Cellular and Molecular Life Sciences

, Volume 67, Issue 22, pp 3849–3863 | Cite as

RNA interference pathways in filamentous fungi

  • Liande Li
  • Shwu-shin Chang
  • Yi Liu


RNA interference is a conserved homology-dependent post-transcriptional/transcriptional gene silencing mechanism in eukaryotes. The filamentous fungus Neurospora crassa is one of the first organisms used for RNAi studies. Quelling and meiotic silencing by unpaired DNA are two RNAi-related phenomena discovered in Neurospora, and their characterizations have contributed significantly to our understanding of RNAi mechanisms in eukaryotes. A type of DNA damage-induced small RNA, microRNA-like small RNAs and Dicer-independent small silencing RNAs were recently discovered in Neurospora. In addition, there are at least six different pathways responsible for the production of these small RNAs, establishing this fungus as an important model system to study small RNA function and biogenesis. The studies in Cryphonectria, Mucor, Aspergillus and other species indicate that RNAi is widely conserved in filamentous fungi and plays important roles in genome defense. This review summarizes our current understanding of RNAi pathways in filamentous fungi.


RNAi Quelling Meiotic silencing MicroRNA Dicer-independent small RNAs siRNA qiRNA 


  1. 1.
    Hannon GJ (2002) RNA interference. Nature 418:244–251PubMedCrossRefGoogle Scholar
  2. 2.
    Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426PubMedCrossRefGoogle Scholar
  3. 3.
    Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedCrossRefGoogle Scholar
  4. 4.
    Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108PubMedCrossRefGoogle Scholar
  5. 5.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366PubMedCrossRefGoogle Scholar
  6. 6.
    Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412PubMedCrossRefGoogle Scholar
  7. 7.
    Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404PubMedCrossRefGoogle Scholar
  8. 8.
    Maiti M, Lee HC, Liu Y (2007) QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes Dev 21:590–600PubMedCrossRefGoogle Scholar
  9. 9.
    Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349PubMedCrossRefGoogle Scholar
  10. 10.
    Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19:517–529PubMedCrossRefGoogle Scholar
  11. 11.
    Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32PubMedCrossRefGoogle Scholar
  12. 12.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedCrossRefGoogle Scholar
  13. 13.
    Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420PubMedCrossRefGoogle Scholar
  14. 14.
    Thomson T, Lin H (2009) The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25:355–376PubMedCrossRefGoogle Scholar
  15. 15.
    Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353PubMedCrossRefGoogle Scholar
  16. 16.
    Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289PubMedCrossRefGoogle Scholar
  17. 17.
    Cogoni C, Irelan JT, Schumacher M, Schmidhauser TJ, Selker EU, Macino G (1996) Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA–DNA interactions or DNA methylation. EMBO J 15:3153–3163PubMedGoogle Scholar
  18. 18.
    Cogoni C, Macino G (1997) Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc Natl Acad Sci USA 94:10233–10238PubMedCrossRefGoogle Scholar
  19. 19.
    Cogoni C, Romano N, Macino G (1994) Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek 65:205–209PubMedCrossRefGoogle Scholar
  20. 20.
    Cogoni C, Macino G (1997) Conservation of transgene-induced post-transcriptional gene silencing in plants and fungi. Trends Plant Sci 2:438–443CrossRefGoogle Scholar
  21. 21.
    Cogoni C, Macino G (1999) Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166–169PubMedCrossRefGoogle Scholar
  22. 22.
    Cogoni C, Macino G (1999) Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286:2342–2344PubMedCrossRefGoogle Scholar
  23. 23.
    Catalanotto C, Azzalin G, Macino G, Cogoni C (2000) Gene silencing in worms and fungi. Nature 404:245PubMedCrossRefGoogle Scholar
  24. 24.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  25. 25.
    Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542PubMedCrossRefGoogle Scholar
  26. 26.
    Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553PubMedCrossRefGoogle Scholar
  27. 27.
    Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, Maine EM (2000) EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol 10:169–178PubMedCrossRefGoogle Scholar
  28. 28.
    Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA 97:11650–11654PubMedCrossRefGoogle Scholar
  29. 29.
    Goldoni M, Azzalin G, Macino G, Cogoni C (2004) Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genet Biol 41:1016–1024PubMedCrossRefGoogle Scholar
  30. 30.
