Cellular and Molecular Life Sciences

, Volume 68, Issue 4, pp 677–686 | Cite as

Bone marrow-derived mesenchymal cells and MMP13 contribute to experimental choroidal neovascularization

  • Julie Lecomte
  • Krystel Louis
  • Benoit Detry
  • Silvia Blacher
  • Vincent Lambert
  • Sandrine Bekaert
  • Carine Munaut
  • Jenny Paupert
  • Pierre Blaise
  • Jean-Michel Foidart
  • Jean-Marie Rakic
  • Stephen M. Krane
  • Agnès NoelEmail author
Research Article


In this study, we evaluate the potential involvement of collagenase-3 (MMP13), a matrix metalloproteinase (MMP) family member, in the exudative form of age-related macular degeneration characterized by a neovascularisation into the choroid. RT-PCR analysis revealed that human neovascular membranes issued from patients with AMD expressed high levels of Mmp13. The contribution of MMP13 in choroidal neovascularization (CNV) formation was explored by using a murine model of laser-induced CNV and applying it to wild-type mice (WT) and Mmp13-deficient mice (Mmp13 −/− mice). Angiogenic and inflammatory reactions were explored by immunohistochemistry. The implication of bone marrow (BM)-derived cells was determined by BM engraftment into irradiated mice and by injecting mesenchymal stem cells (MSC) isolated from WT BM. The deficiency of Mmp13 impaired CNV formation which was fully restored by WT BM engraftment and partially rescued by several injections of WT MSC. The present study sheds light on a novel function of MMP13 during BM-dependent choroidal vascularization and provides evidence for a role for MSC in the pathogenesis of CNV.


CNV MMP13 Angiogenesis Bone marrow Mesenchymal stem cells 



Age-related macular degeneration


Bone marrow


Choroiallantoic membrane


Choroidal neovascularization


Mesenchymal stem cells


Retinal pigmented epithelium


Tissue inhibitor of metalloprotease



The authors acknowledge P. Gavitelli, F. Olivier, M.-R. Pignon, E. Feyereisen, L. Poma, G. Roland and N. Lefin for collaboration and technical assistance. They thank the GIGA imaging and flow cytometry platform for their help. This work was supported by grants from the European Union Framework Program projects (FP7, MICROENVIMET), the Fonds de la Recherche Scientifique Médicale, the Fonds National de la Recherche Scientifique (F.N.R.S., Belgium), the Federation belge contre le Cancer, the Fonds spéciaux de la Recherche (University of Liège), the Centre Anticancéreux près l’Université de Liège, the Fonds Léon Fredericq (University of Liège), the D.G.T.R.E. from the “Région Wallonne” the Interuniversity Attraction Poles Program-Belgian Science Policy (Brussels, Belgium). JL is recipient of a Televie-FNRS grant. SMK was supported by a grant from the US National Institutes of Health.


  1. 1.
    Bressler NM (2004) Age-related macular degeneration is the leading cause of blindness. JAMA 291:1900–1901CrossRefPubMedGoogle Scholar
  2. 2.
    Rattner A, Nathans J (2006) Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7:860–872CrossRefPubMedGoogle Scholar
  3. 3.
    Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974CrossRefPubMedGoogle Scholar
  4. 4.
    Noel A, Jost M, Lambert V, Lecomte J, Rakic JM (2007) Anti-angiogenic therapy of exudative age-related macular degeneration: current progress and emerging concepts. Trends Mol Med 13:345–352CrossRefPubMedGoogle Scholar
  5. 5.
    Rakic JM, Lambert V, Devy L, Luttun A, Carmeliet P, Claes C, Nguyen L, Foidart JM, Noel A, Munaut C (2003) Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3186–3193CrossRefPubMedGoogle Scholar
  6. 6.
    Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285CrossRefPubMedGoogle Scholar
  7. 7.
    Raffetto JD, Khalil RA (2008) Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 75:346–359CrossRefPubMedGoogle Scholar
  8. 8.
    Das A, McGuire PG, Eriqat C, Ober RR, DeJuan E Jr, Williams GA, McLamore A, Biswas J, Johnson DW (1999) Human diabetic neovascular membranes contain high levels of urokinase and metalloproteinase enzymes. Invest Ophthalmol Vis Sci 40:809–813PubMedGoogle Scholar
  9. 9.
    Kadonosono K, Yazama F, Itoh N, Sawada H, Ohno S (1999) Expression of matrix metalloproteinase-7 in choroidal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 128:382–384CrossRefPubMedGoogle Scholar
  10. 10.
    Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8:352–356CrossRefPubMedGoogle Scholar
  11. 11.
    Lambert V, Wielockx B, Munaut C, Galopin C, Jost M, Itoh T, Werb Z, Baker A, Libert C, Krell HW, Foidart JM, Noel A, Rakic JM (2003) MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J 17:2290–2292PubMedGoogle Scholar
  12. 12.
    Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672CrossRefPubMedGoogle Scholar
  13. 13.
    Fosang AJ, Last K, Knauper V, Murphy G, Neame PJ (1996) Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 380:17–20CrossRefPubMedGoogle Scholar
  14. 14.
    Knauper V, Smith B, Lopez-Otin C, Murphy G (1997) Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur J Biochem 248:369–373CrossRefPubMedGoogle Scholar
  15. 15.
    Ashworth JL, Murphy G, Rock MJ, Sherratt MJ, Shapiro SD, Shuttleworth CA, Kielty CM (1999) Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling. Biochem J 340:171–181CrossRefPubMedGoogle Scholar
  16. 16.
    Leeman MF, Curran S, Murray GI (2002) The structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol 37:149–166CrossRefPubMedGoogle Scholar
  17. 17.
    Cowell S, Knauper V, Stewart ML, D’Ortho MP, Stanton H, Hembry RM, Lopez-Otin C, Reynolds JJ, Murphy G (1998) Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3. Biochem J 331:453–458PubMedGoogle Scholar
  18. 18.
    Takaishi H, Kimura T, Dalal S, Okada Y, D’Armiento J (2008) Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr Pharm Biotechnol 9:47–54CrossRefPubMedGoogle Scholar
  19. 19.
    Kosaki N, Takaishi H, Kamekura S, Kimura T, Okada Y, Minqi L, Amizuka N, Chung UI, Nakamura K, Kawaguchi H, Toyama Y, D’Armiento J (2007) Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice. Biochem Biophys Res Commun 354:846–851CrossRefPubMedGoogle Scholar
  20. 20.
    Zijlstra A, Aimes RT, Zhu D, Regazzoni K, Kupriyanova T, Seandel M, Deryugina EI, Quigley JP (2004) Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3). J Biol Chem 279:27633–27645CrossRefPubMedGoogle Scholar
  21. 21.
    Lederle W, Hartenstein B, Meides A, Kunzelmann H, Werb Z, Angel P, Mueller MM (2009) MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis 31:1175–1184Google Scholar
  22. 22.
    Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, Lopez-Otin C, Krane SM (2004) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci USA 101:17192–17197CrossRefPubMedGoogle Scholar
  23. 23.
    Jost M, Maillard C, Lecomte J, Lambert V, Tjwa M, Blaise P, Alvarez Gonzalez ML, Bajou K, Blacher S, Motte P, Humblet C, Defresne MP, Thiry M, Frankenne F, Gothot A, Carmeliet P, Rakic JM, Foidart JM, Noel A (2007) Tumoral and choroidal vascularization: differential cellular mechanisms involving plasminogen activator inhibitor type I. Am J Pathol 171:1369–1380CrossRefPubMedGoogle Scholar
