Cellular and Molecular Life Sciences

, Volume 67, Issue 23, pp 3961–3982 | Cite as

Triosephosphate isomerase: a highly evolved biocatalyst

  • R. K. Wierenga
  • E. G. Kapetaniou
  • R. Venkatesan


Triosephosphate isomerase (TIM) is a perfectly evolved enzyme which very fast interconverts dihydroxyacetone phosphate and d-glyceraldehyde-3-phosphate. Its catalytic site is at the dimer interface, but the four catalytic residues, Asn11, Lys13, His95 and Glu167, are from the same subunit. Glu167 is the catalytic base. An important feature of the TIM active site is the concerted closure of loop-6 and loop-7 on ligand binding, shielding the catalytic site from bulk solvent. The buried active site stabilises the enediolate intermediate. The catalytic residue Glu167 is at the beginning of loop-6. On closure of loop-6, the Glu167 carboxylate moiety moves approximately 2 Å to the substrate. The dynamic properties of the Glu167 side chain in the enzyme substrate complex are a key feature of the proton shuttling mechanism. Two proton shuttling mechanisms, the classical and the criss-cross mechanism, are responsible for the interconversion of the substrates of this enolising enzyme.


Active site strain Biocatalysis Enolising chemistry Evolution Protein dynamics Proton shuttling 



Bromohydroxyacetone phosphate




Dihydroxyacetone phosphate








Phosphoglucose isomerase


d-Ribose-5-phosphate isomerase


Triosephosphate isomerase





We thank the Academy of Finland and the Finnish Cultural Foundation for their support. We thank Dr. Annemie Lambeir for critically reading the manuscript.


  1. 1.
    Knowles JR, Albery WJ (1977) Perfection in enzyme catalysis: the energetics of triosephosphate isomerase. Acc Chem Res 10:105–111CrossRefGoogle Scholar
  2. 2.
    Knowles JR (1991) Enzyme catalysis: not different, just better. Nature 350:121–124PubMedCrossRefGoogle Scholar
  3. 3.
    Harris TK (2008) The mechanistic ventures of triosephosphate isomerase. IUBMB Life 60:195–198PubMedCrossRefGoogle Scholar
  4. 4.
    Cui Q, Karplus M (2003) Catalysis and specificity in enzymes: a study of triosephosphate isomerase and comparison with methyl glyoxal synthase. Adv Protein Chem 66:315–372PubMedCrossRefGoogle Scholar
  5. 5.
    Albery WJ, Knowles JR (1977) Efficiency and evolution of enzyme catalysis. Angew Chem Int Ed Engl 16:285–293PubMedCrossRefGoogle Scholar
  6. 6.
    Fersht AR (1999) Structure and mechanism in protein science. Freeman, New YorkGoogle Scholar
  7. 7.
    Rose IA (1962) Mechanism of C–H bond cleavage in aldolase and isomerase reactions. Brookhaven Symp Biol 15:293–309PubMedGoogle Scholar
  8. 8.
    Richard JP (1984) Acid–base catalysis of the elimination and isomerization reactions of triose phosphates. J Am Chem Soc 106:4926–4936CrossRefGoogle Scholar
  9. 9.
    Wolfenden R (1969) Transition state analogues for enzyme catalysis. Nature 223:704–705PubMedCrossRefGoogle Scholar
  10. 10.
    Banner DW, Bloomer AC, Petsko GA, Phillips DC, Pogson CI, Wilson IA, Corran PH, Furth AJ, Milman JD, Offord RE, Priddle JD, Waley SG (1975) Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature 255:609–614PubMedCrossRefGoogle Scholar
  11. 11.
    Lambeir AM, Opperdoes FR, Wierenga RK (1987) Kinetic properties of triose-phosphate isomerase from Trypanosoma brucei brucei. A comparison with the rabbit muscle and yeast enzymes. Eur J Biochem 168:69–74PubMedCrossRefGoogle Scholar
  12. 12.
    Rose IA, O’Connell EL (1969) Inactivation and labeling of triose phosphate isomerase and enolase by glycidol phosphate. J Biol Chem 244:6548–6550PubMedGoogle Scholar
  13. 13.