    Pickford A, Braccini L, Macino G, Cogoni C (2003) The QDE-3 homologue RecQ-2 co-operates with QDE-3 in DNA repair in Neurospora crassa. Curr Genet 42:220–227PubMedGoogle Scholar
  31. 31.
    Kato A, Akamatsu Y, Sakuraba Y, Inoue H (2004) The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair. Curr Genet 45:37–44PubMedCrossRefGoogle Scholar
  32. 32.
    Chen H, Samadder PP, Tanaka Y, Ohira T, Okuizumi H, Yamaoka N, Miyao A, Hirochika H, Tsuchimoto S, Ohtsubo H, Nishiguchi M (2008) OsRecQ1, a QDE-3 homologue in rice, is required for RNA silencing induced by particle bombardment for inverted repeat DNA, but not for double-stranded RNA. Plant J 56:274–286PubMedCrossRefGoogle Scholar
  33. 33.
    Fulci V, Macino G (2007) Quelling: post-transcriptional gene silencing guided by small RNAs in Neurospora crassa. Curr Opin Microbiol 10:199–203PubMedCrossRefGoogle Scholar
  34. 34.
    Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367PubMedCrossRefGoogle Scholar
  35. 35.
    Catalanotto C, Azzalin G, Macino G, Cogoni C (2002) Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev 16:790–795PubMedCrossRefGoogle Scholar
  36. 36.
    Catalanotto C, Pallotta M, ReFalo P, Sachs MS, Vayssie L, Macino G, Cogoni C (2004) Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Mol Cell Biol 24:2536–2545PubMedCrossRefGoogle Scholar
  37. 37.
    Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868PubMedCrossRefGoogle Scholar
  38. 38.
    Makeyev EV, Bamford DH (2002) Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol Cell 10:1417–1427PubMedCrossRefGoogle Scholar
  39. 39.
    Salgado PS, Koivunen MR, Makeyev EV, Bamford DH, Stuart DI, Grimes JM (2006) The structure of an RNAi polymerase links RNA silencing and transcription. PLoS Biol 4:e434PubMedCrossRefGoogle Scholar
  40. 40.
    Laurila MR, Salgado PS, Makeyev EV, Nettelship J, Stuart DI, Grimes JM, Bamford DH (2005) Gene silencing pathway RNA-dependent RNA polymerase of Neurospora crassa: yeast expression and crystallization of selenomethionated QDE-1 protein. J Struct Biol 149:111–115PubMedCrossRefGoogle Scholar
  41. 41.
    Lee HC, Chang SS, Choudhary S, Aalto AP, Maiti M, Bamford DH, Liu Y (2009) qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459:274–277PubMedCrossRefGoogle Scholar
  42. 42.
    Forrest EC, Cogoni C, Macino G (2004) The RNA-dependent RNA polymerase, QDE-1, is a rate-limiting factor in post-transcriptional gene silencing in Neurospora crassa. Nucleic Acids Res 32:2123–2128PubMedCrossRefGoogle Scholar
  43. 43.
    Ziv C, Yarden O (2010) Gene silencing for functional analysis: assessing RNAi as a tool for manipulation of gene expression. Methods Mol Biol 638:77–100Google Scholar
  44. 44.
    Nolan T, Cecere G, Mancone C, Alonzi T, Tripodi M, Catalanotto C, Cogoni C (2008) The RNA-dependent RNA polymerase essential for post-transcriptional gene silencing in Neurospora crassa interacts with replication protein A. Nucleic Acids Res 36:532–538PubMedCrossRefGoogle Scholar
  45. 45.
    Cheng P, He Q, Wang L, Liu Y (2005) Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev 19:234–241PubMedCrossRefGoogle Scholar
  46. 46.
    Liu Y, Ye X, Jiang F, Liang C, Chen D, Peng J, Kinch LN, Grishin NV, Liu Q (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750–753PubMedCrossRefGoogle Scholar
  47. 47.
    Aramayo R, Metzenberg RL (1996) Meiotic transvection in fungi. Cell 86:103–113PubMedCrossRefGoogle Scholar
  48. 48.
