Advertisement

Cellular and Molecular Life Sciences

, Volume 67, Issue 16, pp 2679–2683 | Cite as

Do we already know how spectrin attracts ankyrin?

  • Aleksander Czogalla
  • Aleksander F. SikorskiEmail author
Visions & Reflections (Minireview)

Abstract

The interaction of ankyrin and spectrin yields the major anchor between the membrane skeleton and the lipid bilayer. It is critical for red cell deformability and stability, and it is also involved in the cellular localization of several proteins, in cell differentiation, and in neuron activity. Therefore, its nature is of great interest, and recently, several researchers have had varying degrees of success in elucidating the structural basis of ankyrin–spectrin recognition. In this short paper, we briefly summarize the data obtained and compare the resulting conclusions.

Keywords

Spectrin Ankyrin Membrane skeleton Protein structure Protein–protein interactions 

Notes

Acknowledgements

This publication was possible thanks to the financial support of the Foundation for Polish Science. We acknowledge Mr. Derek Handley for proofreading this manuscript.

References

  1. 1.
    Anong WA, Franco T, Chu H, Weis TL, Devlin EE, Bodine DM, An X, Mohandas N, Low PS (2009) Adducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion. Blood 114:1904–1912CrossRefPubMedGoogle Scholar
  2. 2.
    Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392PubMedGoogle Scholar
  3. 3.
    DeMatteis MA, Morrow JS (2000) Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 113:2331–2343Google Scholar
  4. 4.
    Bennett V, Healy J (2008) Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol Med 14:28–36CrossRefPubMedGoogle Scholar
  5. 5.
    Broderick MJF, Winder SJ (2002) Towards a complete atomic structure of spectrin family proteins. J Struct Biol 137:184–193CrossRefPubMedGoogle Scholar
  6. 6.
    Kusunoki H, Minasov G, MacDonald RI, Mondragón A (2004) Independent movement, dimerization and stability of tandem repeats of chicken brain a-spectrin. J Mol Biol 344:495–511CrossRefPubMedGoogle Scholar
  7. 7.
    An X, Guo X, Zhang X, Baines AJ, Debnath G, Moyo D, Salomao M, Bhasin N, Johnson C, Discher D, Gratzer WB, Mohandas N (2006) Conformational stabilities of the structural repeats of erythroid spectrin and their functional implications. J Biol Chem 281:10527–10532CrossRefPubMedGoogle Scholar
  8. 8.
    Baines A (2003) Comprehensive analysis of all triple helical repeats in beta-spectrins reveals patterns of selective evolutionary conservation. Cell Mol Biol Lett 8:195–214PubMedGoogle Scholar
  9. 9.
    Leluk J, Hanus-Lorenz B, Sikorski AF (2001) Application of genetic semihomology algorithm to theoretical studies on various protein families. Acta Biochim Pol 48:21–33PubMedGoogle Scholar
  10. 10.
    Djinovic-Carugo K, Gautel M, Ylänne J, Young P (2002) The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett 513:119–123CrossRefPubMedGoogle Scholar
  11. 11.
    Sikorski AF, Czogalla A, Hryniewicz-Jankowska A, Bok E, Plażuk E, Diakowski W, Chorzalska A, Kolondra A, Langner M, Grzybek M (2008) Interactions of erythroid and nonerythroid spectrins and other membrane-skeletal proteins with lipid mono- and bilayers. In: Leitmannova LA (ed) Advances in Planar Lipid Bilayers and Liposomes, vol 6. Elsevier, New York, pp 81–102Google Scholar
  12. 12.
    Kennedy SP, Warren SL, Forget BG, Morrow JS (1991) Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin. J Cell Biol 115:267–277CrossRefPubMedGoogle Scholar
  13. 13.
    Ipsaro JJ, Huang L, Gutierrez L, MacDonald RI (2008) Molecular epitopes of the ankyrin-spectrin interaction. Biochemistry 47:7452–7464CrossRefPubMedGoogle Scholar
  14. 14.
    Hryniewicz-Jankowska A, Bok E, Dubielecka P, Chorzalska A, Diakowski W, Jezierski A, Lisowski M, Sikorski AF (2004) Mapping of an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine mono- and bi-layer binding site in erythroid beta-spectrin. Biochem J 382:677–685CrossRefPubMedGoogle Scholar
  15. 15.
    Czogalla A, Jaszewski AR, Diakowski W, Bok E, Jezierski A, Sikorski AF (2007) Structural insight into an ankyrin-sensitive lipid-binding site of erythroid β-spectrin. Mol Membr Biol 24:215–224CrossRefPubMedGoogle Scholar
  16. 16.
    Grum VL, Li D, MacDonald RI, Mondragon A (1999) Structures of two repeats of spectrin suggest models of flexibility. Cell 98:523–535CrossRefPubMedGoogle Scholar
  17. 17.
    Czogalla A, Grzymajło K, Jezierski A, Sikorski AF (2008) Phospholipid-induced structural changes to an erythroid beta spectrin ankyrin-dependent lipid-binding site. Biochim Biophys Acta 1778:2612–2620CrossRefPubMedGoogle Scholar
  18. 18.
    Davis L, Abdi K, Machius M, Brautigam C, Tomchick DR, Bennett V, Michaely P (2009) Localization and structure of the ankyrin-binding site on beta2-spectrin. J Biol Chem 284:6982–6987CrossRefPubMedGoogle Scholar
  19. 19.
    Ipsaro JJ, Huang L, Mondragón A (2009) Structures of the spectrin-ankyrin interaction binding domains. Blood 113:5385–5393CrossRefPubMedGoogle Scholar
  20. 20.
    Stabach PR, Simonović I, Ranieri MA, Aboodi MS, Steitz TA, Simonović M, Morrow JS (2009) The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 113:5377–5384CrossRefPubMedGoogle Scholar
  21. 21.
    Kolondra A, Grzybek M, Chorzalska A, Sikorski AF (2008) The 22,5 kDa spectrin-binding domain of ankyrinR binds spectrin with high affinity and changes the spectrin distribution in cells in vivo. Protein Expr Purif 60:157–164CrossRefPubMedGoogle Scholar
  22. 22.
    Wang R, Wei Z, Jin H, Wu H, Yu C, Wen W, Chan L-N, Wen Z, Zhang M (2009) Autoinhibition of UNC5b revealed by the cytoplasmic domain structure of the receptor. Mol Cell 33:692–703CrossRefPubMedGoogle Scholar
  23. 23.
    Paździor G, Chorzalska A, Czogalla A, Borowik T, Sikorski AF, Langner M (2009) Fluorescence approach to evaluating conformational changes upon binding of β-spectrin ankyrin-binding domain mutants with the lipid bilayer. Gen Physiol Biophys 28:283–293CrossRefPubMedGoogle Scholar
  24. 24.
    Legardinier S, Raguénès-Nicol C, Tascon C, Rocher C, Hardy S, Hubert JF, Le Rumeur E (2009) Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin. J Mol Biol 389:546–558CrossRefPubMedGoogle Scholar
  25. 25.
    Ipsaro JJ, Mondragón A (2010) Structural basis for spectrin recognition by ankyrin. Blood Doi:  10.1182/blood-2009-11-255604
  26. 26.
    La-Borde PJ, Stabach PR, Siminović I, Morrow JS, Siminović M (2010) Ankyrin recognizes both surface character and shape of the 14–15 di-repeat of β-spectrin. Biochem Biophys Res Commun 392:490–494CrossRefPubMedGoogle Scholar
  27. 27.
    Ipsaro JJ, Harper SL, Messick TE, Marmorstein R, Mondragón A, Speicher DW (2010) Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood. doi: 10.1182/blood-2010-01-261396
  28. 28.
    Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Aleksander Czogalla
    • 1
    • 2
  • Aleksander F. Sikorski
    • 2
    • 3
    Email author
  1. 1.Research and Development Centre Novasome Sp. z o.o.WrocławPoland
  2. 2.Faculty of BiotechnologyUniversity of WrocławWrocławPoland
  3. 3.Academic Centre for the Biotechnology of Lipid AggregatesWrocławPoland

Personalised recommendations