Advertisement

Cellular and Molecular Life Sciences

, Volume 67, Issue 20, pp 3511–3522 | Cite as

Myoinhibiting peptides are the ancestral ligands of the promiscuous Drosophila sex peptide receptor

  • Jeroen PoelsEmail author
  • Tom Van Loy
  • Hans Peter Vandersmissen
  • Boris Van Hiel
  • Sofie Van Soest
  • Ronald J. Nachman
  • Jozef Vanden Broeck
Research Article

Abstract

Male insects change behaviors of female partners by co-transferring accessory gland proteins (Acps) like sex peptide (SP), with their sperm. The Drosophila sex peptide receptor (SPR) is a G protein-coupled receptor expressed in the female’s nervous system and genital tract. While most Acps show a fast rate of evolution, SPRs are highly conserved in insects. We report activation of SPRs by evolutionary conserved myoinhibiting peptides (MIPs). Structural determinants in SP and MIPs responsible for this dual receptor activation are characterized. Drosophila SPR is also expressed in embryonic and larval stages and in the adult male nervous system, whereas SP expression is restricted to the male reproductive system. MIP transcripts occur in male and female central nervous system, possibly acting as endogenous SPR ligands. Evolutionary consequences of the promiscuous nature of SPRs are discussed. MIPs likely function as ancestral ligands of SPRs and could place evolutionary constraints on the MIP/SPR class.

Keywords

Allatostatin GPCR Insect Myoinhibiting peptide Post-mating response Sex peptide receptor 

Abbreviations

Acps

Accessory gland proteins

CNS

Central nervous system

GPCR

G protein-coupled receptor

MIP

Myoinhibiting peptide

SP

Sex peptide

SPR

Sex peptide receptor

Notes

Acknowledgments

The authors thank L. Vanden Bosch and J. Van Duppen for technical support, B. Breugelmans and V. van Hoef for supplying Bombyx and Tribolium cDNA, and M. Parmentier (University of Brussels, Belgium) and M. Detheux (Euroscreen S.A., Belgium) for providing WTA11 cells. The authors gratefully acknowledge the Interuniversity Attraction Poles program (Belgian Science Policy Grant P6/14), the Research Foundation of Flanders (FWO-Flanders), the K.U. Leuven Research Foundation (GOA 2005/06) and the USDA/DOD DWFP Initiative (#0500-32000-001-01R) (R.J.N). B.V.H. was supported by the IWT and J.P. obtained a postdoctoral research fellowship from FWO.