  24. 24.
    Lambert V, Munaut C, Noel A, Frankenne F, Bajou K, Gerard R, Carmeliet P, Defresne MP, Foidart JM, Rakic JM (2001) Influence of plasminogen activator inhibitor type 1 on choroidal neovascularization. FASEB J 15:1021–1027CrossRefPubMedGoogle Scholar
  25. 25.
    Rakic JM, Maillard C, Jost M, Bajou K, Masson V, Devy L, Lambert V, Foidart JM, Noel A (2003) Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life Sci 60:463–473CrossRefPubMedGoogle Scholar
  26. 26.
    Rakic JM, Lambert V, Munaut C, Bajou K, Peyrollier K, Alvarez-Gonzalez ML, Carmeliet P, Foidart JM, Noel A (2003) Mice without uPA, tPA, or plasminogen genes are resistant to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:1732–1739CrossRefPubMedGoogle Scholar
  27. 27.
    Lambert V, Munaut C, Jost M, Noel A, Werb Z, Foidart JM, Rakic JM (2002) Matrix metalloproteinase-9 contributes to choroidal neovascularization. Am J Pathol 161:1247–1253PubMedGoogle Scholar
  28. 28.
    El Hour M, Moncada-Pazos A, Blacher S, Masset A, Cal S, Berndt S, Detilleux J, Host L, Obaya AJ, Maillard C, Foidart JM, Ectors F, Noel A, Lopez-Otin C (2010) Higher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis. Oncogene 29:3025–3032Google Scholar
  29. 29.
    Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668CrossRefPubMedGoogle Scholar
  30. 30.
    Knauper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem 271:17124–17131CrossRefPubMedGoogle Scholar
  31. 31.
    Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086CrossRefPubMedGoogle Scholar
  32. 32.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228PubMedGoogle Scholar
  33. 33.
    Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB (2003) The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 44:4908–4913CrossRefPubMedGoogle Scholar
  34. 34.
    Csaky KG, Baffi JZ, Byrnes GA, Wolfe JD, Hilmer SC, Flippin J, Cousins SW (2004) Recruitment of marrow-derived endothelial cells to experimental choroidal neovascularization by local expression of vascular endothelial growth factor. Exp Eye Res 78:1107–1116CrossRefPubMedGoogle Scholar
  35. 35.
    Espinosa-Heidmann DG, Caicedo A, Hernandez EP, Csaky KG, Cousins SW (2003) Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:4914–4919CrossRefPubMedGoogle Scholar
  36. 36.
    Tomita M, Yamada H, Adachi Y, Cui Y, Yamada E, Higuchi A, Minamino K, Suzuki Y, Matsumura M, Ikehara S (2004) Choroidal neovascularization is provided by bone marrow cells. Stem Cells 22:21–26CrossRefPubMedGoogle Scholar
  37. 37.
    Higashiyama R, Inagaki Y, Hong YY, Kushida M, Nakao S, Niioka M, Watanabe T, Okano H, Matsuzaki Y, Shiota G, Okazaki I (2007) Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology 45:213–222CrossRefPubMedGoogle Scholar
  38. 38.
    Udagawa T, Birsner AE, Wood M, D’Amato RJ (2007) Chronic suppression of angiogenesis following radiation exposure is independent of hematopoietic reconstitution. Cancer Res 67:2040–2045CrossRefPubMedGoogle Scholar
  39. 39.
    Nielsen BS, Rank F, Lopez JM, Balbin M, Vizoso F, Lund LR, Dano K, Lopez-Otin C (2001) Collagenase-3 expression in breast myofibroblasts as a molecular marker of transition of ductal carcinoma in situ lesions to invasive ductal carcinomas. Cancer Res 61:7091–7100PubMedGoogle Scholar
  40. 40.
    Zhang B, Cao X, Liu Y, Cao W, Zhang F, Zhang S, Li H, Ning L, Fu L, Niu Y, Niu R, Sun B, Hao X (2008) Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer 8:83CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Julie Lecomte
    • 1
  • Krystel Louis
    • 1
  • Benoit Detry
    • 1
  • Silvia Blacher
    • 1
  • Vincent Lambert
    • 1
    • 2
  • Sandrine Bekaert
    • 1
  • Carine Munaut
    • 1
  • Jenny Paupert
    • 1
  • Pierre Blaise
    • 2
  • Jean-Michel Foidart
    • 1
  • Jean-Marie Rakic
    • 2
  • Stephen M. Krane
    • 3
  • Agnès Noel
    • 1
    Email author
  1. 1.Laboratory of Tumor and Developmental Biology, Tour de Pathologie, CHU (B23), Groupe Interdisciplinaire de Génoprotéomique Appliquée-Research (GIGA-Cancer)University of LiegeLiegeBelgium
  2. 2.Department of OphthalmologyCHULiegeBelgium
  3. 3.Department of Medicine, Center for Immunology and Inflammatory DiseaseHarvard Medical School and Massachusetts General HospitalBostonUSA

Personalised recommendations