Cellular and Molecular Life Sciences

, Volume 67, Issue 16, pp 2825–2838 | Cite as

The structural intolerance of the PrP α-fold for polar substitution of the helix-3 methionines

  • Silvia Lisa
  • Massimiliano Meli
  • Gema Cabello
  • Ruth Gabizon
  • Giorgio Colombo
  • María Gasset
Research Article

Abstract

The conversion of the cellular prion protein (PrPC) into its disease-associated form (PrPSc) involves a major conformational change and the accumulation of sulfoxidized methionines. Computational and synthetic approaches have shown that this change in the polarity of M206 and M213 impacts the C-terminal domain native α-fold allowing the flexibility required for the structural conversion. To test the effect in the full-length molecule with site-specificity, we have generated M-to-S mutations. Molecular dynamics simulations show that the replacement indeed perturbs the native state. When this mutation is placed at the conserved methionines of HaPrP(23–231), only substitutions at the Helix-3 impair the α-fold, stabilizing a non-native state with perturbed secondary structure, loss of native tertiary contacts, increased surface hydrophobicity, reduced thermal stability and an enhanced tendency to aggregate into protofibrillar polymers. Our work supports that M206 and M213 function as α-fold gatekeepers and suggests that their redox state regulate misfolding routes.

Keywords

Protein conformational switches Methionine oxidation Prion protein conversion Amyloids 

Abbreviations

PrPC

Cellular prion protein

PrPSc

Disease-related form of PrP

HuPrP(125–229)

Polypeptide chain representing the globular domain of the human PrP

HaPrP(23–231)

Polypeptide chain representing the mature chain of the hamster PrP

MD

Molecular dynamics

RWISP

Root weighted square inner product

CP

Communication propensity

CD

Circular dichroism

DLS

Dynamic light scattering

Rh

Hydrodynamic radius

ThT

Thioflavin T

AFM

Atomic force microscopy

References

  1. 1.
    Prusiner SB (2001) Shattuck lecture: neurodegenerative diseases and prions. N Engl J Med 344:1516–1526CrossRefPubMedGoogle Scholar
  2. 2.
    Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477CrossRefPubMedGoogle Scholar
  3. 3.
    Oesch B, Westaway D, Wälchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, Prusiner SB, Weissmann C (1985) A cellular gene encodes scrapie PrP 27–30 protein. Cell 40:735–746CrossRefPubMedGoogle Scholar
  4. 4.
    Meyer RK, McKinley MP, Bowman KA, Braunfeld MB, Barry RA, Prusiner SB (1986) Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci USA 83:2310–2314CrossRefPubMedGoogle Scholar
  5. 5.
    Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Secondary structure analysis of the scrapie-associated protein PrP 27–30 in water by infrared spectroscopy. Biochemistry 30:7672–7680CrossRefPubMedGoogle Scholar
  6. 6.
    McKinley MP, Meyer RK, Kenaga L, Rahbar F, Cotter R, Serban A, Prusiner SB (1991) Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J Virol 65:1340–1351PubMedGoogle Scholar
  7. 7.
    Gasset M, Baldwin MA, Lloyd DH, Gabriel JM, Holtzman DM, Cohen F, Fletterick R, Prusiner SB (1992) Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Natl Acad Sci USA 189:10940–10944CrossRefGoogle Scholar
  8. 8.
    Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick R, Cohen F, Prusiner SB (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966CrossRefPubMedGoogle Scholar
  9. 9.
    Baskakov IV, Breydo L (2007) Converting the prion protein: what makes the protein infectious. Biochim Biophys Acta 1772:692–703PubMedGoogle Scholar
  10. 10.
    Sigurdson CJ, Nilsson KP, Hornemann S, Heikenwalder M, Manco G, Schwarz P, Ott D, Rülicke T, Liberski PP, Julius C, Falsig J, Stitz L, Wüthrich K, Aguzzi A (2009) De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc Natl Acad Sci USA 106:304–309CrossRefPubMedGoogle Scholar
  11. 11.
    Colby DW, Giles K, Legname G, Wille H, Baskakov IV, Dearmond SJ, Prusiner SB (2009) Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci USA 106:20417–20422CrossRefPubMedGoogle Scholar
  12. 12.
    Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32:1991–2002CrossRefPubMedGoogle Scholar
  13. 13.
    Canello T, Engelstein R, Moshel O, Xanthopoulos K, Juanes ME, Langeveld J, Sklaviadis T, Gasset M, Gabizon R (2008) Methionine sulfoxides on PrPSc: a prion-specific covalent signatura. Biochemistry 47:8866–8873CrossRefPubMedGoogle Scholar
  14. 14.
    Colombo G, Meli M, Morra G, Gabizon R, Gasset M (2009) Methionine sulfoxides on prion protein Helix-3 switch on the alpha-fold destabilization required for conversion. PLoS One 4(1):e4296CrossRefPubMedGoogle Scholar
  15. 15.
    Wolschner C, Giese A, Kretzschmar HA, Huber R, Moroder L, Budisa N (2009) Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein. Proc Natl Acad Sci USA 106:7756–7761CrossRefPubMedGoogle Scholar
  16. 16.
    Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106CrossRefPubMedGoogle Scholar
  17. 17.
    Eisenberg D, Nelson R, Sawaya MR, Balbirnie M, Sambashivan S, Ivanova MI, Madsen AØ, Riekel C (2006) The structural biology of protein aggregation diseases: fundamental questions and some answers. Acc Chem Res 39:568–575CrossRefPubMedGoogle Scholar
  18. 18.
    Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282CrossRefPubMedGoogle Scholar
  19. 19.
    Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457CrossRefPubMedGoogle Scholar
  20. 20.
    Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau: abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268:24374–24384PubMedGoogle Scholar
  21. 21.
    Iqbal K, Liu F, Gong CX, Alonso AC, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69CrossRefPubMedGoogle Scholar
  22. 22.