References

  1. 1.
    Schoofs L, Holman GM, Hayes TK, Nachman RJ, De Loof A (1991) Isolation, identification and synthesis of locustamyoinhibiting peptide (LOM-MIP), a novel biologically active neuropeptide from Locusta migratoria. Regul Pept 36:111–119CrossRefPubMedGoogle Scholar
  2. 2.
    Blackburn MB, Wagner RM, Kochansky JP, Harrison DJ, Thomaslaemont P, Raina AK (1995) The identification of 2 myoinhibitory peptides, with sequence similarities to the galanins, isolated from the ventral nerve cord of Manduca sexta. Regul Pept 57:213–219CrossRefPubMedGoogle Scholar
  3. 3.
    Lorenz MW, Kellner R, Hoffmann KH (1995) A family of neuropeptides that inhibit juvenile hormone biosynthesis in the cricket, Gryllus bimaculatus. J Biol Chem 270:21103–21108CrossRefPubMedGoogle Scholar
  4. 4.
    Hua YJ, Tanaka Y, Nakamura K, Sakakibara M, Nagata S, Kataoka H (1999) Identification of a prothoracicostatic peptide in the larval brain of the silkworm, Bombyx mori. J Biol Chem 274:31169–31173CrossRefPubMedGoogle Scholar
  5. 5.
    Vanden Broeck J (2001) Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22:241–254CrossRefGoogle Scholar
  6. 6.
    Williamson M, Lenz C, Winther ME, Nassel DR, Grimmelikhuijzen CJP (2001) Molecular cloning, genomic organization, and expression of a B-type (cricket-type) allatostatin preprohormone from Drosophila melanogaster. Biochem Biophys Res Commun 281:544–550CrossRefPubMedGoogle Scholar
  7. 7.
    Predel R, Wegener C, Russell WK, Tichy SE, Russell DH, Nachman RJ (2004) Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. J Comp Neurol 474:379–392CrossRefPubMedGoogle Scholar
  8. 8.
    Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L (2005) Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J Mass Spectrom 40:250–260CrossRefPubMedGoogle Scholar
  9. 9.
    Yapici N, Kim YJ, Ribeiro C, Dickson BJ (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451:33–37CrossRefPubMedGoogle Scholar
  10. 10.
    Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54:291–298CrossRefPubMedGoogle Scholar
  11. 11.
    Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L (1995) Cost of mating in Drosophila melanogaster females is mediated by male accessory-gland products. Nature 373:241–244CrossRefPubMedGoogle Scholar
  12. 12.
    Peng J, Zipperlen P, Kubli E (2005) Drosophila sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr Biol 15:1690–1694CrossRefPubMedGoogle Scholar
  13. 13.
    Wigby S, Chapman T (2005) Sex peptide causes mating costs in female Drosophila melanogaster. Curr Biol 15:316–321CrossRefPubMedGoogle Scholar
  14. 14.
    Carvalho GB, Kapahi P, Anderson DJ, Benzer S (2006) Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr Biol 16:692–696CrossRefPubMedGoogle Scholar
  15. 15.
    Domanitskaya EV, Liu HF, Chen SJ, Kubli E (2007) The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. FEBS J 274:5659–5668CrossRefPubMedGoogle Scholar
  16. 16.
    Hasemeyer M, Yapici N, Heberlein U, Dickson BJ (2009) Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61:511–518CrossRefPubMedGoogle Scholar
  17. 17.
    Yang CH, Rumpf S, Xiang Y, Gordon MD, Song W, Jan LY, Jan YN (2009) Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61:519–526CrossRefPubMedGoogle Scholar
  18. 18.
    Kubli E (2003) Sex-peptides: seminal peptides of the Drosophila male. Cell Mol Life Sci 60:1689–1704CrossRefPubMedGoogle Scholar
  19. 19.
    Wigby S, Sirot LK, Linklater JR, Buehner N, Calboli FC, Bretman A, Wolfner MF, Chapman T (2009) Seminal fluid protein allocation and male reproductive success. Curr Biol 19:751–757CrossRefPubMedGoogle Scholar
  20. 20.
    Schmidt T, Choffat Y, Schneider M, Hunziker P, Fuyama Y, Kubli E (1993) Drosophila suzukii contains a peptide homologous to the Drosophila melanogaster sex-peptide and functional in both species. Insect Biochem Mol Biol 23:571–579CrossRefPubMedGoogle Scholar
  21. 21.
    Cirera S, Aguade M (1998) Molecular evolution of a duplication: the sex-peptide (Acp70A) gene region of Drosophila subobscura and Drosophila madeirensis. Mol Biol Evol 15:988–996PubMedGoogle Scholar
  22. 22.
    Nagalakshmi VK, Applebaum SW, Azrielli A, Rafaeli A (2007) Female sex pheromone suppression and the fate of sex-peptide-like peptides in mated moths of Helicoverpa armigera. Arch Insect Biochem Physiol 64:142–155CrossRefPubMedGoogle Scholar
  23. 23.
    Knight PJK, Pfeifer TA, Grigliatti TA (2003) A functional assay for G-protein-coupled receptors using stably transformed insect tissue culture cell lines. Anal Biochem 320:88–103CrossRefPubMedGoogle Scholar
  24. 24.
    Le Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E, Detheux M (2002) Adaptation of aequorin functional assay to high throughput screening. J Biomol Screen 7:57–65CrossRefPubMedGoogle Scholar
  25. 25.
    Chapman T, Choffat Y, Lucas WE, Kubli E, Partridge L (1996) Lack of response to sex-peptide results in increased cost of mating in dunce Drosophila melanogaster females. J Insect Physiol 42:1007–1015CrossRefGoogle Scholar
  26. 26.
    Rovati GE, Capra V, Neubig RR (2007) The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol 71:959–964CrossRefPubMedGoogle Scholar
  27. 27.
    Schmidt T, Choffat Y, Klauser S, Kubli E (1993) The Drosophila melanogaster sex peptide—a molecular analysis of structure-function relationships. J Insect Physiol 39:361–368CrossRefGoogle Scholar
  28. 28.
    Saudan P, Hauck K, Soller M, Choffat Y, Ottiger M, Sporri M, Ding ZB, Hess D, Gehrig PM, Klauser S, Hunziker P, Kubli E (2002) Ductus ejaculatorius peptide 99B (DUP99B), a novel Drosophila melanogaster sex-peptide pheromone. Eur J Biochem 269:989–997CrossRefPubMedGoogle Scholar
  29. 29.
    Ding ZB, Haussmann I, Ottiger M, Kubli E (2003) Sex-peptides bind to two molecularly different targets in Drosophila melanogaster females. J Neurobiol 55:372–384CrossRefPubMedGoogle Scholar
  30. 30.
    Peng J, Chen S, Busser S, Liu HF, Honegger T, Kubli E (2005) Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr Biol 15:207–213CrossRefPubMedGoogle Scholar
  31. 31.
    Johnson EC, Bohn LM, Barak LS, Birse RT, Nässel DR, Caron MG, Taghert PH (2003) Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 278:52172–52178CrossRefPubMedGoogle Scholar
  32. 32.
    Poels J, Birse RT, Nachman RJ, Fichna J, Janecka A, Vanden Broeck J, Nässel DR (2009) Characterization and distribution of NKD, a receptor for Drosophila tachykinin-related peptide 6. Peptides 30:545–556CrossRefPubMedGoogle Scholar
  33. 33.
    Ja WW, Carvalho GB, Madrigal M, Roberts RW, Benzer S (2009) The Drosophila G protein-coupled receptor, Methuselah, exhibits a promiscuous response to peptides. Protein Sci 18:2203–2208CrossRefPubMedGoogle Scholar
  34. 34.
    Birse RT, Johnson EC, Taghert PH, Nässel DR (2006) Widely distributed Drosophila G-protein-coupled receptor (CG7887) is activated by endogenous tachykinin-related peptides. J Neurobiol 66:33–46CrossRefPubMedGoogle Scholar
  35. 35.
    Schoofs L, Veelaert D, Vanden Broeck J, De Loof A (1996) Immunocytochemical distribution of locustamyoinhibiting peptide (Lom-MIP) in the nervous system of Locusta migratoria. Regul Pept 63:171–179PubMedGoogle Scholar
  36. 36.
    Kim YJ, Zitnan D, Cho KH, Schooley DA, Mizoguchi A, Adams ME (2006) Central peptidergic ensembles associated with organization of an innate behavior. Proc Natl Acad Sci USA 103:14211–14216CrossRefPubMedGoogle Scholar
  37. 37.
    Kim YJ, Zitnan D, Galizia CG, Cho KH, Adams ME (2006) A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr Biol 16:1395–1407CrossRefPubMedGoogle Scholar
  38. 38.
    Aigaki T, Fleischmann I, Chen PS, Kubli E (1991) Ectopic expression of sex peptide alters reproductive behavior of female Drosophila melanogaster. Neuron 7:557–563CrossRefPubMedGoogle Scholar
  39. 39.
    Liu HF, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci USA 100:9929–9933CrossRefPubMedGoogle Scholar
  40. 40.
    Swanson WJ (2003) Sex peptide and the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci USA 100:9643–9644CrossRefPubMedGoogle Scholar
  41. 41.
    Yamanaka N, Hua YJ, Roller L, Spalovska-Valachova I, Mizoguchi A, Kataoka H, Tanaka Y (2010) Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc Natl Acad Sci USA 107:2060–2065CrossRefPubMedGoogle Scholar
  42. 42.
    Harshman LG, Loeb AM, Johnson BA (1999) Ecdysteroid titers in mated and unmated Drosophila melanogaster females. J Insect Physiol 45:571–577CrossRefPubMedGoogle Scholar
  43. 43.
    Aguade M (1999) Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila. Genetics 152:543–551PubMedGoogle Scholar
  44. 44.
    Begun DJ, Whitley P, Todd BL, Waldrip-Dail HM, Clark AG (2000) Molecular population genetics of male accessory gland proteins in Drosophila. Genetics 156:1879–1888PubMedGoogle Scholar
  45. 45.
    Swanson WJ, Clark AG, Waldrip-Dail HM, Wolfner MF, Aquadro CF (2001) Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc Natl Acad Sci USA 98:7375–7379CrossRefPubMedGoogle Scholar
  46. 46.
    Andres JA, Maroja LS, Bogdanowicz SM, Swanson WJ, Harrison RG (2006) Molecular evolution of seminal proteins in field crickets. Mol Biol Evol 23:1574–1584CrossRefPubMedGoogle Scholar
  47. 47.
    Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ram KR, Sirot LK, Levesque L, Artieri CG, Wolfner MF, Civetta A, Singh RS (2007) Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177:1321–1335CrossRefPubMedGoogle Scholar
  48. 48.
    Rice WR (1996) Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381:232–234CrossRefPubMedGoogle Scholar
  49. 49.
    Rice WR, Stewart AD, Morrow EH, Linder JE, Orteiza N, Byrne PG (2006) Assessing sexual conflict in the Drosophila melanogaster laboratory model system. Philos Trans R Soc Lond B Biol Sci 361:287–299CrossRefPubMedGoogle Scholar
  50. 50.
    Singh RS, Kulathinal RJ (2005) Male sex drive and the masculinization of the genome. Bioessays 27:518–525CrossRefPubMedGoogle Scholar
  51. 51.
    Barnes AI, Wigby S, Boone JM, Partridge L, Chapman T (2008) Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc Biol Sci 275:1675–1683CrossRefPubMedGoogle Scholar
  52. 52.
    Fricke C, Bretman A, Chapman T (2010) Female nutritional status determines the magnitude and sign of responses to a male ejaculate signal in Drosophila melanogaster. J Evol Biol 23:157–165CrossRefPubMedGoogle Scholar
  53. 53.
    Linder JE, Rice WR (2005) Natural selection and genetic variation for female resistance to harm from males. J Evol Biol 18:568–575CrossRefPubMedGoogle Scholar
  54. 54.
    Chapman T (2006) Evolutionary conflicts of interest between males and females. Curr Biol 16:R744–R754CrossRefPubMedGoogle Scholar
  55. 55.
    Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F (2007) A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci USA 104:16215–16220CrossRefPubMedGoogle Scholar
  56. 56.
    Kubli E (2008) Sexual behaviour: a receptor for sex control in Drosophila females. Curr Biol 18:R210–R212CrossRefPubMedGoogle Scholar
  57. 57.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Jeroen Poels
    • 1
    Email author
  • Tom Van Loy
    • 1
  • Hans Peter Vandersmissen
    • 1
  • Boris Van Hiel
    • 1
  • Sofie Van Soest
    • 1
  • Ronald J. Nachman
    • 2
  • Jozef Vanden Broeck
    • 1
  1. 1.Animal Physiology and NeurobiologyKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Areawide Pest Management ResearchSouthern Plains Agricultural Research CenterCollege StationUSA

Personalised recommendations