Advertisement

Cellular and Molecular Life Sciences

, Volume 67, Issue 17, pp 2863–2878 | Cite as

The persistence of T cell memory

  • Mark A. Daniels
  • Emma TeixeiroEmail author
Review

Abstract

T cell memory is a crucial feature of the adaptive immune system in the defense against pathogens. During the last years, numerous studies have focused their efforts on uncovering the signals, inflammatory cues, and extracellular factors that support memory differentiation. This research is beginning to decipher the complex gene network that controls memory programming. However, how the different signals, that a T cell receives during the process of differentiation, interplay to trigger memory programming is still poorly defined. In this review, we focus on the most recent advances in the field and discuss how T cell receptor signaling and inflammation control CD8 memory differentiation.

Keywords

T cell memory Signaling Inflammation Infection T cell receptor CD8 T cell CD4 T cell 

Abbreviations

APC

Antigen presenting cell

Bcl- or BCL

B-cell lymphoma/leukemia

Blimp-1

Transcriptional repressor B-lymphocyte-induced maturation protein 1

BTLA

B- and T-lymphocyte attenuator

DC

Dendritic cell

ERK

Extracellular signal-regulated kinases

GABPα

GA-binding protein α

Gfi-1

Growth factor independence 1

GSK3

Glycogen synthase kinase 3

HP

Homeostatic proliferation

Id2

DNA-binding protein inhibitor 2

IFN

Interferon

IKK

IκB kinase

IL-

Interleukin

ITAM

Immunoreceptor tyrosine-based activation motif

JAK

Janus protein tyrosine kinase

JNK

c-Jun N-terminal kinase

KLRG1

Killer cell lectin-like receptor subfamily G member 1

L.m.

Listeria monocytogenes

LAT

Linker for activation of T cells

Lck

Leukocyte-specific protein tyrosine kinase

LCMV

Lymphocytic choriomeningitis virus

LKLF

Lung Krüppel-like factor

MALT-1

Mucosa-associated lymphoid tissue lymphoma translocation protein 1

MAPK

Mitogen-activated protein kinase

Mcl-1

Myeloid cell leukemia sequence 1

MEKK

Mammalian mitogen-activated protein kinase kinase kinase

MHC

Major histocompatibility complex

MPECs

Memory precursor effector cells

mTOR

Mammalian target of rapamycin

NF-AT

Nuclear factor of activated T cells

NF-κB

Nuclear factor κ-light-chain-enhancer of activated B cells

NIK

NF-κB-inducing kinase

NK cells

Natural killer cells

p-MHC

Peptide-MHC complex

PI3K

Phosphoinositide 3-kinase

PKCθ

Protein kinase C θ

Rsk

Ribosomal s6 kinase

SLECs

Short-lived effector cells

SLP-76

SH2 domain containing leukocyte protein of 76 kDa

Spi-2A

Serine protease inhibitor 2A

STAT

Signal transducers and activator of transcription

TAK-1

TGF-beta activated kinase 1

TCF-1

T-cell factor/lymphoid enhancer factor 1

TCM

Central memory T cell

TCR

T cell receptor

TEM

Effector memory T cell

TH

T helper cell

TLR

Toll-like receptor

TNF-α

Tumor necrosis factor

TNFR

Tumor necrosis factor receptor

TRAF-6

TNF receptor-associated factor-6

XBP-1

X-box-binding protein 1

ZAP-70

Zeta-chain-associated protein kinase 70

Notes

Acknowledgments

We acknowledge the University of Missouri Mission Enhancement Fund for supporting our work. We thank Karin Knudson, Cody Cunningham, and William Olson for interesting discussions and Dr. Ed Palmer for his support. We apologize to all authors we could not cite because of space restrictions.

References

  1. 1.
    Jabbari A, Harty JT (2006) Secondary memory CD8+ T cells are more protective but slower to acquire a central-memory phenotype. J Exp Med 203:919–932PubMedCrossRefGoogle Scholar
  2. 2.
    Masopust D, Ha S-J, Vezys V, Ahmed R (2006) Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J Immunol 177:831–839PubMedGoogle Scholar
  3. 3.
    Sandau MM, Kohlmeier JE, Woodland DL, Jameson SC (2010) IL-15 regulates both quantitative and qualitative features of the memory CD8 T cell pool. J Immunol 184:35–44PubMedCrossRefGoogle Scholar
  4. 4.
    Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29:848–862PubMedCrossRefGoogle Scholar
  5. 5.
    Williams MA, Bevan MJ (2007) Effector and memory CTL differentiation. Annu Rev Immunol 25:171–192PubMedCrossRefGoogle Scholar
  6. 6.
    Sun JC, Williams MA, Bevan MJ (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5:927–933PubMedCrossRefGoogle Scholar
  7. 7.
    Whitmire JK, Asano MS, Kaech SM, Sarkar S, Hannum LG, Shlomchik MJ, Ahmed R (2009) Requirement of B cells for generating CD4+ T cell memory. J Immunol 182:1868–1876PubMedCrossRefGoogle Scholar
  8. 8.
    Shen H, Whitmire JK, Fan X, Shedlock DJ, Kaech SM, Ahmed R (2003) A specific role for B cells in the generation of CD8 T cell memory by recombinant Listeria monocytogenes. J Immunol 170:1443–1451PubMedGoogle Scholar
  9. 9.
    Jameson SC, Masopust D (2009) Diversity in T cell memory: an embarrassment of riches. Immunity 31:859–871PubMedCrossRefGoogle Scholar
  10. 10.
    Badovinac VP, Haring JS, Harty JT (2007) Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity 26:827–841PubMedCrossRefGoogle Scholar
  11. 11.
    Hataye J, Moon JJ, Khoruts A, Reilly C, Jenkins MK (2006) Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312:114–116PubMedCrossRefGoogle Scholar
  12. 12.
    Sallusto F, Lanzavecchia A (2009) Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur J Immunol 39:2076–2082PubMedCrossRefGoogle Scholar
  13. 13.
    Macleod M, Clambey E, Kappler J, Marrack P (2009) CD4 memory T cells: what are they and what can they do? Semin Immunol 21:53–61PubMedCrossRefGoogle Scholar
  14. 14.
    Blair DA, Lefrancois L (2007) Increased competition for antigen during priming negatively impacts the generation of memory CD4 T cells. Proc Natl Acad Sci USA 104:15045–15050PubMedCrossRefGoogle Scholar
  15. 15.
    Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763PubMedCrossRefGoogle Scholar
  16. 16.
    Lefrancois L (2006) Development, trafficking, and function of memory T-cell subsets. Immunol Rev 211:93–103PubMedCrossRefGoogle Scholar
  17. 17.
    Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646PubMedCrossRefGoogle Scholar
  18. 18.
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861PubMedCrossRefGoogle Scholar
  19. 19.
    Foulds KE, Shen H (2006) Clonal competition inhibits the proliferation and differentiation of adoptively transferred TCR transgenic CD4 T cells in response to infection. J Immunol 176:3037–3043PubMedGoogle Scholar
  20. 20.
    Celli S, Lemaître F, Bousso P (2007) Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27:625–634PubMedCrossRefGoogle Scholar
  21. 21.
    Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159PubMedCrossRefGoogle Scholar
  22. 22.
    Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD (2007) Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 204:951–961PubMedCrossRefGoogle Scholar
  23. 23.
    Cho BK, Rao VP, Ge Q, Eisen HN, Chen J (2000) Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 192:549–556PubMedCrossRefGoogle Scholar
  24. 24.
    Goldrath AW, Luckey CJ, Park R, Benoist C, Mathis D (2004) The molecular program induced in T cells undergoing homeostatic proliferation. Proc Natl Acad Sci USA 101:16885–16890PubMedCrossRefGoogle Scholar
  25. 25.
    Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC (2006) The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol 7:475–481PubMedCrossRefGoogle Scholar
  26. 26.
    Hamilton SE, Jameson SC (2008) The nature of the lymphopenic environment dictates protective function of homeostatic-memory CD8+ T cells. Proc Natl Acad Sci USA 105:18484–18489PubMedCrossRefGoogle Scholar
  27. 27.
    Cheung KP, Yang E, Goldrath AW (2009) Memory-like CD8+ T cells generated during homeostatic proliferation defer to antigen-experienced memory cells. J Immunol 183:3364–3372PubMedCrossRefGoogle Scholar
  28. 28.
    Prlic M, Blazar BR, Khoruts A, Zell T, Jameson SC (2001) Homeostatic expansion occurs independently of costimulatory signals. J Immunol 167:5664–5668PubMedGoogle Scholar
  29. 29.
    Krieg C, Boyman O, Fu Y-X, Kaye J (2007) B and T lymphocyte attenuator regulates CD8+ T cell-intrinsic homeostasis and memory cell generation. Nat Immunol 8:162–171PubMedCrossRefGoogle Scholar
  30. 30.
    Liu Y, Zheng P (2007) CD24: a genetic checkpoint in T cell homeostasis and autoimmune diseases. Trends Immunol 28:315–320PubMedCrossRefGoogle Scholar
  31. 31.
    Kieper WC, Tan JT, Bondi-Boyd B, Gapin L, Sprent J, Ceredig R, Surh CD (2002) Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J Exp Med 195:1533–1539PubMedCrossRefGoogle Scholar
  32. 32.
    Rubinstein MP, Lind NA, Purton JF, Filippou P, Best JA, McGhee PA, Surh CD, Goldrath AW (2008) IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood 112:3704–3712PubMedCrossRefGoogle Scholar
  33. 33.
    Seddon B, Zamoyska R (2002) TCR and IL-7 receptor signals can operate independently or synergize to promote lymphopenia-induced expansion of naive T cells. J Immunol 169:3752–3759PubMedGoogle Scholar
  34. 34.
    Surh CD, Sprent J (2005) Regulation of mature T cell homeostasis. Semin Immunol 17:183–191PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt-Supprian M, Tian J, Ji H, Terhorst C, Bhan AK, Grant EP, Pasparakis M, Casola S, Coyle AJ, Rajewsky K (2004) I kappa B kinase 2 deficiency in T cells leads to defects in priming, B cell help, germinal center reactions, and homeostatic expansion. J Immunol 173:1612–1619PubMedGoogle Scholar
  36. 36.
    Schmidt-Supprian M, Courtois G, Tian J, Coyle AJ, Israël A, Rajewsky K, Pasparakis M (2003) Mature T cells depend on signaling through the IKK complex. Immunity 19:377–389PubMedCrossRefGoogle Scholar
  37. 37.
    Ishimaru N, Kishimoto H, Hayashi Y, Sprent J (2006) Regulation of naive T cell function by the NF-kappaB2 pathway. Nat Immunol 7:763–772PubMedCrossRefGoogle Scholar
  38. 38.
    Sriskantharajah S, Belich MP, Papoutsopoulou S, Janzen J, Tybulewicz V, Seddon B, Ley SC (2009) Proteolysis of NF-kappaB1 p105 is essential for T cell antigen receptor-induced proliferation. Nat Immunol 10:38–47PubMedCrossRefGoogle Scholar
  39. 39.
    Teixeiro E, Daniels MA, Hamilton SE, Schrum AG, Bragado R, Jameson SC, Palmer E (2009) Different T cell receptor signals determine CD8+ memory versus effector development. Science 323:502–505PubMedCrossRefGoogle Scholar
  40. 40.
    Wang X, Chang X, Facchinetti V, Zhuang Y, Su B (2009) MEKK3 is essential for lymphopenia-induced T cell proliferation and survival. J Immunol 182:3597–3608PubMedCrossRefGoogle Scholar
  41. 41.
    Lin J-X, Spolski R, Leonard WJ (2008) Critical role for Rsk2 in T-lymphocyte activation. Blood 111:525–533PubMedCrossRefGoogle Scholar
  42. 42.
    Shinohara H, Yamasaki S, Maeda S, Saito T, Kurosaki T (2009) Regulation of NF-kappaB-dependent T cell activation and development by MEKK3. Int Immunol 21:393–401PubMedCrossRefGoogle Scholar
  43. 43.
    Schouten GJ, Vertegaal AC, Whiteside ST, Israel A, Toebes M, Dorsman JC, van der Eb AJ, Zantema A (1997) IkappaB alpha is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. EMBO J 16:3133–3144PubMedCrossRefGoogle Scholar
  44. 44.
    Epstein MM, Di Rosa F, Jankovic D, Sher A, Matzinger P (1995) Successful T cell priming in B cell-deficient mice. J Exp Med 182:915–922PubMedCrossRefGoogle Scholar
  45. 45.
    Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:852–856PubMedCrossRefGoogle Scholar
  46. 46.
    Shedlock DJ, Whitmire JK, Tan J, MacDonald AS, Ahmed R, Shen H (2003) Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J Immunol 170:2053–2063PubMedGoogle Scholar
  47. 47.
    Sun JC, Bevan MJ (2003) Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300:339–342PubMedCrossRefGoogle Scholar
  48. 48.
    Nakanishi Y, Lu B, Gerard C, Iwasaki A (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462:510–513PubMedCrossRefGoogle Scholar
  49. 49.
    Sun JC, Bevan MJ (2004) Cutting edge: long-lived CD8 memory and protective immunity in the absence of CD40 expression on CD8 T cells. J Immunol 172:3385–3389PubMedGoogle Scholar
  50. 50.
    Williams MA, Tyznik AJ, Bevan MJ (2006) Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441:890–893PubMedCrossRefGoogle Scholar
  51. 51.
    Obar JJ, Molloy MJ, Jellison ER, Stoklasek TA, Zhang W, Usherwood EJ, Lefrancois L (2010) CD4+ T cell regulation of CD25 expression controls development of short-lived effector CD8+ T cells in primary and secondary responses. Proc Natl Acad Sci USA 107:193–198PubMedCrossRefGoogle Scholar
  52. 52.
    Leignadier J, Hardy M-P, Cloutier M, Rooney J, Labrecque N (2008) Memory T-lymphocyte survival does not require T-cell receptor expression. Proc Natl Acad Sci USA 105:20440–20445PubMedCrossRefGoogle Scholar
  53. 53.
    van Stipdonk MJ, Hardenberg G, Bijker MS, Lemmens EE, Droin NM, Green DR, Schoenberger SP (2003) Dynamic programming of CD8+ T lymphocyte responses. Nat Immunol. 4:361–365PubMedCrossRefGoogle Scholar
  54. 54.
    van Stipdonk MJ, Lemmens EE, Schoenberger SP (2001) Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol. 2:423–429PubMedGoogle Scholar
  55. 55.
    Masopust D, Kaech SM, Wherry EJ, Ahmed R (2004) The role of programming in memory T-cell development. Curr Opin Immunol 16:217–225PubMedCrossRefGoogle Scholar
  56. 56.
    Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198PubMedCrossRefGoogle Scholar
  57. 57.
    Lauvau G, Vijh S, Kong P, Horng T, Kerksiek K, Serbina N, Tuma RA, Pamer EG (2001) Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294:1735–1739PubMedCrossRefGoogle Scholar
  58. 58.
    Badovinac VP, Harty JT (2007) Manipulating the rate of memory CD8+ T cell generation after acute infection. J Immunol 179:53–63PubMedGoogle Scholar
  59. 59.
    Ho IC and Glimcher LH (2002) Transcription: tantalizing times for T cells. Cell 109 (Suppl):S109–120Google Scholar
  60. 60.
    Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, Banica M, DiCioccio CB, Gross DA, Mao C-A, Shen H, Cereb N, Yang SY, Lindsten T, Rossant J, Hunter CA, Reiner SL (2003) Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302:1041–1043PubMedCrossRefGoogle Scholar
  61. 61.
    Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, Mullen AC, Gasink CR, Kaech SM, Miller JD, Gapin L, Ryan K, Russ AP, Lindsten T, Orange JS, Goldrath AW, Ahmed R, Reiner SL (2005) Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6:1236–1244PubMedCrossRefGoogle Scholar
  62. 62.
    Takemoto N, Intlekofer AM, Northrup JT, Wherry EJ, Reiner SL (2006) Cutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J Immunol 177:7515–7519PubMedGoogle Scholar
  63. 63.
    Intlekofer AM, Takemoto N, Kao C, Banerjee A, Schambach F, Northrop JK, Shen H, Wherry EJ, Reiner SL (2007) Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J Exp Med 204:2015–2021PubMedCrossRefGoogle Scholar
  64. 64.
    Pearce EL, Shen H (2007) Generation of CD8 T cell memory is regulated by IL-12. J Immunol 179:2074–2081PubMedGoogle Scholar
  65. 65.
    Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L, Kaech SM (2007) Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27:281–295PubMedCrossRefGoogle Scholar
  66. 66.
    Martins GA, Cimmino L, Shapiro-Shelef M, Szabolcs M, Herron A, Magnusdottir E, Calame K (2006) Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7:457–465PubMedCrossRefGoogle Scholar
  67. 67.
    Kallies A, Xin A, Belz GT, Nutt SL (2009) Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 31:283–295PubMedCrossRefGoogle Scholar
  68. 68.
    Rutishauser RL, Martins GA, Kalachikov S, Chandele A, Parish IA, Meffre E, Jacob J, Calame K, Kaech SM (2009) Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31:296–308PubMedCrossRefGoogle Scholar
  69. 69.
    Kamimura D, Bevan MJ (2008) Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. J Immunol 181:5433–5441PubMedGoogle Scholar
  70. 70.
    Ichii H, Sakamoto A, Kuroda Y, Tokuhisa T (2004) Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J Immunol 173:883–891PubMedGoogle Scholar
  71. 71.
    Ichii H, Sakamoto A, Hatano M, Okada S, Toyama H, Taki S, Arima M, Kuroda Y, Tokuhisa T (2002) Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat Immunol 3:558–563PubMedCrossRefGoogle Scholar
  72. 72.
    Manders PM, Hunter PJ, Telaranta AI, Carr JM, Marshall JL, Carrasco M, Murakami Y, Palmowski MJ, Cerundolo V, Kaech SM, Ahmed R, Fearon DT (2005) BCL6b mediates the enhanced magnitude of the secondary response of memory CD8+ T lymphocytes. Proc Natl Acad Sci USA 102:7418–7425PubMedCrossRefGoogle Scholar
  73. 73.
    Cannarile MA, Lind NA, Rivera R, Sheridan AD, Camfield KA, Wu BB, Cheung KP, Ding Z, Goldrath AW (2006) Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat Immunol 7:1317–1325PubMedCrossRefGoogle Scholar
  74. 74.
    D’Cruz LM, Rubinstein MP, Goldrath AW (2009) Surviving the crash: transitioning from effector to memory CD8+ T cell. Semin Immunol 21:92–98PubMedCrossRefGoogle Scholar
  75. 75.
    Heffner M, Fearon DT (2007) Loss of T cell receptor-induced Bmi-1 in the KLRG1(+) senescent CD8(+) T lymphocyte. Proc Natl Acad Sci USA 104:13414–13419PubMedCrossRefGoogle Scholar
  76. 76.
    Nakayama T, Yamashita M (2009) Critical role of the Polycomb and Trithorax complexes in the maintenance of CD4 T cell memory. Semin Immunol 21:78–83PubMedCrossRefGoogle Scholar
  77. 77.
    Liu N, Phillips T, Zhang M, Wang Y, Opferman JT, Shah R, Ashton-Rickardt PG (2004) Serine protease inhibitor 2A is a protective factor for memory T cell development. Nat Immunol 5:919–926PubMedCrossRefGoogle Scholar
  78. 78.
    Schober SL, Kuo CT, Schluns KS, Lefrancois L, Leiden JM, Jameson SC (1999) Expression of the transcription factor lung Krüppel-like factor is regulated by cytokines and correlates with survival of memory T cells in vitro and in vivo. J Immunol 163:3662–3667PubMedGoogle Scholar
  79. 79.
    Setoguchi R, Taniuchi I, Bevan MJ (2009) ThPOK derepression is required for robust CD8 T cell responses to viral infection. J Immunol 183:4467–4474PubMedCrossRefGoogle Scholar
  80. 80.
    Sun JC, Lehar SM, Bevan MJ (2006) Augmented IL-7 signaling during viral infection drives greater expansion of effector T cells but does not enhance memory. J Immunol 177:4458–4463PubMedGoogle Scholar
  81. 81.
    Chandele A, Joshi NS, Zhu J, Paul WE, Leonard WJ, Kaech SM (2008) Formation of IL-7Ralphahigh and IL-7Ralphalow CD8 T cells during infection is regulated by the opposing functions of GABPalpha and Gfi-1. J Immunol 180:5309–5319PubMedGoogle Scholar
  82. 82.
    Araki Y, Fann M, Wersto R, Weng N (2008) Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). J Immunol 180:8102–8108PubMedGoogle Scholar
  83. 83.
    Araki Y, Wang Z, Zang C, Wood WH, Schones D, Cui K, Roh T-Y, Lhotsky B, Wersto RP, Peng W, Becker KG, Zhao K, Weng NP (2009) Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity 30:912–925PubMedCrossRefGoogle Scholar
  84. 84.
    Williams MA, Ravkov EV, Bevan MJ (2008) Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory. Immunity 28:533–545PubMedCrossRefGoogle Scholar
  85. 85.
    Sarkar S, Teichgräber V, Kalia V, Polley A, Masopust D, Harrington LE, Ahmed R, Wherry EJ (2007) Strength of stimulus and clonal competition impact the rate of memory CD8 T cell differentiation. J Immunol 179:6704–6714PubMedGoogle Scholar
  86. 86.
    Williams M, Bevan M (2004) Shortening the infectious period does not alter expansion of CD8 T cells but diminishes their capacity to differentiate into memory cells. J Immunol 173:6694PubMedGoogle Scholar
  87. 87.
    Prlic M, Hernandez-Hoyos G, Bevan MJ (2006) Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. J Exp Med 203:2135–2143PubMedCrossRefGoogle Scholar
  88. 88.
    Gourley TS, Wherry EJ, Masopust D, Ahmed R (2004) Generation and maintenance of immunological memory. Semin Immunol 16:323–333PubMedCrossRefGoogle Scholar
  89. 89.
    Kaech SM, Wherry EJ (2007) Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27:393–405PubMedCrossRefGoogle Scholar
  90. 90.
    Prlic M, Williams MA, Bevan MJ (2007) Requirements for CD8 T-cell priming, memory generation and maintenance. Curr Opin Immunol 19:315–319PubMedCrossRefGoogle Scholar
  91. 91.
    Wherry EJ, Blattman JN, Ahmed R (2005) Low CD8 T-cell proliferative potential and high viral load limit the effectiveness of therapeutic vaccination. J Virol 79:8960–8968PubMedCrossRefGoogle Scholar
  92. 92.
    Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R (2003) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77:4911–4927PubMedCrossRefGoogle Scholar
  93. 93.
    Sarkar S, Kalia V, Haining W, Konieczny B, Subramaniam S, Ahmed R (2008) Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J Exp Med 205:625–640PubMedCrossRefGoogle Scholar
  94. 94.
    Malherbe L, Hausl C, Teyton L, McHeyzer-Williams MG (2004) Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR-binding properties. Immunity 21:669–679PubMedCrossRefGoogle Scholar
  95. 95.
    Savage PA, Boniface JJ, Davis MM (1999) A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10:485–492PubMedCrossRefGoogle Scholar
  96. 96.
    Kedzierska K, Day EB, Pi J, Heard SB, Doherty PC, Turner SJ, Perlman S (2006) Quantification of repertoire diversity of influenza-specific epitopes with predominant public or private TCR usage. J Immunol 177:6705–6712PubMedGoogle Scholar
  97. 97.
    Kedzierska K, Venturi V, Field K, Davenport M, Turner SJ, Doherty PC (2006) Early establishment of diverse T cell receptor profiles for influenza-specific CD8(+)CD62L(hi) memory T cells. Proc Natl Acad Sci USA 103:9184–9189PubMedCrossRefGoogle Scholar
  98. 98.
    Zehn D, Lee SY, Bevan MJ (2009) Complete but curtailed T-cell response to very low-affinity antigen. Nature 458:211–214PubMedCrossRefGoogle Scholar
  99. 99.
    Lauvau G, Vijh S, Kong P, Horng T, Kerksiek K, Serbina N, Tuma RA, Pamer EG (2001) Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294:1735–1739PubMedCrossRefGoogle Scholar
  100. 100.
    Badovinac VP, Porter BB, Harty JT (2004) CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5:809–817PubMedCrossRefGoogle Scholar
  101. 101.
    Turner SJ, Diaz G, Cross R, Doherty PC (2003) Analysis of clonotype distribution and persistence for an influenza virus-specific CD8+ T cell response. Immunity 18:549–559PubMedCrossRefGoogle Scholar
  102. 102.
    Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619PubMedCrossRefGoogle Scholar
  103. 103.
    Tewari K, Walent J, Svaren J, Zamoyska R, Suresh M (2006) Differential requirement for Lck during primary and memory CD8+ T cell responses. Proc Natl Acad Sci USA 103:16388–16393PubMedCrossRefGoogle Scholar
  104. 104.
    Hayden M, West A, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25:6758–6780PubMedCrossRefGoogle Scholar
  105. 105.
    Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–107PubMedCrossRefGoogle Scholar
  106. 106.
    D’Souza WN, Chang C-F, Fischer AM, Li M, Hedrick SM (2008) The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol 181:7617–7629PubMedGoogle Scholar
  107. 107.
    Rincón M, Davis RJ (2009) Regulation of the immune response by stress-activated protein kinases. Immunol Rev 228:212–224PubMedCrossRefGoogle Scholar
  108. 108.
    Arbour N, Naniche D, Homann D, Davis RJ, Flavell RA, Oldstone MBA (2002) c-Jun NH(2)-terminal kinase (JNK)1 and JNK2 signaling pathways have divergent roles in CD8(+) T cell-mediated antiviral immunity. J Exp Med 195:801–810PubMedCrossRefGoogle Scholar
  109. 109.
    Gao Y, Tao J, Li MO, Zhang D, Chi H, Henegariu O, Kaech SM, Davis RJ, Flavell RA, Yin Z (2005) JNK1 is essential for CD8+ T cell-mediated tumor immune surveillance. J Immunol 175:5783–5789PubMedGoogle Scholar
  110. 110.
    Merritt C, Enslen H, Diehl N, Conze D, Davis RJ, Rincón M (2000) Activation of p38 mitogen-activated protein kinase in vivo selectively induces apoptosis of CD8(+) but not CD4(+) T cells. Mol Cell Biol 20:936–946PubMedCrossRefGoogle Scholar
  111. 111.
    Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594PubMedCrossRefGoogle Scholar
  112. 112.
    Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112PubMedCrossRefGoogle Scholar
  113. 113.
    Rao RR, Li Q, Odunsi K, Shrikant PA (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and eomesodermin. Immunity 32:67–78PubMedCrossRefGoogle Scholar
  114. 114.
    Gattinoni L, Zhong X-S, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, Paulos CM, Muranski P, Restifo NP (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15:808–813PubMedCrossRefGoogle Scholar
  115. 115.
    Zhao D-M, Yu S, Zhou X, Haring JS, Held W, Badovinac VP, Harty JT, Xue H-H (2010) Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol 184:1191–1199PubMedCrossRefGoogle Scholar
  116. 116.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687PubMedCrossRefGoogle Scholar
  117. 117.
    Mousavi SF, Soroosh P, Takahashi T, Yoshikai Y, Shen H, Lefrançois L, Borst J, Sugamura K, Ishii N (2008) OX40 costimulatory signals potentiate the memory commitment of effector CD8+ T cells. J Immunol 181:5990–6001PubMedGoogle Scholar
  118. 118.
    Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29:589–601PubMedCrossRefGoogle Scholar
  119. 119.
    Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, Mescher MF (1999) Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 162:3256–3262PubMedGoogle Scholar
  120. 120.
    Xiao Z, Casey KA, Jameson SC, Curtsinger JM, Mescher MF (2009) Programming for CD8 T cell memory development requires IL-12 or type I IFN. J Immunol 182:2786–2794PubMedCrossRefGoogle Scholar
  121. 121.
    Agarwal P, Raghavan A, Nandiwada SL, Curtsinger JM, Bohjanen PR, Mueller DL, Mescher MF (2009) Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J Immunol 183:1695–1704PubMedCrossRefGoogle Scholar
  122. 122.
    Schulz E, Mariani L, Radbruch A, Höfer T (2009) Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 30:673–683PubMedCrossRefGoogle Scholar
  123. 123.
    Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386PubMedCrossRefGoogle Scholar
  124. 124.
    Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32:79–90PubMedCrossRefGoogle Scholar
  125. 125.
    Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R (2010) Prolonged interleukin-2Ralpha expression on virus-specific CD8(+) T cells favors terminal-effector differentiation in vivo. Immunity 32:91–103PubMedCrossRefGoogle Scholar
  126. 126.
    Harty JT, Badovinac VP (2008) Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol 8:107–119PubMedCrossRefGoogle Scholar
  127. 127.
    Cui W, Joshi NS, Jiang A, Kaech SM (2009) Effects of signal 3 during CD8 T cell priming: bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine 27:2177–2187PubMedCrossRefGoogle Scholar
  128. 128.
    Pham NL, Badovinac VP, Harty JT (2009) A default pathway of memory CD8 T cell differentiation after dendritic cell immunization is deflected by encounter with inflammatory cytokines during antigen-driven proliferation. J Immunol 183:2337–2348PubMedCrossRefGoogle Scholar
  129. 129.
    Joshi NS, Kaech SM (2008) Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J Immunol 180:1309–1315PubMedGoogle Scholar
  130. 130.
    Stemberger C, Neuenhahn M, Gebhardt FE, Schiemann M, Buchholz VR, Busch DH (2009) Stem cell-like plasticity of naive and distinct memory CD8 + T cell subsets. Semin Immunol 21:62–68PubMedCrossRefGoogle Scholar
  131. 131.
    Parish IA, Kaech SM (2009) Diversity in CD8(+) T cell differentiation. Curr Opin Immunol 21:291–297PubMedCrossRefGoogle Scholar
  132. 132.
    Bannard O, Kraman M, Fearon D (2009) Pathways of memory CD8+ T-cell development. Eur J Immunol 39:2083–2087PubMedCrossRefGoogle Scholar
  133. 133.
    Ahmed R, Bevan MJ, Reiner SL, Fearon DT (2009) The precursors of memory: models and controversies. Nat Rev Immunol 9:662–668PubMedCrossRefGoogle Scholar
  134. 134.
    Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, von Andrian UH, Ahmed R (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234PubMedCrossRefGoogle Scholar
  135. 135.
    Kaech SM, Hemby S, Kersh E, Ahmed R (2002) Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111:837–851PubMedCrossRefGoogle Scholar
  136. 136.
    Badovinac VP, Messingham KA, Jabbari A, Haring JS, Harty JT (2005) Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat Med 11:748–756PubMedCrossRefGoogle Scholar
  137. 137.
    D’Souza WN, Hedrick SM (2006) Cutting edge: latecomer CD8 T cells are imprinted with a unique differentiation program. J Immunol 177:777–781PubMedGoogle Scholar
  138. 138.
    Lanzavecchia A, Sallusto F (2002) Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2:982–987PubMedCrossRefGoogle Scholar
  139. 139.
    Wong P, Lara-Tejero M, Ploss A, Leiner I, Pamer EG (2004) Rapid development of T cell memory. J Immunol 172:7239–7245PubMedGoogle Scholar
  140. 140.
    Busch DH, Kerksiek KM, Pamer EG (2000) Differing roles of inflammation and antigen in T cell proliferation and memory generation. J Immunol 164:4063–4070PubMedGoogle Scholar
  141. 141.
    Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, Killeen N, Orange JS, Russell SM, Weninger W, Reiner SL (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315:1687–1691PubMedCrossRefGoogle Scholar
  142. 142.
    Bannard O, Kraman M, Fearon DT (2009) Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science 323:505–509PubMedCrossRefGoogle Scholar
  143. 143.
    Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H, Busch DH (2007) A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27:985–997PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and Immunology, School of Medicine, Center for Cellular and Molecular ImmunologyUniversity of MissouriColumbiaMOUSA

Personalised recommendations