    Sun Q, Gamblin TC (2009) Pseudohyperphosphorylation causing AD-like changes in tau has significant effects on its polymerization. Biochemistry 48:6002–6011CrossRefPubMedGoogle Scholar
  23. 23.
    Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258CrossRefPubMedGoogle Scholar
  24. 24.
    Oien DB, Moskovitz J (2008) Substrates of the methionine sulfoxide reductase system and their physiological relevance. Curr Top Dev Biol 80:93–133CrossRefPubMedGoogle Scholar
  25. 25.
    Hernández F, Nido JD, Avila J, Villanueva N (2009) GSK3 inhibitors and disease. Mini Rev Med Chem 9:1024–1029CrossRefPubMedGoogle Scholar
  26. 26.
    Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33:537–545CrossRefPubMedGoogle Scholar
  27. 27.
    Ostapchenko VG, Makarava N, Savtchenko R, Baskakov IV (2008) The polybasic N-terminal region of the prion protein controls the physical properties of both the cellular and fibrillar forms of PrP. J Mol Biol 383:1210–1224CrossRefPubMedGoogle Scholar
  28. 28.
    Dado GP, Gellman SH (1993) Redox control of secondary structure in a designed peptide. J Am Chem Soc 115:12609–12610CrossRefGoogle Scholar
  29. 29.
    Schenck HL, Schenck HL, Dado GP, Gellman SH (1996) Redox-triggered secondary structure changes in the aggregated states of a designed methionine-rich peptide. J Am Chem Soc 118:12487–12494CrossRefGoogle Scholar
  30. 30.
    Binger KJ, Griffin MD, Howlett GJ (2008) Methionine oxidation inhibits assembly and promotes disassembly of apolipoprotein C-II amyloid fibrils. Biochemistry 47:10208–10217CrossRefPubMedGoogle Scholar
  31. 31.
    Wiltzius JJ, Landau M, Nelson R, Sawaya MR, Apostol MI, Goldschmidt L, Soriaga AB, Cascio D, Rajashankar K, Eisenberg D (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16:973–978CrossRefPubMedGoogle Scholar
  32. 32.
    Vriend G (1990) What if: a molecular modeling and drug design program. J Mol Graph 8:52–56CrossRefPubMedGoogle Scholar
  33. 33.
    James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB, Cohen FE (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie  isoform. Proc Natl Acad Sci USA 94:10086–10091CrossRefPubMedGoogle Scholar
  34. 34.
    González-Iglesias R, Pajares MA, Ocal C, Espinosa JC, Oesch B, Gasset M (2002) Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges. J Mol Biol 319:527–540CrossRefPubMedGoogle Scholar
  35. 35.
    Pace CN, Scholtz JM (1997) Measuring the conformational stability of a protein. In: Creighton (ed) Protein structure, a practical approach. IRL Press, Oxford, pp 299–321Google Scholar
  36. 36.
    Becktel WJ, Schellman JA (1987) Protein stability curves. Biopolymers 26:1859–1877CrossRefPubMedGoogle Scholar
  37. 37.
    Tadeo X, López-Méndez B, Castaño D, Trigueros T, Millet O (2009) Protein stabilization and the Hofmeister effect: the role of hydrophobic solvation. Biophys J 97:2595–2603CrossRefPubMedGoogle Scholar
  38. 38.
    González-Iglesias R, Elvira G, Rodríguez-Navarro JA, Vélez M, Calero M, Pajares MA, Gasset M (2004) Cu2+ binding triggers alphaBoPrP assembly into insoluble laminar polymers. FEBS Lett 556:161–166CrossRefPubMedGoogle Scholar
  39. 39.
    Bishop MF, Ferrone FA (1984) Kinetics of nucleation-controlled polymerization: a perturbation treatment for use with a secondary pathway. Biophys J 46:631–644CrossRefPubMedGoogle Scholar
  40. 40.
    Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17:412–425CrossRefPubMedGoogle Scholar
  41. 41.
    Carnevale V, Pontiggia F, Micheletti C (2007) Structural and dynamical alignment of enzymes with partial structural similarity. J Phys Condens Matter 19. doi:10.1088/0953-8984/19/28/285206
  42. 42.
    Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Güntert P, Wüthrich K (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102:640–645CrossRefPubMedGoogle Scholar
  43. 43.
    Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499CrossRefPubMedGoogle Scholar
  44. 44.
    Creighton TE (1990) Protein folding. Biochem J 270:1–16PubMedGoogle Scholar
  45. 45.
    Jahn TR, Parker MJ, Homans SW, Radford SE (2006) Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13:195–201CrossRefPubMedGoogle Scholar
  46. 46.
    Goldsbury C, Green J (2005) Time-lapse atomic force microscopy in the characterization of amyloid-like fibril assembly and oligomeric intermediates. Methods Mol Biol 299:103–128PubMedGoogle Scholar
  47. 47.
    Campioni S, Mossuto MF, Torrassa S, Calloni G, de Laureto PP, Relini A, Fontana A, Chiti F (2008) Conformational properties of the aggregation precursor state of HypF-N. J Mol Biol 379:554–567CrossRefPubMedGoogle Scholar
  48. 48.
    Kaimann T, Metzger S, Kuhlmann K, Brandt B, Birkmann E, Höltje HD, Riesner D (2008) Molecular model of an alpha-helical prion protein dimer and its monomeric subunits as derived from chemical cross-linking and molecular modeling calculations. J Mol Biol 376:582–596CrossRefPubMedGoogle Scholar
  49. 49.
    Kuwajima K (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6:87–103CrossRefPubMedGoogle Scholar
  50. 50.
    Sanz JM, Fersht AR (1993) Rationally designing the accumulation of a folding intermediate of barnase by protein engineering. Biochemistry 32:13584–13592CrossRefPubMedGoogle Scholar
  51. 51.
    Pettersson-Kastberg J, Aits S, Gustafsson L, Mossberg A, Storm P, Trulsson M, Persson F, Mok KH, Svanborg C (2009) Can misfolded proteins be beneficial? The HAMLET case. Ann Med 41:162–176CrossRefPubMedGoogle Scholar
  52. 52.
    Gambin Y, Schug A, Lemke EA, Lavinder JJ, Ferreon AC, Magliery TJ, Onuchic JN, Deniz AA (2009) Direct single-molecule observation of a protein living in two opposed native structures. Proc Natl Acad Sci USA 106:10153–10158CrossRefPubMedGoogle Scholar
  53. 53.
    Silva JL, Vieira TC, Gomes MP, Bom AP, Lima LM, Freitas MS, Ishimaru D, Cordeiro Y, Foguel D (2009) Ligand binding and hydration in protein misfolding: insights from studies of prion and p53 tumor suppressor proteins (dagger). Acc Chem Res 43:271–279CrossRefGoogle Scholar
  54. 54.
    Kremer W, Kachel N, Kuwata K, Akasaka K, Kalbitzer HR (2007) Species-specific differences in the intermediate states of human and Syrian hamster prion protein detected by high pressure NMR spectroscopy. J Biol Chem 282:22689–22698CrossRefPubMedGoogle Scholar
  55. 55.
    Hou L, Kang I, Marchant RE, Zagorski MG (2002) Methionine 35 oxidation reduces fibril assembly of the amyloid abeta-(1–42) peptide of Alzheimer’s disease. J Biol Chem 277:40173–40176CrossRefPubMedGoogle Scholar
  56. 56.
    Bitan G, Tarus B, Vollers SS, Lashuel HA, Condron MM, Straub JE, Teplow DB (2003) A molecular switch in amyloid assembly: Met35 and amyloid beta-protein oligomerization. J Am Chem Soc 125:15359–15365CrossRefPubMedGoogle Scholar
  57. 57.
    Requena JR, Dimitrova MN, Legname G, Teijeira S, Prusiner SB, Levine RL (2004) Oxidation of methionine residues in the prion protein by hydrogen peroxide. Arch Biochem Biophys 432:188–195CrossRefPubMedGoogle Scholar
  58. 58.
    Breydo L, Bocharova OV, Makarava N, Salnikov VV, Anderson M, Baskakov IV (2005) Methionine oxidation interferes with conversion of the prion protein into the fibrillar proteinase K-resistant conformation. Biochemistry 44:15534–15543CrossRefPubMedGoogle Scholar
  59. 59.
    Hart T, Hosszu LL, Trevitt CR, Jackson GS, Waltho JP, Collinge J, Clarke AR (2009) Folding kinetics of the human prion protein probed by temperature jump. Proc Natl Acad Sci USA 106:5651–5656CrossRefPubMedGoogle Scholar
  60. 60.
    Lee S, Antony L, Hartmann R, Knaus KJ, Surewicz K, Surewicz WK, Yee VC (2010) Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. EMBO J 29:251–262CrossRefPubMedGoogle Scholar
  61. 61.
    Green KM, Browning SR, Seward TS, Jewell JE, Ross DL, Green MA, Williams ES, Hoover EA, Telling GC (2008) The elk PRNP codon 132 polymorphism controls cervid and scrapie prion propagation. J Gen Virol 89:598–608CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Silvia Lisa
    • 1
  • Massimiliano Meli
    • 2
  • Gema Cabello
    • 1
  • Ruth Gabizon
    • 3
  • Giorgio Colombo
    • 2
  • María Gasset
    • 1
  1. 1.Insto Química-Física “Rocasolano”, CSICMadridSpain
  2. 2.Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle RicercheMilanItaly
  3. 3.Department of Neurology, The Agnes Ginges Center for Human NeurogeneticsHadassah University HospitalJerusalemIsrael

Personalised recommendations