    Shiu PK, Raju NB, Zickler D, Metzenberg RL (2001) Meiotic silencing by unpaired DNA. Cell 107:905–916PubMedCrossRefGoogle Scholar
  49. 49.
    Shiu PK, Metzenberg RL (2002) Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161:1483–1495PubMedGoogle Scholar
  50. 50.
    Springer ML (1993) Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. Bioessays 15:365–374PubMedCrossRefGoogle Scholar
  51. 51.
    Aramayo R, Peleg Y, Addison R, Metzenberg R (1996) Asm-1+, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144:991–1003PubMedGoogle Scholar
  52. 52.
    Cogoni C (2002) Unifying homology effects. Nat Genet 30:245–246PubMedCrossRefGoogle Scholar
  53. 53.
    Kasbekar DP (2002) Sex and the single gene: meiotic silencing by unpaired DNA. J Biosci 27:633–635PubMedCrossRefGoogle Scholar
  54. 54.
    Kelly WG, Aramayo R (2007) Meiotic silencing and the epigenetics of sex. Chromosome Res 15:633–651PubMedCrossRefGoogle Scholar
  55. 55.
    Pratt RJ, Lee DW, Aramayo R (2004) DNA methylation affects meiotic trans-sensing, not meiotic silencing, in Neurospora. Genetics 168:1925–1935PubMedCrossRefGoogle Scholar
  56. 56.
    Lee DW, Pratt RJ, McLaughlin M, Aramayo R (2003) An argonaute-like protein is required for meiotic silencing. Genetics 164:821–828PubMedGoogle Scholar
  57. 57.
    Shiu PK, Zickler D, Raju NB, Ruprich-Robert G, Metzenberg RL (2006) SAD-2 is required for meiotic silencing by unpaired DNA and perinuclear localization of SAD-1 RNA-directed RNA polymerase. Proc Natl Acad Sci USA 103:2243–2248PubMedCrossRefGoogle Scholar
  58. 58.
    Bardiya N, Alexander WG, Perdue TD, Barry EG, Metzenberg RL, Pukkila PJ, Shiu PK (2008) Characterization of interactions between and among components of the meiotic silencing by unpaired DNA machinery in Neurospora crassa using bimolecular fluorescence complementation. Genetics 178:593–596PubMedCrossRefGoogle Scholar
  59. 59.
    Alexander WG, Raju NB, Xiao H, Hammond TM, Perdue TD, Metzenberg RL, Pukkila PJ, Shiu PK (2008) DCL-1 colocalizes with other components of the MSUD machinery and is required for silencing. Fungal Genet Biol 45:719–727PubMedCrossRefGoogle Scholar
  60. 60.
    Nakayashiki H (2005) RNA silencing in fungi: Mechanisms and applications. FEBS Lett 579:5950–5957PubMedCrossRefGoogle Scholar
  61. 61.
    Lee DW, Seong KY, Pratt RJ, Baker K, Aramayo R (2004) Properties of unpaired DNA required for efficient silencing in Neurospora crassa. Genetics 167:131–150PubMedCrossRefGoogle Scholar
  62. 62.
    Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842PubMedCrossRefGoogle Scholar
  63. 63.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  64. 64.
    Chicas A, Forrest EC, Sepich S, Cogoni C, Macino G (2005) Small interfering RNAs that trigger posttranscriptional gene silencing are not required for the histone H3 Lys9 methylation necessary for transgenic tandem repeat stabilization in Neurospora crassa. Mol Cell Biol 25:3793–3801PubMedCrossRefGoogle Scholar
  65. 65.
    Nolan T, Braccini L, Azzalin G, De Toni A, Macino G, Cogoni C (2005) The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucleic Acids Res 33:1564–1573PubMedCrossRefGoogle Scholar
  66. 66.
    Matzke M, Matzke AJM (2003) RNAi extends its reach. Science 301:1060–1061PubMedCrossRefGoogle Scholar
  67. 67.
    Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA, Elgin SCR (2004) Heterochromatic silencing and HP1 localization in drosophila are dependent on the RNAi machinery. Science 303:669–672PubMedCrossRefGoogle Scholar
  68. 68.
    Chan SW-L, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE (2004) RNA silencing genes control de novo DNA methylation. Science 303:1336PubMedCrossRefGoogle Scholar
  69. 69.
    Chinnusamy V, Zhu JK (2009) RNA-directed DNA methylation and demethylation in plants. Sci Chin C Life Sci 52:331–343CrossRefGoogle Scholar
  70. 70.
    Freitag M, Lee DW, Kothe GO, Pratt RJ, Aramayo R, Selker EU (2004) DNA methylation is independent of RNA interference in Neurospora. Science 304:1939PubMedCrossRefGoogle Scholar
  71. 71.
    Cecere G, Cogoni C (2009) Quelling targets the rDNA locus and functions in rDNA copy number control. BMC Microbiol 9:44PubMedCrossRefGoogle Scholar
  72. 72.
    Choudhary S, Lee HC, Maiti M, He Q, Cheng P, Liu Q, Liu Y (2007) A double-stranded-RNA response program important for RNA interference efficiency. Mol Cell Biol 27:3995–4005PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang X, Nuss DL (2008) A host dicer is required for defective viral RNA production and recombinant virus vector RNA instability for a positive sense RNA virus. Proc Natl Acad Sci USA 105:16749–16754PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang X, Segers GC, Sun Q, Deng F, Nuss DL (2008) Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway. J Virol 82:2613–2619PubMedCrossRefGoogle Scholar
  75. 75.
    Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279PubMedCrossRefGoogle Scholar
  76. 76.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  77. 77.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedCrossRefGoogle Scholar
  78. 78.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864PubMedCrossRefGoogle Scholar
  79. 79.
    Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619PubMedCrossRefGoogle Scholar
  80. 80.
    Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129PubMedCrossRefGoogle Scholar
  81. 81.
    Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203PubMedCrossRefGoogle Scholar
  82. 82.
    Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193–1197PubMedCrossRefGoogle Scholar
  83. 83.
    Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC, Liu Y (2010) Diverse pathways generate MicroRNA-like RNAs and dicer-independent small interfering RNAs in fungi. Mol Cell 38:803–814PubMedCrossRefGoogle Scholar
  84. 84.
    Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207PubMedCrossRefGoogle Scholar
  85. 85.
    Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefGoogle Scholar
  86. 86.
    Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson N, Wolfe S, Giraldez AJ (2010) A Novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity. Science 328:1694–1698PubMedCrossRefGoogle Scholar
  87. 87.
    Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465:584–589PubMedCrossRefGoogle Scholar
  88. 88.
    Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437PubMedCrossRefGoogle Scholar
  89. 89.
    Li HW, Ding SW (2005) Antiviral silencing in animals. FEBS Lett 579:5965–5973PubMedCrossRefGoogle Scholar
  90. 90.
    Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454PubMedCrossRefGoogle Scholar
  91. 91.
    Li F, Ding SW (2006) Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60:503–531PubMedCrossRefGoogle Scholar
  92. 92.
    Aliyari R, Wu Q, Li HW, Wang XH, Li F, Green LD, Han CS, Li WX, Ding SW (2008) Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe 4:387–397PubMedCrossRefGoogle Scholar
  93. 93.
    Segers GC, Zhang X, Deng F, Sun Q, Nuss DL (2007) Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci USA 104:12902–12906PubMedCrossRefGoogle Scholar
  94. 94.
    Sun Q, Choi GH, Nuss DL (2009) A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination. Proc Natl Acad Sci USA 106:17927–17932PubMedCrossRefGoogle Scholar
  95. 95.
    Suzuki N, Maruyama K, Moriyama M, Nuss DL (2003) Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and vertical transmission. J Virol 77:11697–11707PubMedCrossRefGoogle Scholar
  96. 96.
    Segers GC, van Wezel R, Zhang X, Hong Y, Nuss DL (2006) Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system. Eukaryot Cell 5:896–904PubMedCrossRefGoogle Scholar
  97. 97.
    Suzuki N, Chen B, Nuss DL (1999) Mapping of a hypovirus p29 protease symptom determinant domain with sequence similarity to potyvirus HC-Pro protease. J Virol 73:9478–9484PubMedGoogle Scholar
  98. 98.
    Choi GH, Pawlyk DM, Nuss DL (1991) The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology 183:747–752PubMedCrossRefGoogle Scholar
  99. 99.
    Hammond TM, Keller NP (2005) RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerases. Genetics 169:607–617PubMedCrossRefGoogle Scholar
  100. 100.
    Barton LM, Prade RA (2008) Inducible RNA interference of brlAbeta in Aspergillus nidulans. Eukaryot Cell 7:2004–2007PubMedCrossRefGoogle Scholar
  101. 101.
    Hammond TM, Bok JW, Andrewski MD, Reyes-Dominguez Y, Scazzocchio C, Keller NP (2008) RNA silencing gene truncation in the filamentous fungus Aspergillus nidulans. Eukaryot Cell 7:339–349PubMedCrossRefGoogle Scholar
  102. 102.
    Nicolas FE, Torres-Martinez S, Ruiz-Vazquez RM (2003) Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO J 22:3983–3991PubMedCrossRefGoogle Scholar
  103. 103.
    de Haro JP, Calo S, Cervantes M, Nicolas FE, Torres-Martinez S, Ruiz-Vazquez RM (2009) A single dicer gene is required for efficient gene silencing associated with two classes of small antisense RNAs in Mucor circinelloides. Eukaryot Cell 8:1486–1497PubMedCrossRefGoogle Scholar
  104. 104.
    Nicolas FE, Moxon S, de Haro JP, Calo S, Grigoriev IV, Torres-Martinez S, Moulton V, Ruiz-Vazquez RM, Dalmay T (2010) Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Res. doi: 10.1093/nar/gkq301
  105. 105.
    Nicolas FE, de Haro JP, Torres-Martinez S, Ruiz-Vazquez RM (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44:504–516PubMedCrossRefGoogle Scholar
  106. 106.
    Nakayashiki H, Kadotani N, Mayama S (2006) Evolution and diversification of RNA silencing proteins in fungi. J Mol Evol 63:127–135PubMedCrossRefGoogle Scholar
  107. 107.
    Nakayashiki H, Nguyen QB (2008) RNA interference: roles in fungal biology. Curr Opin Microbiol 11:494–502PubMedCrossRefGoogle Scholar
  108. 108.
    Hamada W, Spanu PD (1998) Co-suppression of the hydrophobin gene HCf-1 is correlated with antisense RNA biosynthesis in Cladosporium fulvum. Mol Gen Genet 259:630–638PubMedCrossRefGoogle Scholar
  109. 109.
    Schuurs TA, Schaeffer EA, Wessels JG (1997) Homology-dependent silencing of the SC3 gene in Schizophyllum commune. Genetics 147:589–596PubMedGoogle Scholar
  110. 110.
    Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2003) RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 16:769–776PubMedCrossRefGoogle Scholar
  111. 111.
    Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H (2008) Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68:1348–1365PubMedCrossRefGoogle Scholar
  112. 112.
    Erental A, Harel A, Yarden O (2007) Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Mol Plant Microbe Interact 20:944–954PubMedCrossRefGoogle Scholar
  113. 113.
    Mouyna I, Henry C, Doering TL, Latge JP (2004) Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol Lett 237:317–324PubMedGoogle Scholar
  114. 114.
    Khalaj V, Eslami H, Azizi M, Rovira-Graells N, Bromley M (2007) Efficient downregulation of alb1 gene using an AMA1-based episomal expression of RNAi construct in Aspergillus fumigatus. FEMS Microbiol Lett 270:250–254PubMedCrossRefGoogle Scholar
  115. 115.
    Henry C, Mouyna I, Latge JP (2007) Testing the efficacy of RNA interference constructs in Aspergillus fumigatus. Curr Genet 51:277–284PubMedCrossRefGoogle Scholar
  116. 116.
    Bromley M, Gordon C, Rovira-Graells N, Oliver J (2006) The Aspergillus fumigatus cellobiohydrolase B (cbhB) promoter is tightly regulated and can be exploited for controlled protein expression and RNAi. FEMS Microbiol Lett 264:246–254PubMedCrossRefGoogle Scholar
  117. 117.
    Yamada O, Ikeda R, Ohkita Y, Hayashi R, Sakamoto K, Akita O (2007) Gene silencing by RNA interference in the koji mold Aspergillus oryzae. Biosci Biotechnol Biochem 71:138–144PubMedCrossRefGoogle Scholar
  118. 118.