    De la Mare S, Coulson AF, Knowles JR, Priddle JD, Offord RE (1972) Active-site labelling of triose phosphate isomerase. The reaction of bromohydroxyacetone phosphate with a unique glutamic acid residue and the migration of the label to tyrosine. Biochem J 129:321–331PubMedGoogle Scholar
  14. 14.
    Hartman FC (1971) Haloacetol phosphates. Characterization of the active site of rabbit muscle triose phosphate isomerase. Biochemistry 10:146–154PubMedCrossRefGoogle Scholar
  15. 15.
    Schray KJ, O’Connell EL, Rose IA (1973) Inactivation of muscle triose phosphate isomerase by d- and l-glycidol phosphate. J Biol Chem 248:2214–2218PubMedGoogle Scholar
  16. 16.
    Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34:938–945PubMedCrossRefGoogle Scholar
  17. 17.
    Hall A, Knowles JR (1975) The uncatalyzed rates of enolization of dihydroxyacetone phosphate and of glyceraldehyde 3-phosphate in neutral aqueous solution. The quantitative assessment of the effectiveness of an enzyme catalyst. Biochemistry 14:4348–4353PubMedCrossRefGoogle Scholar
  18. 18.
    Kursula I, Partanen S, Lambeir AM, Antonov DM, Augustyns K, Wierenga RK (2001) Structural determinants for ligand binding and catalysis of triosephosphate isomerase. Eur J Biochem 268:5189–5196PubMedCrossRefGoogle Scholar
  19. 19.
    Jogl G, Rozovsky S, McDermott AE, Tong L (2003) Optimal alignment for enzymatic proton transfer: structure of the Michaelis complex of triosephosphate isomerase at 1.2-A resolution. Proc Natl Acad Sci USA 100:50–55PubMedCrossRefGoogle Scholar
  20. 20.
    Alahuhta M, Wierenga RK (2010) Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction-intermediate analog: new insight in the proton transfer reaction mechanism. Proteins 78:1878–1888PubMedGoogle Scholar
  21. 21.
    Lesk AM, Branden CI, Chothia C (1989) Structural principles of alpha/beta barrel proteins: the packing of the interior of the sheet. Proteins 5:139–148PubMedCrossRefGoogle Scholar
  22. 22.
    Copley RR, Bork P (2000) Homology among (betaalpha)(8) barrels: implications for the evolution of metabolic pathways. J Mol Biol 303:627–641PubMedCrossRefGoogle Scholar
  23. 23.
    Nagano N, Orengo CA, Thornton JM (2002) One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol 321:741–765PubMedCrossRefGoogle Scholar
  24. 24.
    Wierenga RK (2001) The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett 492:193–198PubMedCrossRefGoogle Scholar
  25. 25.
    Pujadas G, Palau J (2001) Evolution of alpha-amylases: architectural features and key residues in the stabilization of the (beta/alpha)(8) scaffold. Mol Biol Evol 18:38–54PubMedGoogle Scholar
  26. 26.
    Go MK, Koudelka A, Amyes TL, Richard JP (2010) The role of Lys-12 in catalysis by triosephosphate isomerase: a two-part substrate approach. Biochemistry 49:5377–5389PubMedCrossRefGoogle Scholar
  27. 27.
    Lolis E, Petsko GA (1990) Transition-state analogues in protein crystallography: probes of the structural source of enzyme catalysis. Annu Rev Biochem 59:597–630PubMedCrossRefGoogle Scholar
  28. 28.
    Webb MR, Knowles JR (1975) The orientation and accessibility of substrates on the active site of triosephosphate isomerase. Biochemistry 14:4692–4698PubMedCrossRefGoogle Scholar
  29. 29.
    Lolis E, Petsko GA (1990) Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis. Biochemistry 29:6619–6625PubMedCrossRefGoogle Scholar
  30. 30.
    Collins KD (1974) An activated intermediate analogue. The use of phosphoglycolohydroxamate as a stable analogue of a transiently occurring dihydroxyacetone phosphate-derived enolate in enzymatic catalysis. J Biol Chem 249:136–142PubMedGoogle Scholar
  31. 31.
    Davenport RC, Bash PA, Seaton BA, Karplus M, Petsko GA, Ringe D (1991) Structure of the triosephosphate isomerase-phosphoglycolohydroxamate complex: an analogue of the intermediate on the reaction pathway. Biochemistry 30:5821–5826PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang Z, Sugio S, Komives EA, Liu KD, Knowles JR, Petsko GA, Ringe D (1994) Crystal structure of recombinant chicken triosephosphate isomerase-phosphoglycolohydroxamate complex at 1.8-A resolution. Biochemistry 33:2830–2837PubMedCrossRefGoogle Scholar
  33. 33.
    Schliebs W, Thanki N, Eritja R, Wierenga R (1996) Active site properties of monomeric triosephosphate isomerase (monoTIM) as deduced from mutational and structural studies. Protein Sci 5:229–239PubMedCrossRefGoogle Scholar
  34. 34.
    Fonvielle M, Mariano S, Therisod M (2005) New inhibitors of rabbit muscle triose-phosphate isomerase. Bioorg Med Chem Lett 15:2906–2909PubMedCrossRefGoogle Scholar
  35. 35.
    Campbell ID, Jones RB, Kiener PA, Waley SG (1979) Enzyme-substrate and enzyme-inhibitor complexes of triose phosphate isomerase studied by 31P nuclear magnetic resonance. Biochem J 179:607–621PubMedGoogle Scholar
  36. 36.
    Orosz F, Olah J, Ovadi J (2006) Triosephosphate isomerase deficiency: facts and doubts. IUBMB Life 58:703–715PubMedCrossRefGoogle Scholar
  37. 37.
    Helfert S, Estevez AM, Bakker B, Michels P, Clayton C (2001) Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. Biochem J 357:117–125PubMedCrossRefGoogle Scholar
  38. 38.
    Michels PA (1986) Evolutionary aspects of trypanosomes: analysis of genes. J Mol Evol 24:45–52PubMedCrossRefGoogle Scholar
  39. 39.
    Orosz F, Olah J, Ovadi J (2009) Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta 1792:1168–1174PubMedGoogle Scholar
  40. 40.
    Richard JP (2008) Restoring a metabolic pathway. ACS Chem Biol 3:605–607PubMedCrossRefGoogle Scholar
  41. 41.
    Rodriguez-Almazan C, Arreola R, Rodriguez-Larrea D, Aguirre-Lopez B, de Gomez-Puyou MT, Perez-Montfort R, Costas M, Gomez-Puyou A, Torres-Larios A (2008) Structural basis of human triosephosphate isomerase deficiency: mutation E104D is related to alterations of a conserved water network at the dimer interface. J Biol Chem 283:23254–23263PubMedCrossRefGoogle Scholar
  42. 42.
    Schneider A, Westwood B, Yim C, Cohen-Solal M, Rosa R, Labotka R, Eber S, Wolf R, Lammi A, Beutler E (1996) The 1591C mutation in triosephosphate isomerase (TPI) deficiency. Tightly linked polymorphisms and a common haplotype in all known families. Blood Cells Mol Dis 22:115–125PubMedCrossRefGoogle Scholar
  43. 43.
    Maes D, Zeelen JP, Thanki N, Beaucamp N, Alvarez M, Thi MH, Backmann J, Martial JA (1999) The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures. Proteins 37:441–453PubMedCrossRefGoogle Scholar
  44. 44.
    Schneider AS (2000) Triosephosphate isomerase deficiency: historical perspectives and molecular aspects. Baillieres Best Pract Res Clin Haematol 13:119–140PubMedCrossRefGoogle Scholar
  45. 45.
    Daar IO, Artymiuk PJ, Phillips DC, Maquat LE (1986) Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme. Proc Natl Acad Sci USA 83:7903–7907PubMedCrossRefGoogle Scholar
  46. 46.
    Guix FX, Ill-Raga G, Bravo R, Nakaya T, de Fabritiis G, Coma M, Miscione GP, Villà-Freixa J, Suzuki T, Fernàndez-Busquets X, Valverde MA, de Strooper B, Muñoz FJ (2009) Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation. Brain 132:1335–1345PubMedCrossRefGoogle Scholar
  47. 47.
    Rozovsky S, McDermott AE (2007) Substrate product equilibrium on a reversible enzyme, triosephosphate isomerase. Proc Natl Acad Sci USA 104:2080–2085PubMedCrossRefGoogle Scholar
  48. 48.
    Albery WJ, Knowles JR (1976) Free-energy profile of the reaction catalyzed by triosephosphate isomerase. Biochemistry 15:5627–5631PubMedCrossRefGoogle Scholar
  49. 49.
    Albery WJ, Knowles JR (1976) Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15:5631–5640PubMedCrossRefGoogle Scholar
  50. 50.
    Blacklow SC, Raines RT, Lim WA, Zamore PD, Knowles JR (1988) Triosephosphate isomerase catalysis is diffusion controlled. Appendix: analysis of triose phosphate equilibria in aqueous solution by 31P NMR. Biochemistry 27:1158–1167PubMedCrossRefGoogle Scholar
  51. 51.
    Desamero R, Rozovsky S, Zhadin N, McDermott A, Callender R (2003) Active site loop motion in triosephosphate isomerase: T-jump relaxation spectroscopy of thermal activation. Biochemistry 42:2941–2951PubMedCrossRefGoogle Scholar
  52. 52.
    Cui Q, Karplus M (2001) Triosephosphate isomerase: a theoretical comparison of alternative pathways. J Am Chem Soc 123:2284–2290PubMedCrossRefGoogle Scholar
  53. 53.
    Guallar V, Jacobson M, McDermott A, Friesner RA (2004) Computational modeling of the catalytic reaction in triosephosphate isomerase. J Mol Biol 337:227–239PubMedCrossRefGoogle Scholar
  54. 54.
    Feierberg I, Åquist J (2002) Computational modeling of enzymatic keto-enol isomerization reactions. Theor Chem Acc 108:71–84Google Scholar
  55. 55.
    Thakur SS, Deepalakshmi PD, Gayathri P, Banerjee M, Murthy MR, Balaram P (2009) Detection of the protein dimers, multiple monomeric states and hydrated forms of Plasmodium falciparum triosephosphate isomerase in the gas phase. Protein Eng Des Sel 22:289–304PubMedCrossRefGoogle Scholar
  56. 56.
    Belasco JG, Herlihy JM, Knowles JR (1978) Critical ionization states in the reaction catalyzed by triosephosphate isomerase. Biochemistry 17:2971–2978PubMedCrossRefGoogle Scholar
  57. 57.
    Pompliano DL, Peyman A, Knowles JR (1990) Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase. Biochemistry 29:3186–3194PubMedCrossRefGoogle Scholar
  58. 58.
    Lodi PJ, Chang LC, Knowles JR, Komives EA (1994) Triosephosphate isomerase requires a positively charged active site: the role of lysine-12. Biochemistry 33:2809–2814PubMedCrossRefGoogle Scholar
  59. 59.
    Belasco JG, Knowles JR (1980) Direct observation of substrate distortion by triosephosphate isomerase using Fourier transform infrared spectroscopy. Biochemistry 19:472–477PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang Z, Komives EA, Sugio S, Blacklow SC, Narayana N, Xuong NH, Stock AM, Petsko GA, Ringe D (1999) The role of water in the catalytic efficiency of triosephosphate isomerase. Biochemistry 38:4389–4397PubMedCrossRefGoogle Scholar
  61. 61.
    Gayathri P, Banerjee M, Vijayalakshmi A, Balaram H, Balaram P, Murthy MR (2009) Biochemical and structural characterization of residue 96 mutants of Plasmodium falciparum triosephosphate isomerase: active-site loop conformation, hydration and identification of a dimer-interface ligand-binding site. Acta Crystallogr D Biol Crystallogr 65:847–857PubMedCrossRefGoogle Scholar
  62. 62.
    Kursula I, Wierenga RK (2003) Crystal structure of triosephosphate isomerase complexed with 2-phosphoglycolate at 0.83-A resolution. J Biol Chem 278:9544–9551PubMedCrossRefGoogle Scholar
  63. 63.
    Donnini S, Groenhof G, Wierenga RK, Juffer AH (2006) The planar conformation of a strained proline ring: a QM/MM study. Proteins 64:700–710PubMedCrossRefGoogle Scholar
  64. 64.
    Allen SC, Muirhead H (1996) Refined three-dimensional structure of cat-muscle (M1) pyruvate kinase at a resolution of 2.6 A. Acta Crystallogr D Biol Crystallogr 52:499–504PubMedCrossRefGoogle Scholar
  65. 65.
    Raychaudhuri S, Younas F, Karplus PA, Faerman CH, Ripoll DR (1997) Backbone makes a significant contribution to the electrostatics of alpha/beta-barrel proteins. Protein Sci 6:1849–1857PubMedCrossRefGoogle Scholar
  66. 66.
    Livesay DR, La D (2005) The evolutionary origins and catalytic importance of conserved electrostatic networks within TIM-barrel proteins. Protein Sci 14:1158–1170PubMedCrossRefGoogle Scholar
  67. 67.
    Henn-Sax M, Hocker B, Wilmanns M, Sterner R (2001) Divergent evolution of (betaalpha)8-barrel enzymes. Biol Chem 382:1315–1320PubMedCrossRefGoogle Scholar
  68. 68.
    Hocker B, Lochner A, Seitz T, Claren J, Sterner R (2009) High-resolution crystal structure of an artificial (betaalpha)(8)-barrel protein designed from identical half-barrels. Biochemistry 48:1145–1147PubMedCrossRefGoogle Scholar
  69. 69.
    Hocker B (2005) Directed evolution of (betaalpha)(8)-barrel enzymes. Biomol Eng 22:31–38PubMedCrossRefGoogle Scholar
  70. 70.
    Sterner R, Hocker B (2005) Catalytic versatility, stability, and evolution of the (betaalpha)8-barrel enzyme fold. Chem Rev 105:4038–4055PubMedCrossRefGoogle Scholar
  71. 71.
    Claren J, Malisi C, Hocker B, Sterner R (2009) Establishing wild-type levels of catalytic activity on natural and artificial (beta alpha)8-barrel protein scaffolds. Proc Natl Acad Sci USA 106:3704–3709PubMedCrossRefGoogle Scholar
  72. 72.
    Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195PubMedCrossRefGoogle Scholar
  73. 73.
    Singh SK, Maithal K, Balaram H, Balaram P (2001) Synthetic peptides as inactivators of multimeric enzymes: inhibition of Plasmodium falciparum triosephosphate isomerase by interface peptides. FEBS Lett 501:19–23PubMedCrossRefGoogle Scholar
  74. 74.
    Tellez-Valencia A, Olivares-Illana V, Hernandez-Santoyo A, Perez-Montfort R, Costas M, Rodriguez-Romero A, López-Calahorra F, Tuena De Gómez-Puyou M, Gómez-Puyou A (2004) Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. J Mol Biol 341:1355–1365PubMedCrossRefGoogle Scholar
  75. 75.
    Olivares-Illana V, Rodriguez-Romero A, Becker I, Berzunza M, Garcia J, Perez-Montfort R, Cabrera N, López-Calahorra F, de Gómez-Puyou MT, Gómez-Puyou A (2007) Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi. PLoS Negl Trop Dis 1:e1PubMedCrossRefGoogle Scholar
  76. 76.
    Borchert TV, Abagyan R, Kishan KV, Zeelen JP, Wierenga RK (1993) The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop. Structure 1:205–213PubMedCrossRefGoogle Scholar
  77. 77.
    Borchert TV, Abagyan R, Jaenicke R, Wierenga RK (1994) Design, creation, and characterization of a stable, monomeric triosephosphate isomerase. Proc Natl Acad Sci USA 91:1515–1518PubMedCrossRefGoogle Scholar
  78. 78.
    Borchert TV, Kishan KV, Zeelen JP, Schliebs W, Thanki N, Abagyan R, Jaenicke R, Wierenga RK (1995) Three new crystal structures of point mutation variants of monoTIM: conformational flexibility of loop-1, loop-4 and loop-8. Structure 3:669–679PubMedCrossRefGoogle Scholar
  79. 79.
    Norledge BV, Lambeir AM, Abagyan RA, Rottmann A, Fernandez AM, Filimonov VV, Peter MG, Wierenga RK (2001) Modeling, mutagenesis, and structural studies on the fully conserved phosphate-binding loop (loop 8) of triosephosphate isomerase: toward a new substrate specificity. Proteins 42:383–389PubMedCrossRefGoogle Scholar
  80. 80.
    Lambeir AM, Backmann J, Ruiz-Sanz J, Filimonov V, Nielsen JE, Kursula I, Norledge BV, Wierenga RK (2000) The ionization of a buried glutamic acid is thermodynamically linked to the stability of Leishmania mexicana triose phosphate isomerase. Eur J Biochem 267:2516–2524PubMedCrossRefGoogle Scholar
  81. 81.
    Saab-Rincon G, Juarez VR, Osuna J, Sanchez F, Soberon X (2001) Different strategies to recover the activity of monomeric triosephosphate isomerase by directed evolution. Protein Eng 14:149–155PubMedCrossRefGoogle Scholar
  82. 82.
    Thanki N, Zeelen JP, Mathieu M, Jaenicke R, Abagyan RA, Wierenga RK, Schliebs W (1997) Protein engineering with monomeric triosephosphate isomerase (monoTIM): the modelling and structure verification of a seven-residue loop. Protein Eng 10:159–167PubMedCrossRefGoogle Scholar
  83. 83.
    Alahuhta M, Salin M, Casteleijn MG, Kemmer C, El-Sayed I, Augustyns K, Neubauer P, Wierenga RK (2008) Structure-based protein engineering efforts with a monomeric TIM variant: the importance of a single point mutation for generating an active site with suitable binding properties. Protein Eng Des Sel 21:257–266PubMedCrossRefGoogle Scholar
  84. 84.
    Kursula I, Salin M, Sun J, Norledge BV, Haapalainen AM, Sampson NS, Wierenga RK (2004) Understanding protein lids: structural analysis of active hinge mutants in triosephosphate isomerase. Protein Eng Des Sel 17:375–382PubMedCrossRefGoogle Scholar
  85. 85.
    Williams JC, Zeelen JP, Neubauer G, Vriend G, Backmann J, Michels PA, Lambeir AM, Wierenga RK (1999) Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Protein Eng 12:243–250PubMedCrossRefGoogle Scholar
  86. 86.
    Nagorski RW, Richard JP (2001) Mechanistic imperatives for aldose-ketose isomerization in water: specific, general base- and metal ion-catalyzed isomerization of glyceraldehyde with proton and hydride transfer. J Am Chem Soc 123:794–802PubMedCrossRefGoogle Scholar
  87. 87.
    Gerlt JA, Gassman PG (1993) Understanding the rates of certain enzyme-catalyzed reactions: proton abstraction from carbon acids, acyl-transfer reactions, and displacement reactions of phosphodiesters. Biochemistry 32:11943–11952PubMedCrossRefGoogle Scholar
  88. 88.
    Frey PA, Hegeman AD (2007) Enzymatic reaction mechanisms. Oxford University Press, New YorkGoogle Scholar
  89. 89.
    Pihko P, Rapakko S, Wierenga RK (2009) Oxyanion holes and their mimics. In: Pihko P (ed) Hydrogen bonding in organic synthesis. Wiley, Weinheim, pp 43–71CrossRefGoogle Scholar
  90. 90.
    Rose IA (1975) Mechanism of the aldose-ketose isomerase reactions. Adv Enzymol Relat Areas Mol Biol 43:491–517PubMedGoogle Scholar
  91. 91.
    Roos AK, Burgos E, Ericsson DJ, Salmon L, Mowbray SL (2005) Competitive inhibitors of Mycobacterium tuberculosis ribose-5-phosphate isomerase B reveal new information about the reaction mechanism. J Biol Chem 280:6416–6422PubMedCrossRefGoogle Scholar
  92. 92.
    Arsenieva D, Hardre R, Salmon L, Jeffery CJ (2002) The crystal structure of rabbit phosphoglucose isomerase complexed with 5-phospho-d-arabinonohydroxamic acid. Proc Natl Acad Sci USA 99:5872–5877PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang R, Andersson CE, Savchenko A, Skarina T, Evdokimova E, Beasley S, Arrowsmith CH, Edwards AM, Joachimiak A, Mowbray SL (2003) Structure of Escherichia coli ribose-5-phosphate isomerase: a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle. Structure 11:31–42PubMedCrossRefGoogle Scholar
  94. 94.
    Hamada K, Ago H, Sugahara M, Nodake Y, Kuramitsu S, Miyano M (2003) Oxyanion hole-stabilized stereospecific isomerization in ribose-5-phosphate isomerase (Rpi). J Biol Chem 278:49183–49190PubMedCrossRefGoogle Scholar
  95. 95.
    Arsenieva D, Jeffery CJ (2002) Conformational changes in phosphoglucose isomerase induced by ligand binding. J Mol Biol 323:77–84PubMedCrossRefGoogle Scholar
  96. 96.
    Fenn TD, Ringe D, Petsko GA (2004) Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift. Biochemistry 43:6464–6474PubMedCrossRefGoogle Scholar
  97. 97.
    Amyes TL, O’Donoghue AC, Richard JP (2001) Contribution of phosphate intrinsic binding energy to the enzymatic rate acceleration for triosephosphate isomerase. J Am Chem Soc 123:11325–11326PubMedCrossRefGoogle Scholar
  98. 98.
    Morrow JR, Amyes TL, Richard JP (2008) Phosphate binding energy and catalysis by small and large molecules. Acc Chem Res 41:539–548PubMedCrossRefGoogle Scholar
  99. 99.
    Amyes TL, Richard JP (2007) Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion. Biochemistry 46:5841–5854PubMedCrossRefGoogle Scholar
  100. 100.
    Go MK, Amyes TL, Richard JP (2009) Hydron transfer catalyzed by triosephosphate isomerase. Products of the direct and phosphite-activated isomerization of [1-(13)C]-glycolaldehyde in D(2)O. Biochemistry 48:5769–5778PubMedCrossRefGoogle Scholar
  101. 101.
    Corey EJ, Sneen RA (1956) Stereoelectronic control in enolization-ketonization reactions. J Am Chem Soc 78:6269–6278CrossRefGoogle Scholar
  102. 102.
    Richard JP, Amyes TL (2001) Proton transfer at carbon. Curr Opin Chem Biol 5:626–633PubMedCrossRefGoogle Scholar
  103. 103.
    Silverman RB (2002) The organic chemistry of enzyme catalyzed reactions (revised edition). Academic Press, LondonGoogle Scholar
  104. 104.
    Hartman FC, LaMuraglia GM, Tomozawa Y, Wolfenden R (1975) The influence of pH on the interaction of inhibitors with triosephosphate isomerase and determination of the pKa of the active-site carboxyl group. Biochemistry 14:5274–5279PubMedCrossRefGoogle Scholar
  105. 105.
    Alston WC 2nd, Kanska M, Murray CJ (1996) Secondary H/T and D/T isotope effects in enzymatic enolization reactions. Coupled motion and tunneling in the triosephosphate isomerase reaction. Biochemistry 35:12873–12881PubMedCrossRefGoogle Scholar
  106. 106.
    Cleland WW, Frey PA, Gerlt JA (1998) The low barrier hydrogen bond in enzymatic catalysis. J Biol Chem 273:25529–25532PubMedCrossRefGoogle Scholar
  107. 107.
    Harris TK, Abeygunawardana C, Mildvan AS (1997) NMR studies of the role of hydrogen bonding in the mechanism of triosephosphate isomerase. Biochemistry 36:14661–14675PubMedCrossRefGoogle Scholar
  108. 108.
    Bash PA, Field MJ, Davenport RC, Petsko GA, Ringe D, Karplus M (1991) Computer simulation and analysis of the reaction pathway of triosephosphate isomerase. Biochemistry 30:5826–5832PubMedCrossRefGoogle Scholar
  109. 109.
    Nickbarg EB, Davenport RC, Petsko GA, Knowles JR (1988) Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism. Biochemistry 27:5948–5960PubMedCrossRefGoogle Scholar
  110. 110.
    Harris TK, Cole RN, Comer FI, Mildvan AS (1998) Proton transfer in the mechanism of triosephosphate isomerase. Biochemistry 37:16828–16838PubMedCrossRefGoogle Scholar
  111. 111.
    Schramm VL (2007) Enzymatic transition state theory and transition state analogue design. J Biol Chem 282:28297–28300PubMedCrossRefGoogle Scholar
  112. 112.
    Lodi PJ, Knowles JR (1991) Neutral imidazole is the electrophile in the reaction catalyzed by triosephosphate isomerase: structural origins and catalytic implications. Biochemistry 30:6948–6956PubMedCrossRefGoogle Scholar
  113. 113.
    Gandour RD (1981) On the importance of orientation in general base catalysis by carboxylate. Bioorg Chem 10:169–176CrossRefGoogle Scholar
  114. 114.
    O’Donoghue AC, Amyes TL, Richard JP (2005) Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of dihydroxyacetone phosphate in D2O. Biochemistry 44:2622–2631PubMedCrossRefGoogle Scholar
  115. 115.
    Herlihy JM, Maister SG, Albery WJ, Knowles JR (1976) Energetics of triosephosphate isomerase: the fate of the 1(R)-3H label of tritiated dihydroxyacetone phosphate in the isomerase reaction. Biochemistry 15:5601–5607PubMedCrossRefGoogle Scholar
  116. 116.
    Rose IA, Fung WJ, Warms JV (1990) Proton diffusion in the active site of triosephosphate isomerase. Biochemistry 29:4312–4317PubMedCrossRefGoogle Scholar
  117. 117.
    Aparicio R, Ferreira ST, Polikarpov I (2003) Closed conformation of the active site loop of rabbit muscle triosephosphate isomerase in the absence of substrate: evidence of conformational heterogeneity. J Mol Biol 334:1023–1041PubMedCrossRefGoogle Scholar
  118. 118.
    Verlinde CL, Witmans CJ, Pijning T, Kalk KH, Hol WG, Callens M, Opperdoes FR (1992) Structure of the complex between trypanosomal triosephosphate isomerase and N-hydroxy-4-phosphono-butanamide: binding at the active site despite an “open” flexible loop conformation. Protein Sci 1:1578–1584PubMedCrossRefGoogle Scholar
  119. 119.
    Parthasarathy S, Ravindra G, Balaram H, Balaram P, Murthy MR (2002) Structure of the Plasmodium falciparum triosephosphate isomerase-phosphoglycolate complex in two crystal forms: characterization of catalytic loop open and closed conformations in the ligand-bound state. Biochemistry 41:13178–13188PubMedCrossRefGoogle Scholar
  120. 120.
    Noble ME, Zeelen JP, Wierenga RK (1993) Structures of the “open” and “closed” state of trypanosomal triosephosphate isomerase, as observed in a new crystal form: implications for the reaction mechanism. Proteins 16:311–326PubMedCrossRefGoogle Scholar
  121. 121.
    Joseph D, Petsko GA, Karplus M (1990) Anatomy of a conformational change: hinged “lid” motion of the triosephosphate isomerase loop. Science 249:1425–1428PubMedCrossRefGoogle Scholar
  122. 122.
    Williams JC, McDermott AE (1995) Dynamics of the flexible loop of triosephosphate isomerase: the loop motion is not ligand gated. Biochemistry 34:8309–8319PubMedCrossRefGoogle Scholar
  123. 123.
    Berlow RB, Igumenova TI, Loria JP (2007) Value of a hydrogen bond in triosephosphate isomerase loop motion. Biochemistry 46:6001–6010PubMedCrossRefGoogle Scholar
  124. 124.
    Sampson NS, Knowles JR (1992) Segmental motion in catalysis: investigation of a hydrogen bond critical for loop closure in the reaction of triosephosphate isomerase. Biochemistry 31:8488–8494PubMedCrossRefGoogle Scholar
  125. 125.
    Derreumaux P, Schlick T (1998) The loop opening/closing motion of the enzyme triosephosphate isomerase. Biophys J 74:72–81PubMedCrossRefGoogle Scholar
  126. 126.
    Wang Y, Berlow RB, Loria JP (2009) Role of loop-loop interactions in coordinating motions and enzymatic function in triosephosphate isomerase. Biochemistry 48:4548–4556PubMedCrossRefGoogle Scholar
  127. 127.
    Casteleijn MG, Alahuhta M, Groebel K, El-Sayed I, Augustyns K, Lambeir AM, Neubauer P, Wierenga RK (2006) Functional role of the conserved active site proline of triosephosphate isomerase. Biochemistry 45:15483–15494PubMedCrossRefGoogle Scholar
  128. 128.
    Yuksel KU, Sun AQ, Gracy RW, Schnackerz KD (1994) The hinged lid of yeast triose-phosphate isomerase. Determination of the energy barrier between the two conformations. J Biol Chem 269:5005–5008PubMedGoogle Scholar
  129. 129.
    Xu Y, Lorieau J, McDermott AE (2010) Triosephosphate isomerase: 15N and 13C chemical shift assignments and conformational change upon ligand binding by magic-angle spinning solid-state NMR spectroscopy. J Mol Biol 397:233–248PubMedCrossRefGoogle Scholar
  130. 130.
    Benkovic SJ, Hammes GG, Hammes-Schiffer S (2008) Free-energy landscape of enzyme catalysis. Biochemistry 47:3317–3321PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • R. K. Wierenga
    • 1
  • E. G. Kapetaniou
    • 1
  • R. Venkatesan
    • 1
  1. 1.Biocenter Oulu and Department of BiochemistryUniversity of OuluOuluFinland

Personalised recommendations