Cellular and Molecular Life Sciences

, Volume 67, Issue 23, pp 3983–4000 | Cite as

The significance, development and progress of high-throughput combinatorial histone code analysis

  • Nicolas L. Young
  • Peter A. DiMaggio
  • Benjamin A. Garcia
Review

Abstract

The physiological state of eukaryotic DNA is chromatin. Nucleosomes, which consist of DNA in complex with histones, are the fundamental unit of chromatin. The post-translational modifications (PTMs) of histones play a critical role in the control of gene transcription, epigenetics and other DNA-templated processes. It has been known for several years that these PTMs function in concert to allow for the storage and transduction of highly specific signals through combinations of modifications. This code, the combinatorial histone code, functions much like a bar code or combination lock providing the potential for massive information content. The capacity to directly measure these combinatorial histone codes has mostly been laborious and challenging, thus limiting efforts often to one or two samples. Recently, progress has been made in determining such information quickly, quantitatively and sensitively. Here we review both the historical and recent progress toward routine and rapid combinatorial histone code analysis.

Keywords

Histone code Mass spectrometry Combinatorial Modification Proteomic Methylation Acetylation Histone 

References

  1. 1.
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260PubMedGoogle Scholar
  2. 2.
    Prohaska SJ, Stadler PF, Krakauer DC (2010) Innovation in gene regulation: the case of chromatin computation. J Theor Biol 265(1):27–44PubMedGoogle Scholar
  3. 3.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080PubMedGoogle Scholar
  4. 4.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45PubMedGoogle Scholar
  5. 5.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705PubMedGoogle Scholar
  6. 6.
    Turner BM (2002) Cellular memory and the histone code. Cell 111(3):285–291PubMedGoogle Scholar
  7. 7.
    Allis CD, Jenuwein T, Reinberg D (2007) Overview and concepts. In: Allis CD, Jenuwein T, Reinberg D, Caparros ML (eds) Epigenetics. Cold Spring Harbor Press, Cold Spring Harbor, pp 44–52Google Scholar
  8. 8.
    Iizuka M, Smith MM (2003) Functional consequences of histone modifications. Curr Opin Genet Dev 13(2):154–160PubMedGoogle Scholar
  9. 9.
    Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36PubMedGoogle Scholar
  10. 10.
    Suganuma T, Workman JL (2008) Crosstalk among histone modifications. Cell 135(4):604–607PubMedGoogle Scholar
  11. 11.
    Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680PubMedGoogle Scholar
  12. 12.
    Barlesi F, Giaccone G, Gallegos-Ruiz MI, Loundou A, Span SW, Lefesvre P, Kruyt FA, Rodriguez JA (2007) Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol 25(28):4358–4364PubMedGoogle Scholar
  13. 13.
    Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA, Collins HM, Soria D, Garibaldi JM, Paish CE, Ammar AA, Grainge MJ, Ball GR, Abdelghany MK, Martinez-Pomares L, Heery DM, Ellis IO (2009) Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res 69(9):3802–3809PubMedGoogle Scholar
  14. 14.
    Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S, Wang Q, Chia D, Goodglick L, Kurdistani SK (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174(5):1619–1628PubMedGoogle Scholar
  15. 15.
    Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266PubMedGoogle Scholar
  16. 16.
    Dion MF, Altschuler SJ, Wu LF, Rando OJ (2005) Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA 102(15):5501–5506PubMedGoogle Scholar
  17. 17.
    Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3(10):e328PubMedGoogle Scholar
  18. 18.
    Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117(6):721–733PubMedGoogle Scholar
  19. 19.
    Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903PubMedGoogle Scholar
  20. 20.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326PubMedGoogle Scholar
  21. 21.
    Greaves IK, Rangasamy D, Ridgway P, Tremethick DJ (2007) H2A.Z contributes to the unique 3D structure of the centromere. Proc Natl Acad Sci USA 104(2):525–530PubMedGoogle Scholar
  22. 22.
    Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ (2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 15(7):1968–1976PubMedGoogle Scholar
  23. 23.
    Jiang L, Smith JN, Anderson SL, Ma P, Mizzen CA, Kelleher NL (2007) Global assessment of combinatorial post-translational modification of core histones in yeast using contemporary mass spectrometry. LYS4 trimethylation correlates with degree of acetylation on the same H3 tail. J Biol Chem 282(38):27923–27934PubMedGoogle Scholar
  24. 24.
    Markaki Y, Christogianni A, Politou AS, Georgatos SD (2009) Phosphorylation of histone H3 at Thr3 is part of a combinatorial pattern that marks and configures mitotic chromatin. J Cell Sci 122(Pt 16):2809–2819PubMedGoogle Scholar
  25. 25.
    Kang TJ, Yuzawa S, Suga H (2008) Expression of histone H3 tails with combinatorial lysine modifications under the reprogrammed genetic code for the investigation on epigenetic markers. Chem Biol 15(11):1166–1174PubMedGoogle Scholar
  26. 26.
    Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bahler J, Green RD, Kouzarides T (2007) Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449(7164):928–932PubMedGoogle Scholar
  27. 27.
    Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT, Patel DJ, Aitchison JD, Tackett AJ, Allis CD (2006) Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24(5):785–796PubMedGoogle Scholar
  28. 28.
    Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33(2):248–256PubMedGoogle Scholar
  29. 29.
    Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438(7071):1116–1122PubMedGoogle Scholar
  30. 30.
    Daujat S, Zeissler U, Waldmann T, Happel N, Schneider R (2005) HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem 280(45):38090–38095PubMedGoogle Scholar
  31. 31.
    Garske AL, Craciun G, Denu JM (2008) A combinatorial H4 tail library for exploring the histone code. Biochemistry 47(31):8094–8102PubMedGoogle Scholar
  32. 32.
    Li B, Gogol M, Carey M, Lee D, Seidel C, Workman JL (2007) Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316(5827):1050–1054PubMedGoogle Scholar
  33. 33.
    Saksouk N, Avvakumov N, Champagne KS, Hung T, Doyon Y, Cayrou C, Paquet E, Ullah M, Landry AJ, Cote V, Yang XJ, Gozani O, Kutateladze TG, Cote J (2009) HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell 33(2):257–265PubMedGoogle Scholar
  34. 34.
    Moriniere J, Rousseaux S, Steuerwald U, Soler-Lopez M, Curtet S, Vitte AL, Govin J, Gaucher J, Sadoul K, Hart DJ, Krijgsveld J, Khochbin S, Muller CW, Petosa C (2009) Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 461(7264):664–668PubMedGoogle Scholar
  35. 35.
    Trojer P, Li G, Sims RJ 3rd, Vaquero A, Kalakonda N, Boccuni P, Lee D, Erdjument-Bromage H, Tempst P, Nimer SD, Wang YH, Reinberg D (2007) L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 129(5):915–928PubMedGoogle Scholar
  36. 36.
    Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983–994PubMedGoogle Scholar
  37. 37.
    Sims JK, Houston SI, Magazinnik T, Rice JC (2006) A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin. J Biol Chem 281(18):12760–12766PubMedGoogle Scholar
  38. 38.
    Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599PubMedGoogle Scholar
  39. 39.
    Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD (2002) Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418(6897):498PubMedGoogle Scholar
  40. 40.
    Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L, Bhaumik SR, Shilatifard A (2007) Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131(6):1084–1096PubMedGoogle Scholar
  41. 41.
    Du LL, Nakamura TM, Russell P (2006) Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks. Genes Dev 20(12):1583–1596PubMedGoogle Scholar
  42. 42.
    Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432(7015):406–411PubMedGoogle Scholar
  43. 43.
    Neelin JM, Connell GE (1959) Zone electrophoresis of chicken-erythrocyte histone in starch gel. Biochim Biophys Acta 31(2):539–541PubMedGoogle Scholar
  44. 44.
    Panyim S, Chalkley R (1969) High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys 130(1):337–346PubMedGoogle Scholar
  45. 45.
    Franklin SG, Zweidler A (1977) Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 266(5599):273–275PubMedGoogle Scholar