    McDonald T, Brown D, Keller NP, Hammond TM (2005) RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe Interact 18:539–545PubMedCrossRefGoogle Scholar
  119. 119.
    Moriwaki A, Ueno M, Arase S, Kihara J (2007) RNA-mediated gene silencing in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 269:85–89PubMedCrossRefGoogle Scholar
  120. 120.
    Nakayashiki H, Hanada S, Nguyen BQ, Kadotani N, Tosa Y, Mayama S (2005) RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42:275–283PubMedCrossRefGoogle Scholar
  121. 121.
    Chague V, Maor R, Sharon A (2009) CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC Microbiol 9:173PubMedCrossRefGoogle Scholar
  122. 122.
    Namekawa SH, Iwabata K, Sugawara H, Hamada FN, Koshiyama A, Chiku H, Kamada T, Sakaguchi K (2005) Knockdown of LIM15/DMC1 in the mushroom Coprinus cinereus by double-stranded RNA-mediated gene silencing. Microbiology 151:3669–3678PubMedCrossRefGoogle Scholar
  123. 123.
    Ha YS, Covert SF, Momany M (2006) FsFKS1, the 1,3-beta-glucan synthase from the caspofungin-resistant fungus Fusarium solani. Eukaryot Cell 5:1036–1042PubMedCrossRefGoogle Scholar
  124. 124.
    Tinoco ML, Dias BB, Dall’astta RC, Pamphile JA, Aragao FJ (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27PubMedCrossRefGoogle Scholar
  125. 125.
    Caribe dos Santos AC, Sena JA, Santos SC, Dias CV, Pirovani CP, Pungartnik C, Valle RR, Cascardo JC, Vincentz M (2009) dsRNA-induced gene silencing in Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao. Fungal Genet Biol 46:825–836PubMedCrossRefGoogle Scholar
  126. 126.
    Gong X, Fu Y, Jiang D, Li G, Yi X, Peng Y (2007) l-arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genet Biol 44:1368–1379PubMedCrossRefGoogle Scholar
  127. 127.
    Solomon PS, Jorgens CI, Oliver RP (2006) Delta-aminolaevulinic acid synthesis is required for virulence of the wheat pathogen Stagonospora nodorum. Microbiology 152:1533–1538PubMedCrossRefGoogle Scholar
  128. 128.
    Tanguay P, Bozza S, Breuil C (2006) Assessing RNAi frequency and efficiency in Ophiostoma floccosum and O. piceae. Fungal Genet Biol 43:804–812PubMedCrossRefGoogle Scholar
  129. 129.
    Patel RM, van Kan JA, Bailey AM, Foster GD (2008) RNA-mediated gene silencing of superoxide dismutase (bcsod1) in Botrytis cinerea. Phytopathology 98:1334–1339PubMedCrossRefGoogle Scholar
  130. 130.
    Janus D, Hoff B, Kuck U (2009) Evidence for Dicer-dependent RNA interference in the industrial penicillin producer Penicillium chrysogenum. Microbiology 155:3946–3956PubMedCrossRefGoogle Scholar
  131. 131.
    Ullan RV, Godio RP, Teijeira F, Vaca I, Garcia-Estrada C, Feltrer R, Kosalkova K, Martin JF (2008) RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression. J Microbiol Methods 75:209–218PubMedCrossRefGoogle Scholar
  132. 132.
    Fitzgerald A, Van Kan JA, Plummer KM (2004) Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet Biol 41:963–971PubMedCrossRefGoogle Scholar
  133. 133.
    Costa AM, Mills PR, Bailey AM, Foster GD, Challen MP (2008) Oligonucleotide sequences forming short self-complimentary hairpins can expedite the down-regulation of Coprinopsis cinerea genes. J Microbiol Methods 75:205–208PubMedCrossRefGoogle Scholar
  134. 134.
    Liu H, Cottrell TR, Pierini LM, Goldman WE, Doering TL (2002) RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160:463–470PubMedGoogle Scholar
  135. 135.
    de Jong JF, Deelstra HJ, Wosten HA, Lugones LG (2006) RNA-mediated gene silencing in monokaryons and dikaryons of Schizophyllum commune. Appl Environ Microbiol 72:1267–1269PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of Physiology, ND13.214AThe University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations