Cellular and Molecular Life Sciences

, Volume 67, Issue 22, pp 3883–3892 | Cite as

Interleukin-33 stimulates formation of functional osteoclasts from human CD14+ monocytes

  • Se Hwan Mun
  • Na Young Ko
  • Hyuk Soon Kim
  • Jie Wan Kim
  • Do Kyun Kim
  • A-Ram Kim
  • Seung Hyun Lee
  • Yong-Gil Kim
  • Chang Keun Lee
  • Seoung Hoon Lee
  • Bo Kyung Kim
  • Michael A. Beaven
  • Young Mi Kim
  • Wahn Soo Choi
Research Article

Abstract

Interleukin (IL)-33 is a recently described pro-inflammatory cytokine. Here we demonstrate IL-33 as a regulator of functional osteoclasts (OCs) from human CD14+ monocytes. IL-33 stimulates formation of tartrate-resistant acid phosphatase (TRAP)+ multinuclear OCs from monocytes. This action was suppressed by anti-ST2 antibody, suggesting that IL-33 acts through its receptor ST2, but not by the receptor activator of NF-κB ligand (RANKL) decoy, osteoprotegerin, or anti-RANKL antibody. IL-33 stimulated activating phosphorylations of signaling molecules in monocytes that are critical for OC development. These included Syk, phospholipase Cγ2, Gab2, MAP kinases, TAK-1, and NF-κB. IL-33 also enhanced expression of OC differentiation factors including TNF-α receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells cytoplasmic 1, c-Fos, c-Src, cathepsin K, and calcitonin receptor. IL-33 eventually induced bone resorption. This study suggests that the osteoclastogenic property of IL-33 is mediated through TRAF6 as well as the immunoreceptor tyrosine-based activation motif-dependent Syk/PLCγ pathway in human CD14+ monocytes.

Keywords

Interleukin-33 Osteoclasts Differentiation Human CD14+ monocytes Bone resorption 

References

  1. 1.
    McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442CrossRefPubMedGoogle Scholar
  2. 2.
    Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5:667–676CrossRefPubMedGoogle Scholar
  3. 3.
    Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87:7260–7264CrossRefPubMedGoogle Scholar
  4. 4.
    Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 106:167–170CrossRefPubMedGoogle Scholar
  5. 5.
    Shalhoub V, Elliott G, Chiu L, Manoukian R, Kelley M, Hawkins N, Davy E, Shimamoto G, Beck J, Kaufman SA (2000) Characterization of osteoclast precursors in human blood. Br J Haematol 111:501–512CrossRefPubMedGoogle Scholar
  6. 6.
    Lagasse E, Weissman IL (1997) Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89:1021–1031CrossRefPubMedGoogle Scholar
  7. 7.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323CrossRefPubMedGoogle Scholar
  8. 8.
    Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24:33–63CrossRefPubMedGoogle Scholar
  9. 9.
    Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nature 7:292–304Google Scholar
  10. 10.
    Gingery A, Bradley E, Shaw A, Oursler MJ (2003) Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival. J Cell Biochem 89:165–179CrossRefPubMedGoogle Scholar
  11. 11.
    Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763CrossRefPubMedGoogle Scholar
  12. 12.
    Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP (2007) IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA 104:282–287CrossRefPubMedGoogle Scholar
  13. 13.
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490CrossRefPubMedGoogle Scholar
  14. 14.
    Kakkar R, Lee RT (2008) The IL-33/ST-2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov 7:827–840CrossRefPubMedGoogle Scholar
  15. 15.
    Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA (2007) IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol 179:2551–2555PubMedGoogle Scholar
  16. 16.
    Gadina M, Jefferies CA (2007) IL-33: a sheep in wolf’s clothing? Sci STKE 390:pe31CrossRefGoogle Scholar
  17. 17.
    Iikura M, Suto H, Kajiwara N, Oboki K, Ohno T, Okayama Y, Saito H, Galli SJ, Nakae S (2007) IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab Investig 87:971–978CrossRefPubMedGoogle Scholar
  18. 18.
    Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAK1 can activate the NIK-IkB as well as the MAP kinase cascade in the IL-1 signaling pathway. Nature 398:252–256CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X (2002) Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB 2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 22:7158–7167CrossRefPubMedGoogle Scholar
  20. 20.
    Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005) TAK1, but not TAB 1 or TAB 2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19:2668–2681CrossRefPubMedGoogle Scholar
  21. 21.
    Xu D, Jiang HR, Kewin P, Li Y, Mu R, Fraser AR, Pitman N, Kurowska-Stolarska M, McKenzie AN, McInnes IB, Liew FY (2008) IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc Natl Acad Sci USA 105:10913–10918CrossRefPubMedGoogle Scholar
  22. 22.
    Palmer G, Talabot-Ayer D, Lamacchia C, Toy D, Seemayer CA, Viatte S, Finckh A, Smith DE, Gabay C (2009) Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum 60:738–749CrossRefPubMedGoogle Scholar
  23. 23.
    Lee CK, Lee EY, Chung SM, Mun SH, Yoo B, Moon HB (2004) Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor kappaB, osteoprotegerin, and receptor activator of nuclear factor kappaB ligand. Arthritis Rheum 50:3831–3843CrossRefPubMedGoogle Scholar
  24. 24.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319CrossRefPubMedGoogle Scholar
  25. 25.
    Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292:490–495CrossRefPubMedGoogle Scholar
  26. 26.
    Crotti TN, Smith MD, Weedon H, Ahern MJ, Findlay DM, Kraan M, Tak PP, Haynes DR (2002) Receptor activator NF-B ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis. Ann Rheum Dis 61:1047–1054CrossRefPubMedGoogle Scholar
  27. 27.
    Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–286CrossRefPubMedGoogle Scholar
  28. 28.
    Edwards JR, Sun SG, Locklin R, Shipman CM, Adamopoulos IE, Athanasou NA, Sabokbar A (2006) LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Arthritis Rheum 54:1451–1462CrossRefPubMedGoogle Scholar
  29. 29.
    Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ (2003) Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 33:28–37CrossRefPubMedGoogle Scholar
  30. 30.
    Rifas L, Weitzmann MN (2009) A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-Independent manner. Arthritis Rheum 60:3324–3335CrossRefPubMedGoogle Scholar
  31. 31.
    Xu D, Chan WL, Leung BP, Huang F, Wheeler R, Piedrafita D, Robinson JH, Liew FY (1998) Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med 187:787–794CrossRefPubMedGoogle Scholar
  32. 32.
    Kim JH, Jin HM, Kim K, Song I, Youn BU, Matsuo K, Kim N (2009) The mechanism of osteoclast differentiation induced by IL-1. J Immunol 183:1862–1870CrossRefPubMedGoogle Scholar
  33. 33.
    Mócsai A, Humphrey MB, Van Ziffle JA, Hu Y, Burghardt A, Spusta SC, Majumdar S, Lanier LL, Lowell CA, Nakamura MC (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA 101:6158–6163CrossRefPubMedGoogle Scholar
  34. 34.
    Mao D, Epple H, Uthgenannt B, Novack DV, Faccio R (2006) PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Investig 116:2869–2879CrossRefPubMedGoogle Scholar
  35. 35.
    Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H, Takai T, Kodama T, Morio T, Geha RS, Kitamura D, Kurosaki T, Ellmeier W, Takayanagi H (2008) Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132:794–806CrossRefPubMedGoogle Scholar
  36. 36.
    Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901CrossRefPubMedGoogle Scholar
  37. 37.
    Zou W, Kitaura H, Reeve J, Long F, Tybulewicz VL, Shattil SJ, Ginsberg MH, Ross FP, Teitelbaum SL (2007) Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol 176:877–888CrossRefPubMedGoogle Scholar
  38. 38.
    Zhao Q, Jia Y, Xiao Y (2009) Cathepsin K: a therapeutic target for bone diseases. Biochem Biophys Res Commun 380:721–723CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Se Hwan Mun
    • 1
  • Na Young Ko
    • 1
  • Hyuk Soon Kim
    • 1
  • Jie Wan Kim
    • 1
  • Do Kyun Kim
    • 1
  • A-Ram Kim
    • 1
  • Seung Hyun Lee
    • 1
  • Yong-Gil Kim
    • 2
  • Chang Keun Lee
    • 2
  • Seoung Hoon Lee
    • 3
  • Bo Kyung Kim
    • 1
  • Michael A. Beaven
    • 4
  • Young Mi Kim
    • 5
  • Wahn Soo Choi
    • 1
    • 6
  1. 1.College of Medicine, Institute of Biomedical Sciences and TechnologyKonkuk UniversityChungjuKorea
  2. 2.Division of Rheumatology, College of MedicineUniversity of UlsanSeoulKorea
  3. 3.Department of Oral Microbiology and ImmunologyWonkwang University School of DentistryIksanKorea
  4. 4.Laboratory of Molecular Immunology, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA
  5. 5.College of PharmacyDuksung Women’s UniversitySeoulKorea
  6. 6.Department of Immunology, College of MedicineKonkuk UniversityChungjuKorea

Personalised recommendations