Cellular and Molecular Life Sciences

, Volume 67, Issue 16, pp 2773–2786 | Cite as

Dengue virus life cycle: viral and host factors modulating infectivity

  • Izabela A. Rodenhuis-Zybert
  • Jan Wilschut
  • Jolanda M. SmitEmail author


Dengue virus (DENV 1-4) represents a major emerging arthropod-borne pathogen. All four DENV serotypes are prevalent in the (sub) tropical regions of the world and infect 50–100 million individuals annually. Whereas the majority of DENV infections proceed asymptomatically or result in self-limited dengue fever, an increasing number of patients present more severe manifestations, such as dengue hemorrhagic fever and dengue shock syndrome. In this review we will give an overview of the infectious life cycle of DENV and will discuss the viral and host factors that are important in controlling DENV infection.


Dengue Flavivirus Life cycle Immune response Pathogenesis Host factors Virulence Antibody-dependent enhancement 



We thank R. van Tongeren and B. Moesker for help with the graphics. This work was supported by the Pediatric Dengue Vaccine Initiative.


  1. 1.
    Gubler DJ (2006) Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp 277:3–16PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organization. WHO report on global surveillance of epidemic-prone infectious diseases—dengue and dengue haemorrhagic fever. World Health Organization. Accessed 9 March 2010
  3. 3.
    Burke DS, Monath TP (2001) Flaviviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, pp 1043–1125Google Scholar
  4. 4.
    Halstead SB (1970) Observations related to pathogenesis of dengue hemorrhagic fever. VI. Hypotheses and discussion. Yale J Biol Med 42:350–362PubMedGoogle Scholar
  5. 5.
    Burke DS, Nisalak A, Johnson DE, Scott RM (1988) A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg 38:172–180PubMedGoogle Scholar
  6. 6.
    Guzman MG, Kouri G, Valdes L, Bravo J, Vazquez S, Halstead SB (2002) Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev Panam Salud Publica 11:223–227PubMedCrossRefGoogle Scholar
  7. 7.
    Recker M, Blyuss KB, Simmons CP, Hien TT, Wills B, Farrar J, Gupta S (2009) Immunological serotype interactions and their effect on the epidemiological pattern of dengue. Proc Biol Sci 276:2541–2548PubMedCrossRefGoogle Scholar
  8. 8.
    Thein S, Aung MM, Shwe TN, Aye M, Zaw A, Aye K, Aye KM, Aaskov J (1997) Risk factors in dengue shock syndrome. Am J Trop Med Hyg 56:566–572PubMedGoogle Scholar
  9. 9.
    Halstead SB, Lan NT, Myint TT, Shwe TN, Nisalak A, Kalyanarooj S, Nimmannitya S, Soegijanto S, Vaughn DW, Endy TP (2002) Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg Infect Dis 8:1474–1479PubMedGoogle Scholar
  10. 10.
    Kliks SC, Nimmanitya S, Nisalak A, Burke DS (1988) Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 38:411–419PubMedGoogle Scholar
  11. 11.
    Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103PubMedCrossRefGoogle Scholar
  12. 12.
    Guzman MG, Kouri G, Bravo J, Valdes L, Vazquez S, Halstead SB (2002) Effect of age on outcome of secondary dengue 2 infections. Int J Infect Dis 6:118–124PubMedCrossRefGoogle Scholar
  13. 13.
    Sierra B, Alegre R, Perez AB, Garcia G, Sturn-Ramirez K, Obasanjo O, Aguirre E, Alvarez M, Rodriguez-Roche R, Valdes L, Kanki P, Guzman MG (2007) HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue virus infection. Hum Immunol 68:531–540PubMedCrossRefGoogle Scholar
  14. 14.
    Thisyakorn U, Nimmannitya S (1993) Nutritional status of children with dengue hemorrhagic fever. Clin Infect Dis 16:295–297PubMedGoogle Scholar
  15. 15.
    Thomas SJ, Strickman D, Vaughn DW (2003) Dengue epidemiology: virus epidemiology, ecology, and emergence. Adv Virus Res 61:235–289PubMedCrossRefGoogle Scholar
  16. 16.
    Harris E, Holden KL, Edgil D, Polacek C, Clyde K (2006) Molecular biology of flaviviruses. Novartis Found Symp 277:23–39PubMedCrossRefGoogle Scholar
  17. 17.
    Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59:23–61PubMedCrossRefGoogle Scholar
  18. 18.
    Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB (2004) Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci USA 101:3414–3419PubMedCrossRefGoogle Scholar
  19. 19.
    Jones CT, Ma L, Burgner JW, Groesch TD, Post CB, Kuhn RJ (2003) Flavivirus capsid is a dimeric alpha-helical protein. J Virol 77:7143–7149PubMedCrossRefGoogle Scholar
  20. 20.
    Chang CJ, Luh HW, Wang SH, Lin HJ, Lee SC, Hu ST (2001) The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol 20:569–577PubMedCrossRefGoogle Scholar
  21. 21.
    Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298PubMedCrossRefGoogle Scholar
  22. 22.
    Nybakken GE, Nelson CA, Chen BR, Diamond MS, Fremont DH (2006) Crystal structure of the West Nile virus envelope glycoprotein. J Virol 80:11467–11474PubMedCrossRefGoogle Scholar
  23. 23.
    Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100:6986–6991PubMedCrossRefGoogle Scholar
  24. 24.
    Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79:1223–1231PubMedCrossRefGoogle Scholar
  25. 25.
    Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG (2004) Conformational changes of the flavivirus E glycoprotein. Structure 12:1607–1618PubMedCrossRefGoogle Scholar
  27. 27.
    Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22PubMedCrossRefGoogle Scholar
  28. 28.
    Clyde K, Kyle JL, Harris E (2006) Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80:11418–11431PubMedCrossRefGoogle Scholar
  29. 29.
    Bryant JE, Calvert AE, Mesesan K, Crabtree MB, Volpe KE, Silengo S, Kinney RM, Huang CY, Miller BR, Roehrig JT (2007) Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology 366:415–423PubMedCrossRefGoogle Scholar
  30. 30.
    Crabtree MB, Kinney RM, Miller BR (2005) Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch Virol 150:771–786PubMedCrossRefGoogle Scholar
  31. 31.
    Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V (1999) Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73:6104–6110PubMedGoogle Scholar
  32. 32.
    Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ, Rossmann MG (2003) Structures of immature flavivirus particles. EMBO J 22:2604–2613PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ (2003) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912PubMedCrossRefGoogle Scholar
  34. 34.
    Allison SL, Stadler K, Mandl CW, Kunz C, Heinz FX (1995) Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J Virol 69:5816–5820PubMedGoogle Scholar
  35. 35.
    Fonseca BA, Pincus S, Shope RE, Paoletti E, Mason PW (1994) Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. Vaccine 12:279–285PubMedCrossRefGoogle Scholar
  36. 36.
    Hunt AR, Cropp CB, Chang GJ (2001) A recombinant particulate antigen of Japanese encephalitis virus produced in stably-transformed cells is an effective noninfectious antigen and subunit immunogen. J Virol Methods 97:133–149PubMedCrossRefGoogle Scholar
  37. 37.
    Konishi E, Fujii A (2002) Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. Vaccine 20:1058–1067PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang Y, Kaufmann B, Chipman PR, Kuhn RJ, Rossmann MG (2007) Structure of immature West Nile virus. J Virol 81:6141–6145PubMedCrossRefGoogle Scholar
  39. 39.
    Zybert IA, van dE-M, Wilschut J, Smit JM (2008) Functional importance of dengue virus maturation: infectious properties of immature virions. J Gen Virol 89:3047–3051Google Scholar
  40. 40.
    Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837PubMedCrossRefGoogle Scholar
  41. 41.
    Stadler K, Allison SL, Schalich J, Heinz FX (1997) Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481PubMedGoogle Scholar
  42. 42.
    Jessie K, Fong MY, Devi S, Lam SK, Wong KT (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189:1411–1418PubMedCrossRefGoogle Scholar
  43. 43.
    Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS (2000) Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6:816–820PubMedCrossRefGoogle Scholar
  44. 44.
    Mercado-Curiel RF, Black WC, Munoz ML (2008) A dengue receptor as possible genetic marker of vector competence in Aedes aegypti. BMC Microbiol 8:118PubMedCrossRefGoogle Scholar
  45. 45.
    Molina-Cruz A, Gupta L, Richardson J, Bennett K, Black W, Barillas-Mury C (2005) Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti. Am J Trop Med Hyg 72:631–637PubMedGoogle Scholar
  46. 46.
    Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ (2007) Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7:9PubMedCrossRefGoogle Scholar
  47. 47.
    Sriurairatna S, Bhamarapravati N (1977) Replication of dengue-2 virus in Aedes albopictus mosquitoes. An electron microscopic study. Am J Trop Med Hyg 26:1199–1205PubMedGoogle Scholar
  48. 48.
    van der Schaar HM, Rust MJ, Waarts BL, van dE-M, Kuhn RJ, Wilschut J, Zhuang X, Smit JM (2007) Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81:12019–12028Google Scholar
  49. 49.
    Avirutnan P, Malasit P, Seliger B, Bhakdi S, Husmann M (1998) Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol 161:6338–6346PubMedGoogle Scholar
  50. 50.
    Cabrera-Hernandez A, Thepparit C, Suksanpaisan L, Smith DR (2007) Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol 79:386–392PubMedCrossRefGoogle Scholar
  51. 51.
    Chareonsirisuthigul T, Kalayanarooj S, Ubol S (2007) Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol 88:365–375PubMedCrossRefGoogle Scholar
  52. 52.
    Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453:672–676PubMedCrossRefGoogle Scholar
  53. 53.
    Edgil D, Diamond MS, Holden KL, Paranjape SM, Harris E (2003) Translation efficiency determines differences in cellular infection among dengue virus type 2 strains. Virology 317:275–290PubMedCrossRefGoogle Scholar
  54. 54.
    Gromowski GD, Barrett AD (2007) Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. Virology 366:349–360PubMedCrossRefGoogle Scholar
  55. 55.
    Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467PubMedCrossRefGoogle Scholar
  56. 56.
    Huang KJ, Yang YC, Lin YS, Huang JH, Liu HS, Yeh TM, Chen SH, Liu CC, Lei HY (2006) The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J Immunol 176:2825–2832PubMedGoogle Scholar
  57. 57.
    King CA, Marshall JS, Alshurafa H, Anderson R (2000) Release of vasoactive cytokines by antibody-enhanced dengue virus infection of a human mast cell/basophil line. J Virol 74:7146–7150PubMedCrossRefGoogle Scholar
  58. 58.
    Kurane I, Meager A, Ennis FA (1989) Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity. J Exp Med 170:763–775PubMedCrossRefGoogle Scholar
  59. 59.
    Lin YL, Liu CC, Chuang JI, Lei HY, Yeh TM, Lin YS, Huang YH, Liu HS (2000) Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology 276:114–126PubMedCrossRefGoogle Scholar
  60. 60.
    Littaua R, Kurane I, Ennis FA (1990) Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol 144:3183–3186PubMedGoogle Scholar
  61. 61.
    Moreno-Altamirano MM, Sanchez-Garcia FJ, Legorreta-Herrera M, guilar-Carmona I (2007) Susceptibility of mouse macrophage J774 to dengue virus infection. Intervirology 50:237–239PubMedCrossRefGoogle Scholar
  62. 62.
    Reyes-Del VJ, Chavez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567CrossRefGoogle Scholar
  63. 63.
    Mercado-Curiel RF, Esquinca-Aviles HA, Tovar R, az-Badillo A, Camacho-Nuez M, Munoz ML (2006) The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells. BMC Microbiol 6:85PubMedCrossRefGoogle Scholar
  64. 64.
    Yazi MM, Salas-Benito JS, Lanz-Mendoza H, Hernandez-Martinez S, Del Angel RM (2002) A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am J Trop Med Hyg 67:76–84Google Scholar
  65. 65.
    Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871PubMedCrossRefGoogle Scholar
  66. 66.
    Germi R, Crance JM, Garin D, Guimet J, Lortat-Jacob H, Ruigrok RW, Zarski JP, Drouet E (2002) Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292:162–168PubMedCrossRefGoogle Scholar
  67. 67.
    Hilgard P, Stockert R (2000) Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology 32:1069–1077PubMedCrossRefGoogle Scholar
  68. 68.
    Chen YC, Wang SY, King CC (1999) Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 73:2650–2657PubMedGoogle Scholar
  69. 69.
    Jindadamrongwech S, Thepparit C, Smith DR (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927PubMedCrossRefGoogle Scholar
  70. 70.
    Thepparit C, Smith DR (2004) Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78:12647–12656PubMedCrossRefGoogle Scholar
  71. 71.
    Fernandez-Garcia MD, Mazzon M, Jacobs M, Amara A (2009) Pathogenesis of flavivirus infections: using and abusing the host cell. Cell Host Microbe 5:318–328PubMedCrossRefGoogle Scholar
  72. 72.
    Lozach PY, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier JL, Rey FA, Despres P, Renzana-Seisdedos F, Amara A (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem 280:23698–23708PubMedCrossRefGoogle Scholar
  73. 73.
    Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, renzana-Seisdedos F, Despres P (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728PubMedCrossRefGoogle Scholar
  74. 74.
    Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829PubMedCrossRefGoogle Scholar
  75. 75.
    Miller JL, de Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17PubMedCrossRefGoogle Scholar
  76. 76.
    Acosta EG, Castilla V, Damonte EB (2008) Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol 89:474–484PubMedCrossRefGoogle Scholar
  77. 77.
    van der Schaar HM, Rust MJ, Chen C, van dE-M, Wilschut J, Zhuang X, Smit JM (2008) Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4:e1000244Google Scholar
  78. 78.
    Krishnan MN, Sukumaran B, Pal U, Agaisse H, Murray JL, Hodge TW, Fikrig E (2007) Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81:4881–4885PubMedCrossRefGoogle Scholar
  79. 79.
    Chu JJ, Ng ML (2004) Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78:10543–10555PubMedCrossRefGoogle Scholar
  80. 80.
    Nawa M (1984) Development of a new cell system for the infectivity assay of dengue viruses: plaque formation and virus growth of prototype and wild-type dengue virus strains in a newly established cell line, GK. Microbiol Immunol 28:765–776PubMedGoogle Scholar
  81. 81.
    Acosta EG, Castilla V, Damonte EB (2009) Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11:1533–1549PubMedCrossRefGoogle Scholar
  82. 82.
    Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15:690–698PubMedCrossRefGoogle Scholar
  83. 83.
    Heinz FX, Allison SL (2003) Flavivirus structure and membrane fusion. Adv Virus Res 59:63–97PubMedCrossRefGoogle Scholar
  84. 84.
    Kielian M, Rey FA (2006) Virus membrane–fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4:67–76PubMedCrossRefGoogle Scholar
  85. 85.
    Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319PubMedCrossRefGoogle Scholar
  86. 86.
    Stiasny K, Allison SL, Schalich J, Heinz FX (2002) Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH. J Virol 76:3784–3790PubMedCrossRefGoogle Scholar
  87. 87.
    Diamond MS, Roberts TG, Edgil D, Lu B, Ernst J, Harris E (2000) Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons. J Virol 74:4957–4966PubMedCrossRefGoogle Scholar
  88. 88.
    Ho LJ, Hung LF, Weng CY, Wu WL, Chou P, Lin YL, Chang DM, Tai TY, Lai JH (2005) Dengue virus type 2 antagonizes IFN-alpha but not IFN-gamma antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. J Immunol 174:8163–8172PubMedGoogle Scholar
  89. 89.
    Johnson AJ, Roehrig JT (1999) New mouse model for dengue virus vaccine testing. J Virol 73:783–786PubMedGoogle Scholar
  90. 90.
    Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E (2004) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78:2701–2710PubMedCrossRefGoogle Scholar
  91. 91.
    Azeredo EL, De Oliveira-Pinto LM, Zagne SM, Cerqueira DI, Nogueira RM, Kubelka CF (2006) NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease. Clin Exp Immunol 143:345–356PubMedCrossRefGoogle Scholar
  92. 92.
    Shresta S, Kyle JL, Robert BP, Harris E (2004) Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice. Virology 319:262–273PubMedCrossRefGoogle Scholar
  93. 93.
    Akira S (2006) TLR signaling. Curr Top Microbiol Immunol 311:1–16PubMedCrossRefGoogle Scholar
  94. 94.
    Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7:179–190PubMedCrossRefGoogle Scholar
  95. 95.
    de K, Setiati TE, Mairuhu AT, Koraka P, Aberson HA, Spek CA, Osterhaus AD, Reitsma PH, Brandjes DP, Soemantri A, van Gorp EC (2008) Differential gene expression changes in children with severe dengue virus infections. PLoS Negl Trop Dis 2:e215Google Scholar
  96. 96.
    Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11:604–615PubMedCrossRefGoogle Scholar
  97. 97.
    Aebi M, Fah J, Hurt N, Samuel CE, Thomis D, Bazzigher L, Pavlovic J, Haller O, Staeheli P (1989) cDNA structures and regulation of two interferon-induced human Mx proteins. Mol Cell Biol 9:5062–5072PubMedGoogle Scholar
  98. 98.
    Clemens MJ, Williams BR (1978) Inhibition of cell-free protein synthesis by pppA2′p5′A2′p5′A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell 13:565–572PubMedCrossRefGoogle Scholar
  99. 99.
    Pavlovic J, Zurcher T, Haller O, Staeheli P (1990) Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J Virol 64:3370–3375PubMedGoogle Scholar
  100. 100.
    Samuel CE (1981) Molecular mechanisms of interferon action: interferon-mediated phosphorylation of ribosome-associated protein P1 and protein synthesis initiation factor eIF-2. Tex Rep Biol Med 41:463–470PubMedGoogle Scholar
  101. 101.
    Kurane I, Ennis FA (1988) Production of interferon alpha by dengue virus-infected human monocytes. J Gen Virol 69(Pt 2):445–449PubMedCrossRefGoogle Scholar
  102. 102.
    Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E (2005) Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 175:3946–3954PubMedGoogle Scholar
  103. 103.
    Erickson AK, Gale M Jr (2008) Regulation of interferon production and innate antiviral immunity through translational control of IRF-7. Cell Res 18:433–435PubMedCrossRefGoogle Scholar
  104. 104.
    Ashour J, Laurent-Rolle M, Shi PY, Garcia-Sastre A (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83:5408–5418PubMedCrossRefGoogle Scholar
  105. 105.
    Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, Foster GR, Jacobs M (2005) Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 79:5414–5420PubMedCrossRefGoogle Scholar
  106. 106.
    Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100:14333–14338PubMedCrossRefGoogle Scholar
  107. 107.
    Umareddy I, Tang KF, Vasudevan SG, Devi S, Hibberd ML, Gu F (2008) Dengue virus regulates type I interferon signalling in a strain-dependent manner in human cell lines. J Gen Virol 89:3052–3062PubMedCrossRefGoogle Scholar
  108. 108.
    Takhampunya R, Palmer DR, McClain S, Barvir DA, Lynch J, Jarman RG, Thomas S, Gibbons RV, Burgess TH, Sun P, Kamau E, Putnak R, Zhang C (2009) Phenotypic analysis of dengue virus isolates associated with dengue fever and dengue hemorrhagic fever for cellular attachment, replication and interferon signaling ability. Virus Res 145:31–38PubMedCrossRefGoogle Scholar
  109. 109.
    Cardosa MJ, Wang SM, Sum MS, Tio PH (2002) Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses. BMC Microbiol 2:9PubMedCrossRefGoogle Scholar
  110. 110.
    Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, King CC, Wu HC, Chang GJ, Wang WK (2008) Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 82:6631–6643PubMedCrossRefGoogle Scholar
  111. 111.
    Shu PY, Chen LK, Chang SF, Yueh YY, Chow L, Chien LJ, Chin C, Lin TH, Huang JH (2000) Dengue NS1-specific antibody responses: isotype distribution and serotyping in patients with dengue fever and dengue hemorrhagic fever. J Med Virol 62:224–232PubMedCrossRefGoogle Scholar
  112. 112.
    Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, Vaughn DW, Nisalak A, Ennis FA, Rothman AL (2002) High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 186:1165–1168PubMedCrossRefGoogle Scholar
  113. 113.
    Costa SM, Freire MS, Alves AM (2006) DNA vaccine against the non-structural 1 protein (NS1) of dengue 2 virus. Vaccine 24:4562–4564PubMedCrossRefGoogle Scholar
  114. 114.
    Henchal EA, Henchal LS, Schlesinger JJ (1988) Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J Gen Virol 69(Pt 8):2101–2107PubMedCrossRefGoogle Scholar
  115. 115.
    Kurosu T, Chaichana P, Yamate M, Anantapreecha S, Ikuta K (2007) Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein 1. Biochem Biophys Res Commun 362:1051–1056PubMedCrossRefGoogle Scholar
  116. 116.
    Schlesinger JJ, Brandriss MW, Walsh EE (1987) Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol 68(Pt 3):853–857PubMedCrossRefGoogle Scholar
  117. 117.
    Kaufman BM, Summers PL, Dubois DR, Eckels KH (1987) Monoclonal antibodies against dengue 2 virus E-glycoprotein protect mice against lethal dengue infection. Am J Trop Med Hyg 36:427–434PubMedGoogle Scholar
  118. 118.
    Kaufman BM, Summers PL, Dubois DR, Cohen WH, Gentry MK, Timchak RL, Burke DS, Eckels KH (1989) Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection. Am J Trop Med Hyg 41:576–580PubMedGoogle Scholar
  119. 119.
    Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, van der Ende-Metselaar H, Lei HY, Wilschut J, Smit JM (2010) Immature dengue virus: a veiled pathogen? PLoS Pathog 6:e1000718PubMedCrossRefGoogle Scholar
  120. 120.
    Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE, Fremont DH, Diamond MS (2007) The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1:135–145PubMedCrossRefGoogle Scholar
  121. 121.
    Lisova O, Hardy F, Petit V, Bedouelle H (2007) Mapping to completeness and transplantation of a group-specific, discontinuous, neutralizing epitope in the envelope protein of dengue virus. J Gen Virol 88:2387–2397PubMedCrossRefGoogle Scholar
  122. 122.
    Oliphant T, Nybakken GE, Engle M, Xu Q, Nelson CA, Sukupolvi-Petty S, Marri A, Lachmi BE, Olshevsky U, Fremont DH, Pierson TC, Diamond MS (2006) Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J Virol 80:12149–12159PubMedCrossRefGoogle Scholar
  123. 123.
    Rajamanonmani R, Nkenfou C, Clancy P, Yau YH, Shochat SG, Sukupolvi-Petty S, Schul W, Diamond MS, Vasudevan SG, Lescar J (2009) On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. J Gen Virol 90:799–809PubMedCrossRefGoogle Scholar
  124. 124.
    Nelson S, Jost CA, Xu Q, Ess J, Martin JE, Oliphant T, Whitehead SS, Durbin AP, Graham BS, Diamond MS, Pierson TC (2008) Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog 4:e1000060PubMedCrossRefGoogle Scholar
  125. 125.
    Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH (2005) Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437:764–769PubMedCrossRefGoogle Scholar
  126. 126.
    Thompson BS, Moesker B, Smit JM, Wilschut J, Diamond MS, Fremont DH (2009) A therapeutic antibody against west Nile virus neutralizes infection by blocking fusion within endosomes. PLoS Pathog 5:e1000453PubMedCrossRefGoogle Scholar
  127. 127.
    van der Schaar HM, Wilschut JC, Smit JM (2009) Role of antibodies in controlling dengue virus infection. Immunobiology. doi: 10.1016/j.imbio.2008.11.008
  128. 128.
    Halstead SB, O’Rourke EJ (1977) Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265:739–741PubMedCrossRefGoogle Scholar
  129. 129.
    Halstead SB, O’Rourke EJ (1977) Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 146:201–217PubMedCrossRefGoogle Scholar
  130. 130.
    Randolph VB, Winkler G, Stollar V (1990) Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 174:450–458PubMedCrossRefGoogle Scholar
  131. 131.
    Huang KJ, Yang YC, lin YS, liu HS, Yeh TM, Chen SH, Liu CC, Lei HY (2005) Flow cytometric determination for dengue virus-infected cells: its application for antibody-dependent enhancement study. Dengue Bull 29:142–150Google Scholar
  132. 132.
    Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, Sawasdivorn S, Duangchinda T, Dong T, Rowland-Jones S, Yenchitsomanus PT, McMichael A, Malasit P, Screaton G (2003) Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9:921–927PubMedCrossRefGoogle Scholar
  133. 133.
    Mongkolsapaya J, Duangchinda T, Dejnirattisai W, Vasanawathana S, Avirutnan P, Jairungsri A, Khemnu N, Tangthawornchaikul N, Chotiyarnwong P, Sae-Jang K, Koch M, Jones Y, McMichael A, Xu X, Malasit P, Screaton G (2006) T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal? J Immunol 176:3821–3829PubMedGoogle Scholar
  134. 134.
    Rothman AL (2009) T lymphocyte responses to heterologous secondary dengue virus infections. Ann N Y Acad Sci 1171(suppl 1):E36–E41PubMedCrossRefGoogle Scholar
  135. 135.
    Rothman AL (2010) Cellular immunology of sequential dengue virus infection and its role in disease pathogenesis. Curr Top Microbiol Immunol 338:83–98PubMedCrossRefGoogle Scholar
  136. 136.
    Screaton G, Mongkolsapaya J (2006) T cell responses and dengue haemorrhagic fever. Novartis Found Symp 277:164–171PubMedCrossRefGoogle Scholar
  137. 137.
    Yauch LE, Zellweger RM, Kotturi MF, Qutubuddin A, Sidney J, Peters B, Prestwood TR, Sette A, Shresta S (2009) A protective role for dengue virus-specific CD8+ T cells. J Immunol 182:4865–4873PubMedCrossRefGoogle Scholar
  138. 138.
    Mathew A, Rothman AL (2008) Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev 225:300–313PubMedCrossRefGoogle Scholar
  139. 139.
    Azeredo EL, Zagne SM, Santiago MA, Gouvea AS, Santana AA, Neves-Souza PC, Nogueira RM, Miagostovich MP, Kubelka CF (2001) Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever. Immunobiology 204:494–507PubMedCrossRefGoogle Scholar
  140. 140.
    Basu A, Chaturvedi UC (2008) Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol 53:287–299PubMedCrossRefGoogle Scholar
  141. 141.
    Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM, Assis EF, Bozza PT, Kubelka CF (2008) Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis 8:86PubMedCrossRefGoogle Scholar
  142. 142.
    Chakravarti A, Kumaria R (2006) Circulating levels of tumour necrosis factor-alpha & interferon-gamma in patients with dengue & dengue haemorrhagic fever during an outbreak. Indian J Med Res 123:25–30PubMedGoogle Scholar
  143. 143.
    Dong T, Moran E, Vinh CN, Simmons C, Luhn K, Peng Y, Wills B, Phuong DN, Thi Thu TL, Hien TT, McMichael A, Farrar J, Rowland-Jones S (2007) High pro-inflammatory cytokine secretion and loss of high avidity cross-reactive cytotoxic T-cells during the course of secondary dengue virus infection. PLoS One 2:e1192PubMedCrossRefGoogle Scholar
  144. 144.
    Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, Nisalak A, Rothman AL, Ennis FA (1999) Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity. J Med Virol 59:329–334PubMedCrossRefGoogle Scholar
  145. 145.
    Hober D, Poli L, Roblin B, Gestas P, Chungue E, Granic G, Imbert P, Pecarere JL, Vergez-Pascal R, Wattre P (1993) Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg 48:324–331PubMedGoogle Scholar
  146. 146.
    Kurane I, Innis BL, Nimmannitya S, Nisalak A, Meager A, Janus J, Ennis FA (1991) Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J Clin Invest 88:1473–1480PubMedCrossRefGoogle Scholar
  147. 147.
    Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E (2006) Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 80:10208–10217PubMedCrossRefGoogle Scholar
  148. 148.
    Suharti C, van Gorp EC, Dolmans WM, Setiati TE, Hack CE, Djokomoeljanto R, van der Meer JW (2003) Cytokine patterns during dengue shock syndrome. Eur Cytokine Netw 14:172–177PubMedGoogle Scholar
  149. 149.
    Atrasheuskaya A, Petzelbauer P, Fredeking TM, Ignatyev G (2003) Anti-TNF antibody treatment reduces mortality in experimental dengue virus infection. FEMS Immunol Med Microbiol 35:33–42PubMedCrossRefGoogle Scholar
  150. 150.
    Aichele P, Brduscha-Riem K, Oehen S, Odermatt B, Zinkernagel RM, Hengartner H, Pircher H (1997) Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity 6:519–529PubMedCrossRefGoogle Scholar
  151. 151.
    Mangada MM, Rothman AL (2005) Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol 175:2676–2683PubMedGoogle Scholar
  152. 152.
    Nguyen TH, Lei HY, Nguyen TL, Lin YS, Huang KJ, Le BL, Lin CF, Yeh TM, Do QH, Vu TQ, Chen LC, Huang JH, Lam TM, Liu CC, Halstead SB (2004) Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis 189:221–232PubMedCrossRefGoogle Scholar
  153. 153.
    Simmons CP, Chau TN, Thuy TT, Tuan NM, Hoang DM, Thien NT, Lien lB, Quy NT, Hieu NT, Hien TT, McElnea C, Young P, Whitehead S, Hung NT, Farrar J (2007) Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J Infect Dis 196:416–424PubMedCrossRefGoogle Scholar
  154. 154.
    Sun P, Fernandez S, Marovich MA, Palmer DR, Celluzzi CM, Boonnak K, Liang Z, Subramanian H, Porter KR, Sun W, Burgess TH (2009) Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. Virology 383:207–215PubMedCrossRefGoogle Scholar
  155. 155.
    Boonnak K, Slike BM, Burgess TH, Mason RM, Wu SJ, Sun P, Porter K, Rudiman IF, Yuwono D, Puthavathana P, Marovich MA (2008) Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol 82:3939–3951PubMedCrossRefGoogle Scholar
  156. 156.
    Weaver S, Vasilakis N (2009) Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arbovial disease. Infect Genet Evol 9:523–540PubMedCrossRefGoogle Scholar
  157. 157.
    Blok J, Gibbs AJ, McWilliam SM, Vitarana UT (1991) NS 1 gene sequences from eight dengue-2 viruses and their evolutionary relationships with other dengue-2 viruses. Arch Virol 118:209–223PubMedCrossRefGoogle Scholar
  158. 158.
    Kanakaratne N, Wahala WM, Messer WB, Tissera HA, Shahani A, Abeysinghe N, de-Silva AM, Gunasekera M (2009) Severe dengue epidemics in Sri Lanka, 2003–2006. Emerg Infect Dis 15:192–199PubMedCrossRefGoogle Scholar
  159. 159.
    Mangada MN, Igarashi A (1997) Sequences of terminal non-coding regions from four dengue-2 viruses isolated from patients exhibiting different disease severities. Virus Genes 14:5–12PubMedCrossRefGoogle Scholar
  160. 160.
    Mangada MN, Igarashi A (1998) Molecular and in vitro analysis of eight dengue type 2 viruses isolated from patients exhibiting different disease severities. Virology 244:458–466PubMedCrossRefGoogle Scholar
  161. 161.
    Messer WB, Gubler DJ, Harris E, Sivananthan K, de Silva AM (2003) Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg Infect Dis 9:800–809PubMedGoogle Scholar
  162. 162.
    Pandey BD, Igarashi A (2000) Severity-related molecular differences among nineteen strains of dengue type 2 viruses. Microbiol Immunol 44:179–188PubMedGoogle Scholar
  163. 163.
    Raekiansyah M, Pramesyanti A, Bela B, Kosasih H, Ma’roef CN, Tobing SY, Rudiman PI, Alisjahbana B, Endi TP, Green S, Kalayanarooj S, Rothman AL, Sudiro TM (2005) Genetic variations and relationship among dengue virus type 3 strains isolated from patients with mild or severe form of dengue disease in Indonesia and Thailand. Southeast Asian J Trop Med Public Health 36:1187–1197PubMedGoogle Scholar
  164. 164.
    Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, Boshell J, de Mesa MT, Nogueira RM, da Rosa AT (1997) Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230:244–251PubMedCrossRefGoogle Scholar
  165. 165.
    Watts DM, Porter KR, Putvatana P, Vasquez B, Calampa C, Hayes CG, Halstead SB (1999) Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet 354:1431–1434PubMedCrossRefGoogle Scholar
  166. 166.
    Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, de C, Ramos C, Rico-Hesse R (1999) Dengue virus structural differences that correlate with pathogenesis. J Virol 73:4738–4747Google Scholar
  167. 167.
    Cologna R, Armstrong PM, Rico-Hesse R (2005) Selection for virulent dengue viruses occurs in humans and mosquitoes. J Virol 79:853–859PubMedCrossRefGoogle Scholar
  168. 168.
    Pryor MJ, Carr JM, Hocking H, Davidson AD, Li P, Wright PJ (2001) Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. Am J Trop Med Hyg 65:427–434PubMedGoogle Scholar
  169. 169.
    Pryor MJ, Wright PJ (1994) Glycosylation mutants of dengue virus NS1 protein. J Gen Virol 75(Pt 5):1183–1187PubMedCrossRefGoogle Scholar
  170. 170.
    Pryor MJ, Gualano RC, Lin B, Davidson AD, Wright PJ (1998) Growth restriction of dengue virus type 2 by site-specific mutagenesis of virus-encoded glycoproteins. J Gen Virol 79(Pt 11):2631–2639PubMedGoogle Scholar
  171. 171.
    Vorndam V, Mathews JH, Barrett AD, Roehrig JT, Trent DW (1993) Molecular and biological characterization of a non-glycosylated isolate of St Louis encephalitis virus. J Gen Virol 74(Pt 12):2653–2660PubMedCrossRefGoogle Scholar
  172. 172.
    Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhn RJ, Rossmann MG (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493PubMedCrossRefGoogle Scholar
  173. 173.
    Tajima S, Takasaki T, Kurane I (2008) Characterization of Asn130-to-Ala mutant of dengue type 1 virus NS1 protein. Virus Genes 36:323–329PubMedCrossRefGoogle Scholar
  174. 174.
    Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S, Auethavornanan K, Jairungsri A, Kanlaya R, Tangthawornchaikul N, Puttikhunt C, Pattanakitsakul SN, Yenchitsomanus PT, Mongkolsapaya J, Kasinrerk W, Sittisombut N, Husmann M, Blettner M, Vasanawathana S, Bhakdi S, Malasit P (2006) Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 193:1078–1088PubMedCrossRefGoogle Scholar
  175. 175.
    Anderson R, Wang S, Osiowy C, Issekutz AC (1997) Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol 71:4226–4232PubMedGoogle Scholar
  176. 176.
    Chang GJ, Hunt AR, Holmes DA, Springfield T, Chiueh TS, Roehrig JT, Gubler DJ (2003) Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus. Virology 306:170–180PubMedCrossRefGoogle Scholar
  177. 177.
    Falconar AK (1999) Identification of an epitope on the dengue virus membrane (M) protein defined by cross-protective monoclonal antibodies: design of an improved epitope sequence based on common determinants present in both envelope (E and M) proteins. Arch Virol 144:2313–2330PubMedCrossRefGoogle Scholar
  178. 178.
    He RT, Innis BL, Nisalak A, Usawattanakul W, Wang S, Kalayanarooj S, Anderson R (1995) Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J Med Virol 45:451–461PubMedCrossRefGoogle Scholar
  179. 179.
    Henchal EA, McCown JM, Burke DS, Seguin MC, Brandt WE (1985) Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am J Trop Med Hyg 34:162–169PubMedGoogle Scholar
  180. 180.
    Murray JM, Aaskov JG, Wright PJ (1993) Processing of the dengue virus type 2 proteins prM and C-prM. J Gen Virol 74(Pt 2):175–182PubMedCrossRefGoogle Scholar
  181. 181.
    Pryor MJ, Azzola L, Wright PJ, Davidson AD (2004) Histidine 39 in the dengue virus type 2M protein has an important role in virus assembly. J Gen Virol 85:3627–3636PubMedCrossRefGoogle Scholar
  182. 182.
    Purdy DE, Chang GJ (2005) Secretion of noninfectious dengue virus-like particles and identification of amino acids in the stem region involved in intracellular retention of envelope protein. Virology 333:239–250PubMedCrossRefGoogle Scholar
  183. 183.
    Roehrig JT, Bolin RA, Kelly RG (1998) Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246:317–328PubMedCrossRefGoogle Scholar
  184. 184.
    Wang S, He R, Anderson R (1999) PrM- and cell-binding domains of the dengue virus E protein. J Virol 73:2547–2551PubMedGoogle Scholar
  185. 185.
    Bray M, Lai CJ (1991) Dengue virus premembrane and membrane proteins elicit a protective immune response. Virology 185:505–508PubMedCrossRefGoogle Scholar
  186. 186.
    Huang KJ, lin YS, Huang JH, Liu HS, Yeh TM, Liu CC, Lei HY (2008) Anti-prM antibody as an autoantibody in Dengue virus infection. Am J Infect Dis 4:59–67Google Scholar
  187. 187.
    Se-Thoe SY, Ng MM, Ling AE (1999) Retrospective study of Western blot profiles in immune sera of natural dengue virus infections. J Med Virol 57:322–330PubMedCrossRefGoogle Scholar
  188. 188.
    Junjhon J, Lausumpao M, Supasa S, Noisakran S, Songjaeng A, Saraithong P, Chaichoun K, Utaipat U, Keelapang P, Kanjanahaluethai A, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N (2008) Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction. J Virol 82:10776–10791PubMedCrossRefGoogle Scholar
  189. 189.
    Keelapang P, Sriburi R, Supasa S, Panyadee N, Songjaeng A, Jairungsri A, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N (2004) Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J Virol 78:2367–2381PubMedCrossRefGoogle Scholar
  190. 190.
    Elshuber S, Allison SL, Heinz FX, Mandl CW (2003) Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol 84:183–191PubMedCrossRefGoogle Scholar
  191. 191.
    Cherrier MV, Kaufmann B, Nybakken GE, Lok SM, Warren JT, Chen BR, Nelson CA, Kostyuchenko VA, Holdaway HA, Chipman PR, Kuhn RJ, Diamond MS, Rossmann MG, Fremont DH (2009) Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J 28:3269–3276PubMedCrossRefGoogle Scholar
  192. 192.
    Halstead SB, Streit TG, Lafontant JG, Putvatana R, Russell K, Sun W, Kanesa-Thasan N, Hayes CG, Watts DM (2001) Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am J Trop Med Hyg 65:180–183PubMedGoogle Scholar
  193. 193.
    Kouri G, Guzman MG, Valdes L, Carbonel I, del RD, Vazquez S, Laferte J, Delgado J, Cabrera MV (1998) Reemergence of dengue in Cuba: a 1997 epidemic in Santiago de Cuba. Emerg Infect Dis 4:89–92Google Scholar
  194. 194.
    Kouri GP, Guzman MG, Bravo JR, Triana C (1989) Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic, 1981. Bull World Health Organ 67:375–380PubMedGoogle Scholar
  195. 195.
    Chiewsilp P, Scott RM, Bhamarapravati N (1981) Histocompatibility antigens and dengue hemorrhagic fever. Am J Trop Med Hyg 30:1100–1105PubMedGoogle Scholar
  196. 196.
    LaFleur C, Granados J, Vargas-Alarcon G, Ruiz-Morales J, Villarreal-Garza C, Higuera L, Hernandez-Pacheco G, Cutino-Moguel T, Rangel H, Figueroa R, Acosta M, Lazcano E, Ramos C (2002) HLA-DR antigen frequencies in Mexican patients with dengue virus infection: HLA-DR4 as a possible genetic resistance factor for dengue hemorrhagic fever. Hum Immunol 63:1039–1044PubMedCrossRefGoogle Scholar
  197. 197.
    Loke H, Bethell DB, Phuong CX, Dung M, Schneider J, White NJ, Day NP, Farrar J, Hill AV (2001) Strong HLA class I-restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? J Infect Dis 184:1369–1373PubMedCrossRefGoogle Scholar
  198. 198.
    Stephens HA, Klaythong R, Sirikong M, Vaughn DW, Green S, Kalayanarooj S, Endy TP, Libraty DH, Nisalak A, Innis BL, Rothman AL, Ennis FA, Chandanayingyong D (2002) HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens 60:309–318PubMedCrossRefGoogle Scholar
  199. 199.
    Zivna I, Green S, Vaughn DW, Kalayanarooj S, Stephens HA, Chandanayingyong D, Nisalak A, Ennis FA, Rothman AL (2002) T cell responses to an HLA-B*07-restricted epitope on the dengue NS3 protein correlate with disease severity. J Immunol 168:5959–5965PubMedGoogle Scholar
  200. 200.
    Polizel JR, Bueno D, Visentainer JE, Sell AM, Borelli SD, Tsuneto LT, Dalalio MM, Coimbra MT, Moliterno RA (2004) Association of human leukocyte antigen DQ1 and dengue fever in a white Southern Brazilian population. Mem Inst Oswaldo Cruz 99:559–562PubMedCrossRefGoogle Scholar
  201. 201.
    Loke H, Bethell D, Phuong CX, Day N, White N, Farrar J, Hill A (2002) Susceptibility to dengue hemorrhagic fever in Vietnam: evidence of an association with variation in the vitamin d receptor and Fc gamma receptor IIa genes. Am J Trop Med Hyg 67:102–106PubMedGoogle Scholar
  202. 202.
    Fernandez-Mestre MT, Gendzekhadze K, Rivas-Vetencourt P, Layrisse Z (2004) TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens 64:469–472PubMedCrossRefGoogle Scholar
  203. 203.
    Chen RF, Wang L, Cheng JT, Chuang H, Chang JC, Liu JW, Lin IC, Yang KD (2009) Combination of CTLA-4 and TGFbeta1 gene polymorphisms associated with dengue hemorrhagic fever and virus load in a dengue-2 outbreak. Clin Immunol 131:404–409PubMedCrossRefGoogle Scholar
  204. 204.
    Sakuntabhai A, Turbpaiboon C, Casademont I, Chuansumrit A, Lowhnoo T, Kajaste-Rudnitski A, Kalayanarooj SM, Tangnararatchakit K, Tangthawornchaikul N, Vasanawathana S, Chaiyaratana W, Yenchitsomanus PT, Suriyaphol P, Avirutnan P, Chokephaibulkit K, Matsuda F, Yoksan S, Jacob Y, Lathrop GM, Malasit P, Despres P, Julier C (2005) A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 37:507–513PubMedCrossRefGoogle Scholar
  205. 205.
    Chao YC, Huang CS, Lee CN, Chang SY, King CC, Kao CL (2008) Higher infection of dengue virus serotype 2 in human monocytes of patients with G6PD deficiency. PLoS One 3:e1557PubMedCrossRefGoogle Scholar
  206. 206.
    Bravo JR, Guzman MG, Kouri GP (1987) Why dengue haemorrhagic fever in Cuba? 1. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Trans R Soc Trop Med Hyg 81:816–820PubMedCrossRefGoogle Scholar
  207. 207.
    Guzman MG, Kouri G (2002) Dengue: an update. Lancet Infect Dis 2:33–42PubMedCrossRefGoogle Scholar
  208. 208.
    Lee MS, Hwang KP, Chen TC, Lu PL, Chen TP (2006) Clinical characteristics of dengue, dengue hemorrhagic fever in a medical center of southern Taiwan during the 2002 epidemic. J Microbiol Immunol Infect 39:121–129PubMedGoogle Scholar
  209. 209.
    Ong A, Sandar M, Chen MI, Sin LY (2007) Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore. Int J Infect Dis 11:263–267PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Izabela A. Rodenhuis-Zybert
    • 1
  • Jan Wilschut
    • 1
  • Jolanda M. Smit
    • 1
    Email author
  1. 1.Molecular Virology Section, Department of Medical MicrobiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands

Personalised recommendations