Cellular and Molecular Life Sciences

, Volume 67, Issue 15, pp 2643–2651 | Cite as

Expression of defensins in non-infected araneomorph spiders

  • Tommy Baumann
  • Lucia Kuhn-NentwigEmail author
  • Carlo R. Largiadèr
  • Wolfgang Nentwig
Research Article


Defensins are a major family of antimicrobial peptides found throughout the phylogenetic tree. From the spider species: Cupiennius salei, Phoneutria reidyi, Polybetes pythagoricus, Tegenaria atrica, and Meta menardi, defensins belonging to the ‘ancestral’ class of invertebrate defensins were cloned and sequenced. The deduced amino acid sequences contain the characteristic six cysteines of this class of defensins and reveal precursors of 60 or 61 amino acid residues. The mature peptides consist of 37 amino acid residues, showing up to 70% identities with tick and scorpion defensins. In C. salei, defensin mRNA was found to be constitutively expressed in hemocytes, ovaries, subesophageal nerve mass, hepatopancreas, and muscle tissue. This is the first report presenting and comparing antimicrobial peptides belonging to the family of defensins from spiders.


Spider defensins Cupiennius salei Phoneutria reidyi Polybetes pythagoricus Tegenaria atrica Meta menardi Tissue expression 



We thank Dr. C. Kropf for kindly providing M. menardi, Prof. Dr. J. Schaller for MS measurements, Dr. D. Destoumieux-Garzón and Dr. H. Murray for critical comments on the manuscript, and the Swiss National Science Foundation for funding.

Supplementary material

18_2010_354_MOESM1_ESM.tif (4.6 mb)
Fig. S1 Partial C. salei defensin gene structure. PCR products of hemocyte cDNA and genomic DNA with defensin-specific primers. The 50-bp molecular weight marker is marked with MW; band sizes are in bp. (TIFF 4753 kb)
18_2010_354_MOESM2_ESM.doc (50 kb)
Supplementary material (DOC 50 kb)


  1. 1.
    Jiravanichpaisal P, Lee BL, Söderhäll K (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211:213–236CrossRefPubMedGoogle Scholar
  2. 2.
    Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318CrossRefPubMedGoogle Scholar
  3. 3.
    Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184CrossRefPubMedGoogle Scholar
  4. 4.
    Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37:4288–4298CrossRefPubMedGoogle Scholar
  5. 5.
    Patel SU, Osborn R, Rees S, Thornton JM (1998) Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 37:983–990CrossRefPubMedGoogle Scholar
  6. 6.
    Froy O, Gurevitz M (2003) Arthropod and mollusk defensins-evolution by exon-shuffling. Trends Genet 19:684–687CrossRefPubMedGoogle Scholar
  7. 7.
    Rodríguez de la Vega RC, Possani LD (2005) On the evolution of invertebrate defensins. Trends Genet 21:330–332CrossRefPubMedGoogle Scholar
  8. 8.
    Wong JA, Xia L, Ng TB (2007) A review of defensins of diverse origins. Curr Prot Pept Sci 5:446–459CrossRefGoogle Scholar
  9. 9.
    Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3:435–448CrossRefPubMedGoogle Scholar
  10. 10.
    Hanzawa H, Shimada I, Kuzuhara T, Komano H, Kohda D, Inagaki F, Natori S, Arata Y (1990) 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Lett 269:413–420CrossRefPubMedGoogle Scholar
  11. 11.
    Yang YS, Mitta G, Chavanieu A, Calas B, Sanchez JF, Roch P, Aumelas A (2000) Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry 39:14436–14447CrossRefPubMedGoogle Scholar
  12. 12.
    Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980CrossRefPubMedGoogle Scholar
  13. 13.
    Mandard N, Bulet P, Caille A, Daffre S, Vovelle F (2002) The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Eur J Biochem 269:1190–1198CrossRefPubMedGoogle Scholar
  14. 14.
    Silva PI Jr, Daffre S, Bulet P (2000) Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 275:33464–33470CrossRefPubMedGoogle Scholar
  15. 15.
    Lorenzini DM, da Silva PI, Fogaça AC Jr, Bulet P, Daffre S (2003) Acanthoscurrin: a novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider Acanthoscurria gomesiana. Dev Comp Immunol 27:781–791CrossRefPubMedGoogle Scholar
  16. 16.
    Bachère E, Gueguen Y, Gonzalez M, de Lorgeril J, Garnier J, Romestand B (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 198:149–168CrossRefPubMedGoogle Scholar
  17. 17.
    Mitta G, Vandenbulcke F, Noel T, Romestand B, Beauvillain JC, Salzet M, Roch P (2000) Differential distribution and defence involvement of antimicrobial peptides in mussel. J Cell Sci 113:2759–2769PubMedGoogle Scholar
  18. 18.
    Shigenaga T, Muta T, Toh Y, Tokunaga F, Iwanaga S (1990) Antimicrobial tachyplesin peptide precursor. cDNA cloning and cellular localization in the horseshoe crab (Tachypleus tridentatus). J Biol Chem 265:21350–21354PubMedGoogle Scholar
  19. 19.
    Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643CrossRefPubMedGoogle Scholar
  20. 20.
    Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3:121–126CrossRefPubMedGoogle Scholar
  21. 21.
    Söderhäll K, Smith VJ (1983) Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol 7:229–239CrossRefPubMedGoogle Scholar
  22. 22.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  23. 23.
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefPubMedGoogle Scholar
  24. 24.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  25. 25.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  26. 26.
    Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  27. 27.
    Felsenstein J (1989) PHYLIP, phylogeny inference package (Version 3.2). Cladistics 5:164–166Google Scholar
  28. 28.
    Fukuzawa AH, Vellutini BC, Lorenzini DM, Silva PI Jr, Mortara RA, da Silva JM, Daffre S (2008) The role of hemocytes in the immunity of the spider Acanthoscurria gomesiana. Dev Comp Immunol 32:716–725CrossRefPubMedGoogle Scholar
  29. 29.
    Lorenzini DM, Fukuzawa AH, da Silva PI, Machado-Santelli G Jr, Bijovsky AT, Daffre S (2003) Molecular cloning, expression analysis and cellular localization of gomesin, an anti-microbial peptide from hemocytes of the spider Acanthoscurria gomesiana. Insect Biochem Mol Biol 33:1011–1016CrossRefPubMedGoogle Scholar
  30. 30.
    Kuhn-Nentwig L, Müller J, Schaller J, Walz A, Dathe M, Nentwig W (2002) Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem 277:11208–11216CrossRefPubMedGoogle Scholar
  31. 31.
    Kuhn-Nentwig L, Trachsel C, Nentwig W (2009) Spider venom and hemolymph-derived cytolytic and antimicrobial peptides. In: Howl J, Jones S (eds) Bioactive Peptides. CRC Press, Boca Raton, pp 447–464Google Scholar
  32. 32.
    Hynes WL, Ceraul SM, Todd SM, Seguin KC, Sonenshine DE (2005) A defensin-like gene expressed in the black-legged tick, Ixodes scapularis. Med Vet Entomol 19:339–344CrossRefPubMedGoogle Scholar
  33. 33.
    Nakajima Y, van Naters-Yasui A, Taylor D, Yamakawa M (2002) Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol Biol 11:611–618CrossRefPubMedGoogle Scholar
  34. 34.
    Fogaça AC, Lorenzini DM, Kaku LM, Esteves E, Bulet P, Daffre S (2004) Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev Comp Immunol 28:191–200CrossRefPubMedGoogle Scholar
  35. 35.
    Todd SM, Sonenshine DE, Hynes WL (2007) Tissue and life-stage distribution of a defensin gene in the Lone Star tick, Amblyomma americanum. Med Vet Entomol 21:141–147CrossRefPubMedGoogle Scholar
  36. 36.
    Ceraul SM, Dreher-Lesnick SM, Gillespie JJ, Rahman MS, Azad AF (2007) New tick defensin isoform and antimicrobial gene expression in response to Rickettsia montanensis challenge. Infect Immun 75:1973–1983CrossRefPubMedGoogle Scholar
  37. 37.
    Zhou J, Liao M, Ueda M, Gong H, Xuan X, Fujisaki K (2007) Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides 28:1304–1310CrossRefPubMedGoogle Scholar
  38. 38.
    Saito Y, Konnai S, Yamada S, Imamura S, Nishikado H, Ito T, Onuma M, Ohashi K (2009) Identification and characterization of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatus. Insect Mol Biol 18:531–539CrossRefPubMedGoogle Scholar
  39. 39.
    Mitta G, Vandenbulcke F, Hubert F, Roch P (1999) Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. J Cell Sci 112:4233–4242PubMedGoogle Scholar
  40. 40.
    Gonzalez M, Gueguen Y, Desserre G, de Lorgeril J, Romestand B, Bachère E (2007) Molecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas. Dev Comp Immunol 31:332–339CrossRefPubMedGoogle Scholar
  41. 41.
    Gueguen Y, Herpin A, Aumelas A, Garnier J, Fievet J, Escoubas JM, Bulet P, Gonzalez M, Lelong C, Favrel P, Bachère E (2006) Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. J Biol Chem 281:313–323CrossRefPubMedGoogle Scholar
  42. 42.
    Mitta G, Hubert F, Dyrynda EA, Boudry P, Roch P (2000) Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev Comp Immunol 24:381–393CrossRefPubMedGoogle Scholar
  43. 43.
    Rodríguez de la Vega RC, García BI, D’Ambrosio C, Diego-García E, Scaloni A, Possani LD (2004) Antimicrobial peptide induction in the haemolymph of the Mexican scorpion Centruroides limpidus limpidus in response to septic injury. Cell Mol Life Sci 61:1507–1519CrossRefPubMedGoogle Scholar
  44. 44.
    Huber KC, Haider TS, Müller MW, Huber BA, Schweyen RJ, Barth FG (1993) DNA-sequence data indicates the polyphyly of the family Ctenidae (Araneae). J Arachnol 21:194–201Google Scholar
  45. 45.
    Lorenzini DM, da Silva PI, Soares MB Jr, Arruda P, Setubal J, Daffre S (2006) Discovery of immune-related genes expressed in hemocytes of the tarantula spider Acanthoscurria gomesiana. Dev Comp Immunol 30:545–556CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Tommy Baumann
    • 1
  • Lucia Kuhn-Nentwig
    • 1
    Email author
  • Carlo R. Largiadèr
    • 2
  • Wolfgang Nentwig
    • 1
  1. 1.Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  2. 2.Institute of Clinical Chemistry, Bern University HospitalUniversity of BernBernSwitzerland

Personalised recommendations