Cellular and Molecular Life Sciences

, Volume 67, Issue 18, pp 3151–3161 | Cite as

Ultrastructural and quantitative analysis of the lipid droplet clustering induced by hepatitis C virus core protein

  • Marion Depla
  • Rustem Uzbekov
  • Christophe Hourioux
  • Emmanuelle Blanchard
  • Amélie Le Gouge
  • Ludovic Gillet
  • Philippe RoingeardEmail author
Research Article


Hepatitis C virus (HCV) release is linked to the formation of lipid droplet (LD) clusters in the perinuclear area of infected cells, induced by the core protein. We used electron microscopy (EM) to monitor and compare the number and size of LD in cells producing the mature and immature forms of the HCV core protein, and 3D EM to reconstruct whole cells producing the mature core protein. Only the mature protein coated the LD and induced their clustering and emergence from endoplasmic reticulum membranes enriched in this protein. We found no particular association between LD clusters and the centrosome in reconstructed cells. The LD clustering induced by the mature core protein was associated with an increase in LD synthesis potentially due, at least in part, to the ability of this protein to coat the LD. These observations provide useful information for further studies of the mechanisms involved in HCV-induced steatosis.


HCV Lipid droplet Steatosis Electron microscopy 3D reconstruction 



Hepatitis C virus


Endoplasmic reticulum


Signal peptide peptidase


Semliki forest virus


Electron microscopy







This work was supported by a grant INSERM-DHOS « Virosteatose ». M.D. was supported by a fellowship from the INSERM and Région Centre. We thank Dr Mario Mondelli (Istituto di Clinica delle Malattie Infettive, Pavia, Italy) for providing us with the monoclonal B12F8 anti-HCV core reagent. We thank Sylvie Trassard and Fabienne Arcanger for technical assistance. We thank Bruno Giraudeau, Eric Piver and Pierre Besson for helpful discussions and feedback on this work. Our data were obtained with the assistance of the RIO Electron Microscopy Facility of François Rabelais University.

Supplementary material

Supplementary material 1 (MPEG 6214 kb)


  1. 1.
    Alter MJ, Mast EE, Moyer LA, Margolis HS (1998) Hepatitis C. Infect Dis Clin North Am 12:13–26CrossRefPubMedGoogle Scholar
  2. 2.
    Asselah T, Rubbia-Brandt L, Marcellin P, Negro F (2006) Steatosis in chronic hepatitis C: why does it really matter? Gut 55:123–130CrossRefPubMedGoogle Scholar
  3. 3.
    Adinolfi LE, Gambardella M, Andreana A, Tripodi MF, Utili R, Ruggiero G (2001) Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology 33:1358–1364CrossRefPubMedGoogle Scholar
  4. 4.
    Rubbia-Brandt L, Fabris P, Paganin S, Leandro G, Male PJ, Giostra E, Carlotto A, Bozzola L, Smedile A, Negro F (2004) Steatosis affects chronic hepatitis C progression in a genotype-specific way. Gut 53:406–412CrossRefPubMedGoogle Scholar
  5. 5.
    Goodman ZD, Ishak KG (1995) Histopathology of hepatitis C virus infection. Semin Liver Dis 15:70–81CrossRefPubMedGoogle Scholar
  6. 6.
    Monto A, Alonzo J, Watson JJ, Grunfeld C, Wright TL (2002) Steatosis in chronic hepatitis C: relative contributions of obesity, diabetes mellitus, and alcohol. Hepatology 36:729–736CrossRefPubMedGoogle Scholar
  7. 7.
    Castera L, Hezode C, Roudot-Thoraval F, Lonjon I, Zafrani ES, Pawlotsky JM, Dhumeaux D (2004) Effect of antiviral treatment on evolution of liver steatosis in patients with chronic hepatitis C: indirect evidence of a role of hepatitis C virus genotype 3 in steatosis. Gut 53:420–424CrossRefPubMedGoogle Scholar
  8. 8.
    Kumar D, Farrell GC, Fung C, George J (2002) Hepatitis C virus genotype 3 is cytopathic to hepatocytes: reversal of hepatic steatosis after sustained therapeutic response. Hepatology 36:1266–1272CrossRefPubMedGoogle Scholar
  9. 9.
    Poynard T, Ratziu V, McHutchison J, Manns M, Goodman Z, Zeuzem S, Younossi Z, Albrecht J (2003) Effect of treatment with peginterferon or interferon alfa-2b and ribavirin on steatosis in patients infected with hepatitis C. Hepatology 38:75–85CrossRefPubMedGoogle Scholar
  10. 10.
    Moradpour D, Penin F, Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5:453–463CrossRefPubMedGoogle Scholar
  11. 11.
    Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y, Miyamura T, Koike K (1997) Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78:1527–1531PubMedGoogle Scholar
  12. 12.
    Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4:1065–1067CrossRefPubMedGoogle Scholar
  13. 13.
    Dharancy S, Malapel M, Perlemuter G, Roskams T, Cheng Y, Dubuquoy L, Podevin P, Conti F, Canva V, Philippe D, Gambiez L, Mathurin P, Paris JC, Schoonjans K, Calmus Y, Pol S, Auwerx J, Desreumaux P (2005) Impaired expression of the peroxisome proliferator-activated receptor alpha during hepatitis C virus infection. Gastroenterology 128:334–342CrossRefPubMedGoogle Scholar
  14. 14.
    Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T (2008) PPARalpha activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest 118:683–694PubMedGoogle Scholar
  15. 15.
    Waris G, Felmlee DJ, Negro F, Siddiqui A (2007) Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 81:8122–8130CrossRefPubMedGoogle Scholar
  16. 16.
    Kim KH, Hong SP, Kim K, Park MJ, Kim KJ, Cheong J (2007) HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARgamma. Biochem Biophys Res Commun 355:883–888CrossRefPubMedGoogle Scholar
  17. 17.
    Yamaguchi A, Tazuma S, Nishioka T, Ohishi W, Hyogo H, Nomura S, Chayama K (2005) Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver. Dig Dis Sci 50:1361–1371CrossRefPubMedGoogle Scholar
  18. 18.
    Perlemuter G, Sabile A, Letterton P, Vona G, Topilco A, Chretien Y, Koike K, Pessayre D, Chapman J, Barba G, Brechot C. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J 16: 185-194Google Scholar
  19. 19.
    Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA (2002) Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366–375CrossRefPubMedGoogle Scholar
  20. 20.
    Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J, Weinman SA (2005) Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 280:37481–37488CrossRefPubMedGoogle Scholar
  21. 21.
    Machida K, Cheng KT, Lai CK, Jeng KS, Sung VM, Lai MM (2006) Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80:7199–7207CrossRefPubMedGoogle Scholar
  22. 22.
    Moradpour D, Englert C, Wakita T, Wands JR (1996) Characterization of cell lines allowing tightly regulated expression of hepatitis C virus core protein. Virology 222:51–63CrossRefPubMedGoogle Scholar
  23. 23.
    Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff Z, Chapman MJ, Miyamura T, Brechot C (1997) Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci USA 94:1200–1205CrossRefPubMedGoogle Scholar
  24. 24.
    Hope RG, McLauchlan J (2000) Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J Gen Virol 81:1913–1925PubMedGoogle Scholar
  25. 25.
    Shi ST, Polyak SJ, Tu H, Taylor DR, Gretch DR, Lai MM (2002) Hepatitis C virus NS5a colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology 292:198–210CrossRefPubMedGoogle Scholar
  26. 26.
    Roingeard P, Hourioux C (2008) Hepatitis C virus core protein, lipid droplets and steatosis. J Viral Hepat 15:157–164CrossRefPubMedGoogle Scholar
  27. 27.
    Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097CrossRefPubMedGoogle Scholar
  28. 28.
    Boulant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, McLauchlan J (2008) Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule and dynein-dependent manner. Traffic 9:1268–1282CrossRefPubMedGoogle Scholar
  29. 29.
    McLauchlan J, Lemberg MK, Hope G, Martoglio B (2002) Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21:3980–3988CrossRefPubMedGoogle Scholar
  30. 30.
    Hourioux C, Patient R, Morin A, Blanchard E, Moreau A, Trassard S, Giraudeau B, Roingeard P (2007) The genotype 3-specific hepatitis C virus core protein residue phenylalanine 164 increases steatosis in an in vitro cellular model. Gut 56:1302–1308CrossRefPubMedGoogle Scholar
  31. 31.
    Blanchard E, Brand D, Trassard S, Goudeau A, Roingeard P (2002) Hepatitis C virus-like particle morphogenesis. J Virol 76:4073–4079CrossRefPubMedGoogle Scholar
  32. 32.
    Blanchard E, Hourioux C, Brand D, Ait-Goughoulte M, Moreau A, Trassard S, Sizaret PY, Dubois F, Roingeard P (2003) Hepatitis C virus-like particle budding: role of the core protein and importance of its Asp111. J Virol 77:10131–10138CrossRefPubMedGoogle Scholar
  33. 33.
    Ait-Goughoulte M, Hourioux C, Patient R, Trassard S, Brand D, Roingeard P (2006) Core protein cleavage by signal peptide peptidase is required for hepatitis C virus-like particle assembly. J Gen Virol 87:855–860CrossRefPubMedGoogle Scholar
  34. 34.
    Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  35. 35.
    Roingeard P, Hourioux C, Blanchard E, Prensier G (2008) Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy. Histochem Cell Biol 130:561–566CrossRefPubMedGoogle Scholar
  36. 36.
    Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefPubMedGoogle Scholar
  37. 37.
    Ai LS, Lee YW, Chen SS (2009) Characterization of hepatitis C virus core protein multimerization and membrane envelopment: revelation of a cascade of core-membrane interactions. J Virol 83:9923–9939CrossRefPubMedGoogle Scholar
  38. 38.
    Kasurinen J (1992) A novel fluorescent fatty acid, 5-methyl-bdy-3-dodecanoic acid, is a potential probe in lipid transport studies by incorporating selectively to lipid classes of BHK cells. Biochem Biophys Res Commun 187:1594–1601CrossRefPubMedGoogle Scholar
  39. 39.
    Jackel-Cram C, Babiuk LA, Qiang L (2007) Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. J Hepatol 6:999–1008CrossRefGoogle Scholar
  40. 40.
    Ohsaki Y, Cheng J, Suzuki M, Shinohara Y, Fujita A, Fujimoto T (2009) Biogenesis of cytoplasmic lipid droplets: from the lipid ester globule in the membrane to the visible structure. Biochim Biophys Acta 1791:399–407PubMedGoogle Scholar
  41. 41.
    Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y (2008) Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130:263–279CrossRefPubMedGoogle Scholar
  42. 42.
    Thiele C, Spandl J (2008) Cell biology of lipid droplets. Curr Opin Cell Biol 20:378–385CrossRefPubMedGoogle Scholar
  43. 43.
    Walther TC, Farese RV Jr (2009) The life of lipid droplets. Biochim Biophys Acta 1791:459–466PubMedGoogle Scholar
  44. 44.
    Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9:338–352CrossRefPubMedGoogle Scholar
  45. 45.
    Wolins NE, Brasaemle DL, Bickel PE (2006) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–5491CrossRefPubMedGoogle Scholar
  46. 46.
    Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–440PubMedGoogle Scholar
  47. 47.
    Goodman JM (2008) The gregarious lipid droplet. J Biol Chem 283:28005–28009CrossRefPubMedGoogle Scholar
  48. 48.
    Zehmer JK, Huang Y, Peng G, Pu J, Anderson RG, Liu P (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9:914–921CrossRefPubMedGoogle Scholar
  49. 49.
    Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N, Nawata H (2002) ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab 283:775–783Google Scholar
  50. 50.
    Fukushima M, Enjoji M, Kohjima M, Sugimoto R, Ohta S, Kotoh K, Kuniyoshi M, Kobayashi K, Imamura M, Inoguchi T, Nakamuta M, Nawata H (2005) Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In Vitro Cell Dev Biol Anim 41:321–324PubMedGoogle Scholar
  51. 51.
    Listenberger LL, Ostermeyer-Fay AG, Goldberg EB, Brown WJ, Brown DA (2007) Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 48:2751–2761CrossRefPubMedGoogle Scholar
  52. 52.
    Cheng J, Fujita A, Ohsaki Y, Suzuki M, Shinohara Y, Fujimoto T (2010) Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets. Histochem Cell Biol 132:281–291CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Marion Depla
    • 1
  • Rustem Uzbekov
    • 1
  • Christophe Hourioux
    • 1
  • Emmanuelle Blanchard
    • 1
  • Amélie Le Gouge
    • 2
  • Ludovic Gillet
    • 3
  • Philippe Roingeard
    • 1
    Email author
  1. 1.INSERM U966, Faculté de MédecineUniversité François Rabelais, CHRU de ToursTours CedexFrance
  2. 2.INSERM CIC 0202Université François Rabelais, CHRU de ToursTours CedexFrance
  3. 3.INSERM U921Université François Rabelais, CHRU de ToursTours CedexFrance

Personalised recommendations