  46. 46.
    Bonner WM, West MH, Stedman JD (1980) Two-dimensional gel analysis of histones in acid extracts of nuclei, cells, and tissues. Eur J Biochem 109(1):17–23PubMedGoogle Scholar
  47. 47.
    Gurley LR, London JE, Valdez JG (1991) High-performance capillary electrophoresis of histones. J Chromatogr 559(1–2):431–443PubMedGoogle Scholar
  48. 48.
    Lindner H, Helliger W, Dirschlmayer A, Jaquemar M, Puschendorf B (1992) High-performance capillary electrophoresis of core histones and their acetylated modified derivatives. Biochem J 283(Pt 2):467–471PubMedGoogle Scholar
  49. 49.
    Lindner H, Helliger W, Dirschlmayer A, Talasz H, Wurm M, Sarg B, Jaquemar M, Puschendorf B (1992) Separation of phosphorylated histone H1 variants by high-performance capillary electrophoresis. J Chromatogr 608(1–2):211–216PubMedGoogle Scholar
  50. 50.
    Lindner H, Helliger W, Sarg B, Meraner C (1995) Effect of buffer composition on the migration order and separation of histone H1 subtypes. Electrophoresis 16(4):604–610PubMedGoogle Scholar
  51. 51.
    Lindner H, Wurm M, Dirschlmayer A, Sarg B, Helliger W (1993) Application of high-performance capillary electrophoresis to the analysis of H1 histones. Electrophoresis 14(5–6):480–485PubMedGoogle Scholar
  52. 52.
    Aguilar C, Hofte AJ, Tjaden UR, van der Greef J (2001) Analysis of histones by on-line capillary zone electrophoresis–electrospray ionisation mass spectrometry. J Chromatogr A 926(1):57–67PubMedGoogle Scholar
  53. 53.
    Wiktorowicz JE, Colburn JC (1990) Separation of cationic proteins via charge reversal in capillary electrophoresis. Electrophoresis 11(9):769–773PubMedGoogle Scholar
  54. 54.
    Mizzen CA, McLachlan DR (2000) Capillary electrophoresis of histone H1 variants at neutral pH in dynamically modified fused-silica tubing. Electrophoresis 21(12):2359–2367PubMedGoogle Scholar
  55. 55.
    Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, Recht J, Shabanowitz J, Mishra N, Strahl BD, Allis CD, Hunt DF (2007) Organismal differences in post-translational modifications in histones H3 and H4. J Biol Chem 282(10):7641–7655PubMedGoogle Scholar
  56. 56.
    Garcia BA, Pesavento JJ, Mizzen CA, Kelleher NL (2007) Pervasive combinatorial modification of histone H3 in human cells. Nat Methods 4(6):487–489PubMedGoogle Scholar
  57. 57.
    Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281(1):559–568PubMedGoogle Scholar
  58. 58.
    Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD (2005) Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci USA 102(18):6344–6349PubMedGoogle Scholar
  59. 59.
    Certa U, von Ehrenstein G (1981) Reversed-phase high-performance liquid chromatography of histones. Anal Biochem 118(1):147–154PubMedGoogle Scholar
  60. 60.
    D’Anna JA, Thayer MM, Tobey RA, Gurley LR (1985) G1- and S-phase syntheses of histones H1 and H1o in mitotically selected CHO cells: utilization of high-performance liquid chromatography. Biochemistry 24(8):2005–2010PubMedGoogle Scholar
  61. 61.
    Gurley LR, D’Anna JA, Blumenfeld M, Valdez JG, Sebring RJ, Donahue PR, Prentice DA, Spall WD (1984) Preparation of histone variants and high-mobility group proteins by reversed-phase high-performance liquid chromatography. J Chromatogr 297:147–165PubMedGoogle Scholar
  62. 62.
    Gurley LR, Prentice DA, Valdez JG, Spall WD (1983) Histone fractionation by high-performance liquid chromatography on cyanoalkysilane (CN) reverse-phase columns. Anal Biochem 131(2):465–477PubMedGoogle Scholar
  63. 63.
    Gurley LR, Prentice DA, Valdez JG, Spall WD (1983) High-performance liquid chromatography of chromatin histones. J Chromatogr 266:609–627PubMedGoogle Scholar
  64. 64.
    Lindner H, Helliger W, Puschendorf B (1986) Histone separation by high-performance liquid chromatography on C4 reverse-phase columns. Anal Biochem 158(2):424–430PubMedGoogle Scholar
  65. 65.
    Lindner H, Helliger W, Puschendorf B (1988) Separation of Friend erythroleukaemic cell histones and high-mobility-group proteins by reversed-phase high-performance liquid chromatography. J Chromatogr 450(3):309–316PubMedGoogle Scholar
  66. 66.
