulted in down-regulation of several AJC genes paralleled by decreased transepithelial resistance. Thus, cigarette smoking induces transcriptional reprogramming of airway epithelial AJC architecture from its physiological pattern necessary for barrier function toward a disease-associated molecular phenotype.


Tight junctions Adherens junctions Airway epithelium Epithelial polarity Cigarette smoking Transcriptional regulation Chronic obstructive pulmonary disease 



Apical junctional complex


Adherens junctions








Chronic obstructive pulmonary disease


Cigarette smoke extract


Gene ontology


Small airway epithelium apical junctional complex gene expression index


Principal component analysis


Phosphatase and tensin homolog


Small airway epithelium


Tight junctions


Tight junction protein



We thank R.J. Kaner, A.E. Tilley, M.W. Butler, M. O’Mahony, B. Witover and B. Ferris for help with this study, and N. Mohamed for help in preparing the manuscript. These studies were supported, in part, by NIH R01 HL074326; P50 HL084936 and UL1-RR024996.

Supplementary material

18_2010_500_MOESM1_ESM.tif (336 kb)
Supplementary material 1 (TIFF 336 kb)
18_2010_500_MOESM2_ESM.tif (343 kb)
Supplementary material 2 (TIFF 343 kb)
18_2010_500_MOESM3_ESM.tif (87 kb)
Supplementary material 3 (TIFF 87 kb)
18_2010_500_MOESM4_ESM.tif (206 kb)
Supplementary material 4 (TIFF 206 kb)
18_2010_500_MOESM5_ESM.pdf (186 kb)
Supplementary material 5 (PDF 186 kb)
18_2010_500_MOESM6_ESM.doc (56 kb)
Supplementary material 6 (DOC 56 kb)


  1. 1.
    Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228CrossRefPubMedGoogle Scholar
  2. 2.
    Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778:660–669CrossRefPubMedGoogle Scholar
  3. 3.
    Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235CrossRefPubMedGoogle Scholar
  4. 4.
    Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584CrossRefPubMedGoogle Scholar
  5. 5.
    Gumbiner BM (2000) Regulation of cadherin adhesive activity. J Cell Biol 148:399–404CrossRefPubMedGoogle Scholar
  6. 6.
    Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9:833–845CrossRefPubMedGoogle Scholar
  7. 7.
    Nelson WJ (2009) Remodeling epithelial cell organization: transitions between front-rear and apical-basal polarity. Cold Spring Harb Perspect Biol 1:a000513CrossRefPubMedGoogle Scholar
  8. 8.
    Samarin S, Nusrat A (2009) Regulation of epithelial apical junctional complex by Rho family GTPases. Front Biosci 14:1129–1142CrossRefPubMedGoogle Scholar
  9. 9.
    Halbleib JM, Saaf AM, Brown PO, Nelson WJ (2007) Transcriptional modulation of genes encoding structural characteristics of differentiating enterocytes during development of a polarized epithelium in vitro. Mol Biol Cell 18:4261–4278CrossRefPubMedGoogle Scholar
  10. 10.
    Knight DA, Holgate ST (2003) The airway epithelium: structural and functional properties in health and disease. Respirology 8:432–446CrossRefPubMedGoogle Scholar
  11. 11.
    Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME (2008) Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc 5:772–777CrossRefPubMedGoogle Scholar
  12. 12.
    Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3:733–744CrossRefPubMedGoogle Scholar
  13. 13.
    Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel WC, Zielinski J (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555CrossRefPubMedGoogle Scholar
  14. 14.
    Lee G, Walser TC, Dubinett SM (2009) Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr Opin Pulm Med 15:303–307CrossRefPubMedGoogle Scholar
  15. 15.
    Jones JG, Minty BD, Lawler P, Hulands G, Crawley JC, Veall N (1980) Increased alveolar epithelial permeability in cigarette smokers. Lancet 1:66–68CrossRefPubMedGoogle Scholar
  16. 16.
    Knowles MR, Buntin WH, Bromberg PA, Gatzy JT, Boucher RC (1982) Measurements of transepithelial electric potential differences in the trachea and bronchi of human subjects in vivo. Am Rev Respir Dis 126:108–112PubMedGoogle Scholar
  17. 17.
    Boucher RC, Johnson J, Inoue S, Hulbert W, Hogg JC (1980) The effect of cigarette smoke on the permeability of guinea pig airways. Lab Invest 43:94–100PubMedGoogle Scholar
  18. 18.
    Petecchia L, Sabatini F, Varesio L, Camoirano A, Usai C, Pezzolo A, Rossi GA (2009) Bronchial airway epithelial cell damage following exposure to cigarette smoke includes disassembly of tight junction components mediated by the extracellular signal-regulated kinase 1/2 pathway. Chest 135:1502–1512CrossRefPubMedGoogle Scholar
  19. 19.
    Serikov VB, Leutenegger C, Krutilina R, Kropotov A, Pleskach N, Suh JH, Tomilin NV (2006) Cigarette smoke extract inhibits expression of peroxiredoxin V and increases airway epithelial permeability. Inhal Toxicol 18:79–92CrossRefPubMedGoogle Scholar
  20. 20.
    Sun W, Wu R, Last JA (1995) Effects of exposure to environmental tobacco smoke on a human tracheobronchial epithelial cell line. Toxicology 100:163–174CrossRefPubMedGoogle Scholar
  21. 21.
    Hogg JC, Timens W (2009) The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 4:435–459CrossRefPubMedGoogle Scholar
  22. 22.
    Gao N, Ishii K, Mirosevich J, Kuwajima S, Oppenheimer SR, Roberts RL, Jiang M, Yu X, Shappell SB, Caprioli RM, Stoffel M, Hayward SW, Matusik RJ (2005) Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development 132:3431–3443CrossRefPubMedGoogle Scholar
  23. 23.
    Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, Colwill K, Starostine A, Metalnikov P, Pawson T (2006) A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 125:535–548CrossRefPubMedGoogle Scholar
  24. 24.
    Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K (2007) PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128:383–397CrossRefPubMedGoogle Scholar
  25. 25.
    Burtscher I, Lickert H (2009) Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. Development 136:1029–1038CrossRefPubMedGoogle Scholar
  26. 26.
    Cheung ST, Leung KL, Ip YC, Chen X, Fong DY, Ng IO, Fan ST, So S (2005) Claudin-10 expression level is associated with recurrence of primary hepatocellular carcinoma. Clin Cancer Res 11:551–556PubMedGoogle Scholar
  27. 27.
    Sugita M, Geraci M, Gao B, Powell RL, Hirsch FR, Johnson G, Lapadat R, Gabrielson E, Bremnes R, Bunn PA, Franklin WA (2002) Combined use of oligonucleotide and tissue microarrays identifies cancer/testis antigens as biomarkers in lung carcinoma. Cancer Res 62:3971–3979PubMedGoogle Scholar
  28. 28.
    Prudkin L, Liu DD, Ozburn NC, Sun M, Behrens C, Tang X, Brown KC, Bekele BN, Moran C, Wistuba II (2009) Epithelial-to-mesenchymal transition in the development and progression of adenocarcinoma and squamous cell carcinoma of the lung. Mod Pathol 22:668–678CrossRefPubMedGoogle Scholar
  29. 29.
    Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T, Bourgaux JF, Garambois V, Jay P, Blache P, Joubert D, Hollande F (2008) Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res 68:4258–4268CrossRefPubMedGoogle Scholar
  30. 30.
    Nubel T, Preobraschenski J, Tuncay H, Weiss T, Kuhn S, Ladwein M, Langbein L, Zoller M (2009) Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res 7:285–299CrossRefPubMedGoogle Scholar
  31. 31.
    Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8 – a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416CrossRefPubMedGoogle Scholar
  32. 32.
    Jansen R, Greenbaum D, Gerstein M (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res 12:37–46CrossRefPubMedGoogle Scholar
  33. 33.
    Xulvi-Brunet R, Li H (2010) Co-expression networks: graph properties and topological comparisons. Bioinformatics 26:205–214CrossRefPubMedGoogle Scholar
  34. 34.
    Emerling BM, Weinberg F, Liu JL, Mak TW, Chandel NS (2008) PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc Natl Acad Sci U S A 105:2622–2627CrossRefPubMedGoogle Scholar
  35. 35.
    Nho RS, Kahm J (2010) beta1-Integrin-collagen interaction suppresses FoxO3a by the coordination of Akt and PP2A. J Biol Chem 285:14195–14209CrossRefPubMedGoogle Scholar
  36. 36.
    Harvey BG, Heguy A, Leopold PL, Carolan BJ, Ferris B, Crystal RG (2007) Modification of gene expression of the small airway epithelium in response to cigarette smoking. J Mol Med 85:39–53CrossRefPubMedGoogle Scholar
  37. 37.
    Balda MS, Matter K (2009) Tight junctions and the regulation of gene expression. Biochim Biophys Acta 1788:761–767CrossRefPubMedGoogle Scholar
  38. 38.
    Koch S, Nusrat A (2009) Dynamic regulation of epithelial cell fate and barrier function by intercellular junctions. Ann N Y Acad Sci 1165:220–227CrossRefPubMedGoogle Scholar
  39. 39.
    Itoh M, Bissell MJ (2003) The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia 8:449–462CrossRefPubMedGoogle Scholar
  40. 40.
    Lee M, Vasioukhin V (2008) Cell polarity and cancer – cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 121:1141–1150CrossRefPubMedGoogle Scholar
  41. 41.
    Auerbach O, Stout AP, Hammond EC, Garfinkel L (1961) Changes in bronchial epithelium in relation to cigarette smoking and in relation to lung cancer. N Engl J Med 265:253–267CrossRefPubMedGoogle Scholar
  42. 42.
    Wistuba II, Mao L, Gazdar AF (2002) Smoking molecular damage in bronchial epithelium. Oncogene 21:7298–7306CrossRefPubMedGoogle Scholar
  43. 43.
    Ballard ST, Taylor AE (1994) Bioelectric properties of proximal bronchiolar epithelium. Am J Physiol 267:L79–L84PubMedGoogle Scholar
  44. 44.
    Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG (2003) Role of claudin interactions in airway tight junctional permeability. Am J Physiol Lung Cell Mol Physiol 285:L1166–L1178PubMedGoogle Scholar
  45. 45.
    Olivera DS, Boggs SE, Beenhouwer C, Aden J, Knall C (2007) Cellular mechanisms of mainstream cigarette smoke-induced lung epithelial tight junction permeability changes in vitro. Inhal Toxicol 19:13–22CrossRefPubMedGoogle Scholar
  46. 46.
    Gangl K, Reininger R, Bernhard D, Campana R, Pree I, Reisinger J, Kneidinger M, Kundi M, Dolznig H, Thurnher D, Valent P, Chen KW, Vrtala S, Spitzauer S, Valenta R, Niederberger V (2009) Cigarette smoke facilitates allergen penetration across respiratory epithelium. Allergy 64:398–405CrossRefPubMedGoogle Scholar
  47. 47.
    Mankertz J, Tavalali S, Schmitz H, Mankertz A, Riecken EO, Fromm M, Schulzke JD (2000) Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci 113(Pt 11):2085–2090PubMedGoogle Scholar
  48. 48.
    Coyne CB, Vanhook MK, Gambling TM, Carson JL, Boucher RC, Johnson LG (2002) Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell 13:3218–3234CrossRefPubMedGoogle Scholar
  49. 49.
    Rao R (2008) Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front Biosci 13:7210–7226CrossRefPubMedGoogle Scholar
  50. 50.
    Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437CrossRefPubMedGoogle Scholar
  51. 51.
    Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, Crystal RG, de Herreros AG, Moustakas A, Pettersson RF, Fuxe J (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11:943–950CrossRefPubMedGoogle Scholar
  52. 52.
    Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, Banerjee S, Carless M, Kim E, Coppola D, Haura E, Chellappan S (2009) Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer 124:36–45CrossRefPubMedGoogle Scholar
  53. 53.
    Gunzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, Meij IC, Hunziker W, Fromm M, Muller D (2009) Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci 122:1507–1517CrossRefPubMedGoogle Scholar
  54. 54.
    Zemke AC, Snyder JC, Brockway BL, Drake JA, Reynolds SD, Kaminski N, Stripp BR (2009) Molecular staging of epithelial maturation using secretory cell-specific genes as markers. Am J Respir Cell Mol Biol 40:340–348CrossRefPubMedGoogle Scholar
  55. 55.
    Lumsden AB, McLean A, Lamb D (1984) Goblet and Clara cells of human distal airways: evidence for smoking induced changes in their numbers. Thorax 39:844–849CrossRefPubMedGoogle Scholar
  56. 56.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868CrossRefPubMedGoogle Scholar
  57. 57.
    Ge H, Si Y, Roeder RG (1998) Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17:6723–6729CrossRefPubMedGoogle Scholar
  58. 58.
    Grundt K, Haga IV, Huitfeldt HS, Ostvold AC (2007) Identification and characterization of two putative nuclear localization signals (NLS) in the DNA-binding protein NUCKS. Biochim Biophys Acta 1773:1398–1406CrossRefPubMedGoogle Scholar
  59. 59.
    Zeitz MJ, Malyavantham KS, Seifert B, Berezney R (2009) Matrin 3: chromosomal distribution and protein interactions. J Cell Biochem 108:125–133CrossRefPubMedGoogle Scholar
  60. 60.
    Goldberg SF, Miele ME, Hatta N, Takata M, Paquette-Straub C, Freedman LP, Welch DR (2003) Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res 63:432–440PubMedGoogle Scholar
  61. 61.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137CrossRefPubMedGoogle Scholar
  62. 62.
    Fan S, Hurd TW, Liu CJ, Straight SW, Weimbs T, Hurd EA, Domino SE, Margolis B (2004) Polarity proteins control ciliogenesis via kinesin motor interactions. Curr Biol 14:1451–1461CrossRefPubMedGoogle Scholar
  63. 63.
    Paris L, Bazzoni G (2008) The protein interaction network of the epithelial junctional complex: a system-level analysis. Mol Biol Cell 19:5409–5421CrossRefPubMedGoogle Scholar
  64. 64.
    Barbieri SS, Ruggiero L, Tremoli E, Weksler BB (2008) Suppressing PTEN activity by tobacco smoke plus interleukin-1beta modulates dissociation of VE-cadherin/beta-catenin complexes in endothelium. Arterioscler Thromb Vasc Biol 28:732–738CrossRefPubMedGoogle Scholar
  65. 65.
    Yoshida T, Tuder RM (2007) Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 87:1047–1082CrossRefPubMedGoogle Scholar
  66. 66.
    Raman T, O’Connor TP, Hackett NR, Wang W, Harvey BG, Attiyeh MA, Dang DT, Teater M, Crystal RG (2009) Quality control in microarray assessment of gene expression in human airway epithelium. BMC Genomics 10:493CrossRefPubMedGoogle Scholar
  67. 67.
    Antonov AV, Schmidt T, Wang Y, Mewes HW (2008) ProfCom: a web tool for profiling the complex functionality of gene groups identified from high-throughput data. Nucleic Acids Res 36:W347–W351CrossRefPubMedGoogle Scholar
  68. 68.
    Ehrhardt C, Kneuer C, Fiegel J, Hanes J, Schaefer UF, Kim KJ, Lehr CM (2002) Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res 308:391–400CrossRefPubMedGoogle Scholar
  69. 69.
    Gelbman BD, Heguy A, O’Connor TP, Zabner J, Crystal RG (2007) Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis. Respir Res 8:10CrossRefPubMedGoogle Scholar
  70. 70.
    Vogelmann R, Nelson WJ (2005) Fractionation of the epithelial apical junctional complex: reassessment of protein distributions in different substructures. Mol Biol Cell 16:701–716CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Renat Shaykhiev
    • 1
  • Fouad Otaki
    • 2
  • Prince Bonsu
    • 1
  • David T. Dang
    • 1
  • Matthew Teater
    • 1
  • Yael Strulovici-Barel
    • 1
  • Jacqueline Salit
    • 1
  • Ben-Gary Harvey
    • 1
    • 2
  • Ronald G. Crystal
    • 1
    • 2
  1. 1.Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Division of Pulmonary and Critical Care Medicine, Department of MedicineWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations