Cellular and Molecular Life Sciences

, Volume 67, Issue 10, pp 1643–1651

Control of infection by pyroptosis and autophagy: role of TLR and NLR

Multi-author Review

Abstract

Cells can die by distinct mechanisms with particular impacts on the immune response. In addition to apoptosis and necrosis, recent studies lead to characterization of a new pro-inflammatory form of cell death, pyroptosis. TLR and NLR, central innate immune sensors, can control infections by modulating host cell survival. In addition, TLRs can promote the induction of autophagy, thus promoting delivery of infecting pathogens to the lysosomes. On the other hand, activation of some NLR members, especially NLRC4 and NAIP5, leads to the infected cell death by pyroptosis, which is accompanied by secretion of the pro-inflammatory cytokines IL-1β, IL-18, and IL-33. Data presented here illustrate how the compartmentalization of the innate immune sensors can influence the outcome of infections by controlling the fate of host cells.

Keywords

TLR NLR Pyroptosis Autophagy Cell death Inflammasomes 

References

  1. 1.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511CrossRefPubMedGoogle Scholar
  2. 2.
    Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7:1074–1081CrossRefPubMedGoogle Scholar
  3. 3.
    Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32CrossRefPubMedGoogle Scholar
  4. 4.
    Franchi L, Warner N, Viani K, Nunez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227:106–128CrossRefPubMedGoogle Scholar
  5. 5.
    Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D, Ni J, Núñez G (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 274:14560–14567CrossRefPubMedGoogle Scholar
  6. 6.
    Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276:4812–4818 Epub 2000 Nov 21CrossRefPubMedGoogle Scholar
  7. 7.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426CrossRefPubMedGoogle Scholar
  8. 8.
    Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14:10–22 Epub 2006 Sep 15CrossRefPubMedGoogle Scholar
  9. 9.
    Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247CrossRefPubMedGoogle Scholar
  10. 10.
    Mariathasan S, Weiss D, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee W, Weinrauch Y, Monack D, Dixit V (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232 Epub 2006 Jan 11CrossRefPubMedGoogle Scholar
  11. 11.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241 Epub 2006 Jan 11CrossRefPubMedGoogle Scholar
  12. 12.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 320:674–677 Epub 2008 Apr 10CrossRefPubMedGoogle Scholar
  13. 13.
    Martinon F, Agostini L, Meylan E, Tschopp J (2004) Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 14:1929–1934CrossRefPubMedGoogle Scholar
  14. 14.
    Marina-Garcia N, Franchi L, Kim YG, Miller D, McDonald C, Boons GJ, Nunez G (2008) Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol 180:4050–4057PubMedGoogle Scholar
  15. 15.
    Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559CrossRefPubMedGoogle Scholar
  16. 16.
    Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galán JE, Askenase PW, Flavell RA (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327CrossRefPubMedGoogle Scholar
  17. 17.
    Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107 Epub 2008 Feb 20CrossRefPubMedGoogle Scholar
  18. 18.
    Kanneganti TD, Ozören N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Núñez G (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236CrossRefPubMedGoogle Scholar
  19. 19.
    Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L, Taraporewala ZF, Miller D, Patton JT, Inohara N, Núñez G (2006) Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem. 281:36560–36568 Epub 2006 Sep 28CrossRefPubMedGoogle Scholar
  20. 20.
    Lamkanfi M, Malireddi RK, Kanneganti TD (2009) Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem. 284:20574–20581 Epub 2009 Jun 9CrossRefPubMedGoogle Scholar
  21. 21.
    Dostert C, Guarda G, Romero JF, Menu P, Gross O, Tardivel A, Suva ML, Stehle JC, Kopf M, Stamenkovic I, Corradin G, Tschopp J (2009) Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4:e6510CrossRefPubMedGoogle Scholar
  22. 22.
    Shio MT, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ, Harder KW, Sutterwala FS, Bohle DS, Descoteaux A, Flavell RA, Olivier M (2009) Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5:e1000559 Epub 2009 Aug 21CrossRefPubMedGoogle Scholar
  23. 23.
    Nour AM, Yeung YG, Santambrogio L, Boyden ED, Stanley ER, Brojatsch J (2009) Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infect Immun 77:1262–1271 Epub 2009 Jan 5CrossRefPubMedGoogle Scholar
  24. 24.
    Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES (2001) Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 276:28309–28313 Epub 2001 Jun 4CrossRefPubMedGoogle Scholar
  25. 25.
    Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girmam M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218CrossRefPubMedGoogle Scholar
  26. 26.
    Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA, Henry T, Sun YH, Cado D, Dietrich WF, Monack DM, Tsolis RM, Vance RE (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178CrossRefPubMedGoogle Scholar
  27. 27.
    Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325CrossRefPubMedGoogle Scholar
  28. 28.
    Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109CrossRefPubMedGoogle Scholar
  29. 29.
    Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575CrossRefPubMedGoogle Scholar
  30. 30.
    Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozören N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Núñez G (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in Salmonella-infected macrophages. Nat Immunol 7:576–582CrossRefPubMedGoogle Scholar
  31. 31.
    Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nuñez G (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3:e111CrossRefPubMedGoogle Scholar
  32. 32.
    Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37:3030–3039CrossRefPubMedGoogle Scholar
  33. 33.
    Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa-mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235–3245CrossRefPubMedGoogle Scholar
  34. 34.
    Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozören N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Núñez G (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281:35217–35223CrossRefPubMedGoogle Scholar
  35. 35.
    Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A (2008) Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 180:7558–7564PubMedGoogle Scholar
  36. 36.
    Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233CrossRefPubMedGoogle Scholar
  37. 37.
    Grimm S, Stanger BZ, Leder P (1996) RIP and FADD: two “death domain”-containing proteins can induce apoptosis by convergent, but dissociable, pathways. Proc Natl Acad Sci USA 93:10923–10927CrossRefPubMedGoogle Scholar
  38. 38.
    Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495CrossRefPubMedGoogle Scholar
  39. 39.
    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119 Epub 2005 May 29CrossRefPubMedGoogle Scholar
  40. 40.
    Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010CrossRefPubMedGoogle Scholar
  41. 41.
    Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3:e161CrossRefPubMedGoogle Scholar
  42. 42.
    Ting JP, Willingham SB, Bergstralh DT (2008) NLRs at the intersection of cell death and immunity. Nat Rev Immunol 8:372–379CrossRefPubMedGoogle Scholar
  43. 43.
    Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244 Epub 2006 Jan 22CrossRefPubMedGoogle Scholar
  44. 44.
    Kang TJ, Basu S, Zhang L, Thomas KE, Vogel SN, Baillie L, Cross AS (2008) Bacillus anthracis spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur J Immunol 38:1574–1584CrossRefPubMedGoogle Scholar
  45. 45.
    Gross O, Poeck H, Bscheider M, Dostert C, Hannesschläger N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V, Mocsai A, Tschopp J, Ruland J (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436 Epub 2009 Apr 1CrossRefPubMedGoogle Scholar
  46. 46.
    Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183:3578–3581 Epub 2009 Aug 14CrossRefPubMedGoogle Scholar
  47. 47.
    Franchi L, Kanneganti TD, Dubyak GR, Nunez G (2007) Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 282:18810–18818 Epub 2007 May 9CrossRefPubMedGoogle Scholar
  48. 48.
    Akhter A, Gavrilin MA, Frantz L, Washington S, Ditty C, Limoli D, Day C, Sarkar A, Newland C, Butchar J, Marsh CB, Wewers MD, Tridandapani S, Kanneganti TD, Amer AO (2009) Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 5:e1000361 Epub 2009 Apr 3CrossRefPubMedGoogle Scholar
  49. 49.
    Sanjuan MA, Milasta S, Green DR (2009) Toll-like receptor signaling in the lysosomal pathways. Immunol Rev 227:203–220CrossRefPubMedGoogle Scholar
  50. 50.
    Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V (2008) Toll-like receptors control autophagy. EMBO J 27:1110–1121CrossRefPubMedGoogle Scholar
  51. 51.
    Shi CS, Kehrl JH (2008) MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem 283:33175–33182CrossRefPubMedGoogle Scholar
  52. 52.
    Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257CrossRefPubMedGoogle Scholar
  53. 53.
    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268 Epub 2008 Oct 5CrossRefPubMedGoogle Scholar
  54. 54.
    Andrade RM, Wessendarp M, Gubbels MJ, Striepen B, Subauste CS (2006) CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J Clin Invest 116:2366–2377CrossRefPubMedGoogle Scholar
  55. 55.
    Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766CrossRefPubMedGoogle Scholar
  56. 56.
    Ling YM, Shaw MH, Ayala C, Coppens I, Taylor GA, Ferguson DJ, Yap GS (2006) Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J Exp Med 203:2063–2071 Epub 2006 Aug 28CrossRefPubMedGoogle Scholar
  57. 57.
    Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281:11374–11383CrossRefPubMedGoogle Scholar
  58. 58.
    Hernandez LD, Pypaert M, Flavell RA, Galan JE (2003) A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163:1123–1131CrossRefPubMedGoogle Scholar
  59. 59.
    Amer AO, Swanson MS (2005) Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7:765–778CrossRefPubMedGoogle Scholar
  60. 60.
    Py BF, Lipinski MM, Yuan J (2007) Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3:117–125 Epub 2007 Mar 27PubMedGoogle Scholar
  61. 61.
    Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J (2006) Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci USA 103:14578–14583 Epub 2006 Sep 18CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of Biological SciencesFederal University of São Paulo-Campus DiademaDiademaBrazil
  2. 2.Department of Immunology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
  3. 3.Howard Hughes Medical InstituteChevy ChaseUSA
  4. 4.Department of ImmunobiologyYale University School of MedicineNew HavenUSA

Personalised recommendations