    Helliger W, Lindner H, Hauptlorenz S, Puschendorf B (1988) A new HPLC isolation procedure for chicken and goose erythrocyte histones. Biochem J 255(1):23–27PubMedGoogle Scholar
  67. 67.
    Lindner H, Helliger W, Puschendorf B (1990) Separation of rat tissue histone H1 subtypes by reverse-phase HPLC Identification and assignment to a standard H1 nomenclature. Biochem J 269(2):359–363PubMedGoogle Scholar
  68. 68.
    Lindner H, Wesierska-Gadek J, Helliger W, Puschendorf B, Sauermann G (1989) Identification of ADP-ribosylated histones by the combined use of high-performance liquid chromatography and electrophoresis. J Chromatogr 472(1):243–249PubMedGoogle Scholar
  69. 69.
    Neelin JM, Butler GC (1959) The fractionation of the histones of calf thymus and chicken erythrocytes by cation-exchange chromatography with sodium salts. Can J Biochem Physiol 37(7):843–859PubMedGoogle Scholar
  70. 70.
    Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196PubMedGoogle Scholar
  71. 71.
    Lindner H, Sarg B, Meraner C, Helliger W (1996) Separation of acetylated core histones by hydrophilic-interaction liquid chromatography. J Chromatogr A 743(1):137–144PubMedGoogle Scholar
  72. 72.
    Mizzen CA, Alpert AJ, Levesque L, Kruck TP, McLachlan DR (2000) Resolution of allelic and non-allelic variants of histone H1 by cation-exchange-hydrophilic-interaction chromatography. J Chromatogr B Biomed Sci Appl 744(1):33–46PubMedGoogle Scholar
  73. 73.
    Plazas-Mayorca MD, Young NL, Garcia BA (2008) Identification of differentially expressed histone codes using HILIC chromatography and mass spectrometry. Am Biotechnol Lab 27(2):10–12Google Scholar
  74. 74.
    Young NL, Plazas-Mayorca MD, Garcia BA (2008) A method to separate and characterize modified forms of histones using HILIC chromatography and electron transfer dissociation-mass spectrometry. Am Biotechnol Lab 27(1):23–25Google Scholar
  75. 75.
    Sarg B, Helliger W, Talasz H, Forg B, Lindner HH (2006) Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. J Biol Chem 281(10):6573–6580PubMedGoogle Scholar
  76. 76.
    Pesavento JJ, Mizzen CA, Kelleher NL (2006) Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4. Anal Chem 78(13):4271–4280PubMedGoogle Scholar
  77. 77.
    Taverna SD, Ueberheide BM, Liu Y, Tackett AJ, Diaz RL, Shabanowitz J, Chait BT, Hunt DF, Allis CD (2007) Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc Natl Acad Sci USA 104(7):2086–2091PubMedGoogle Scholar
  78. 78.
    Young NL, DiMaggio PA, Plazas-Mayorca MD, Baliban RC, Floudas CA, Garcia BA (2009) High throughput characterization of combinatorial histone codes. Mol Cell Proteomics 8(10):2266–2284PubMedGoogle Scholar
  79. 79.
    Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120(13):3265–3266Google Scholar
  80. 80.
    Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101(26):9528–9533PubMedGoogle Scholar
  81. 81.
    Zhang K, Tang H, Huang L, Blankenship JW, Jones PR, Xiang F, Yau PM, Burlingame AL (2002) Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Anal Biochem 306(2):259–269PubMedGoogle Scholar
  82. 82.
    Zhang K, Yau PM, Chandrasekhar B, New R, Kondrat R, Imai BS, Bradbury ME (2004) Differentiation between peptides containing acetylated or tri-methylated lysines by mass spectrometry: an application for determining lysine 9 acetylation and methylation of histone H3. Proteomics 4(1):1–10PubMedGoogle Scholar
  83. 83.
    Garcia BA, Joshi S, Thomas CE, Chitta RK, Diaz RL, Busby SA, Andrews PC, Ogorzalek Loo RR, Shabanowitz J, Kelleher NL, Mizzen CA, Allis CD, Hunt DF (2006) Comprehensive phosphoprotein analysis of linker histone H1 from Tetrahymena thermophila. Mol Cell Proteomics 5(9):1593–1609PubMedGoogle Scholar
  84. 84.
    Pesavento JJ, Bullock CR, LeDuc RD, Mizzen CA, Kelleher NL (2008) Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry. J Biol Chem 283(22):14927–14937PubMedGoogle Scholar
  85. 85.
    Medzihradszky KF, Zhang X, Chalkley RJ, Guan S, McFarland MA, Chalmers MJ, Marshall AG, Diaz RL, Allis CD, Burlingame AL (2004) Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS). Mol Cell Proteomics 3(9):872–886PubMedGoogle Scholar
  86. 86.
    Siuti N, Roth MJ, Mizzen CA, Kelleher NL, Pesavento JJ (2006) Gene-specific characterization of human histone H2B by electron capture dissociation. J Proteome Res 5(2):233–239PubMedGoogle Scholar
  87. 87.
    Boyne MT 2nd, Pesavento JJ, Mizzen CA, Kelleher NL (2006) Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J Proteome Res 5(2):248–253PubMedGoogle Scholar
  88. 88.
    Zhang L, Freitas MA (2004) Comparison of peptide mass mapping and electron capture dissociation as assays for histone posttranslational modifications. Int J Mass Spectr 234(1–3):213–225Google Scholar
  89. 89.
    Thomas CE, Kelleher NL, Mizzen CA (2006) Mass spectrometric characterization of human histone H3: a bird’s eye view. J Proteome Res 5(2):240–247PubMedGoogle Scholar
  90. 90.
    Parks BA, Jiang L, Thomas PM, Wenger CD, Roth MJ, Boyne MT 2nd, Burke PV, Kwast KE, Kelleher NL (2007) Top-down proteomics on a chromatographic time scale using linear ion trap Fourier transform hybrid mass spectrometers. Anal Chem 79(21):7984–7991PubMedGoogle Scholar
  91. 91.
    Li M, Jiang L, Kelleher NL (2009) Global histone profiling by LC–FTMS after inhibition and knockdown of deacetylases in human cells. J Chromatogr B Analyt Technol Biomed Life Sci 877(30):3885–3892PubMedGoogle Scholar
  92. 92.
    Pesavento JJ, Kim YB, Taylor GK, Kelleher NL (2004) Shotgun annotation of histone modifications: a new approach for streamlined characterization of proteins by top down mass spectrometry. J Am Chem Soc 126(11):3386–3387PubMedGoogle Scholar
  93. 93.
    Phanstiel D, Brumbaugh J, Berggren WT, Conard K, Feng X, Levenstein ME, McAlister GC, Thomson JA, Coon JJ (2008) Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells. Proc Natl Acad Sci USA 105(11):4093–4098PubMedGoogle Scholar
  94. 94.
    Nicklay JJ, Shechter D, Chitta RK, Garcia BA, Shabanowitz J, Allis CD, Hunt DF (2009) Analysis of histones in Xenopus laevis. II. Mass spectrometry reveals an index of cell type-specific modifications on H3 and H4. J Biol Chem 284(2):1075–1085PubMedGoogle Scholar
  95. 95.
    Hansen BT, Davey SW, Ham AJ, Liebler DC (2005) P-Mod: an algorithm and software to map modifications to peptide sequences using tandem MS data. J Proteome Res 4(2):358–368PubMedGoogle Scholar
  96. 96.
    Tanner S, Pevzner PA, Bafna V (2006) Unrestrictive identification of post-translational modifications through peptide mass spectrometry. Nat Protoc 1(1):67–72PubMedGoogle Scholar
  97. 97.
    Liu C, Yan B, Song Y, Xu Y, Cai L (2006) Peptide sequence tag-based blind identification of post-translational modifications with point process model. Bioinformatics 22(14):e307–e313PubMedGoogle Scholar
  98. 98.
    Havilio M, Wool A (2007) Large-scale unrestricted identification of post-translation modifications using tandem mass spectrometry. Anal Chem 79(4):1362–1368PubMedGoogle Scholar
  99. 99.
    Baumgartner C, Rejtar T, Kullolli M, Akella LM, Karger BL (2008) SeMoP: a new computational strategy for the unrestricted search for modified peptides using LC–MS/MS data. J Proteome Res 7(9):4199–4208PubMedGoogle Scholar
  100. 100.
    Chen Y, Chen W, Cobb MH, Zhao Y (2009) PTMap—a sequence alignment software for unrestricted, accurate, and full-spectrum identification of post-translational modification sites. Proc Natl Acad Sci USA 106(3):761–766PubMedGoogle Scholar
  101. 101.
    Guan S, Burlingame AL (2010) Data processing algorithms for analysis of high resolution MSMS spectra of peptides with complex patterns of posttranslational modifications. Mol Cell Proteomics 9(5):804–810PubMedGoogle Scholar
  102. 102.
    DiMaggio PA Jr, Young NL, Baliban RC, Garcia BA, Floudas CA (2009) A mixed integer linear optimization framework for the identification and quantification of targeted post-translational modifications of highly modified proteins using multiplexed electron transfer dissociation tandem mass spectrometry. Mol Cell Proteomics 8(11):2527–2543PubMedGoogle Scholar
  103. 103.
    Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24(2):309–316PubMedGoogle Scholar
  104. 104.
    Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic loci. Cell 136(1):175–186PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Nicolas L. Young
    • 1
  • Peter A. DiMaggio
    • 1
  • Benjamin A. Garcia
    • 1
    • 2
  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations