Cellular and Molecular Life Sciences

, Volume 67, Issue 15, pp 2551–2562 | Cite as

Regulation of Lrp6 phosphorylation

Review

Abstract

The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd/Fz) family and the low density lipoprotein receptor-related protein 5/6 (Lrp5/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes, which become phosphorylated at multiple conserved sites, notably at PPSPXS motifs. Lrp6 phosphorylation is crucial to β-catenin stabilization and pathway activation by promoting Axin and Gsk3 recruitment to phosphorylated sites. Here, we summarize how proline-directed kinases (Gsk3, PKA, Pftk1, Grk5/6) and non-proline-directed kinases (CK1 family) act upon Lrp6, how the phosphorylation is regulated by ligand binding and mitosis, and how Lrp6 phosphorylation leads to β-catenin stabilization.

Keywords

Wnt Lrp6 Phosphorylation Protein kinase Parathyroid hormone CK1 Gsk3 Ccny Cell cycle 

References

  1. 1.
    Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480PubMedGoogle Scholar
  2. 2.
    Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810PubMedGoogle Scholar
  3. 3.
    Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398PubMedGoogle Scholar
  4. 4.
    van Amerongen R, Mikels A, Nusse R (2008) Alternative Wnt Signaling Is Initiated by Distinct Receptors. Sci Signal 1, re9Google Scholar
  5. 5.
    Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433PubMedGoogle Scholar
  6. 6.
    Kohn AD, Moon RT (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38:439–446PubMedGoogle Scholar
  7. 7.
    Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847PubMedGoogle Scholar
  8. 8.
    Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) beta-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804PubMedGoogle Scholar
  9. 9.
    Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X (1999) beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA 96:6273–6278PubMedGoogle Scholar
  10. 10.
    Clevers H, van de Wetering M (1997) TCF/LEF factor earn their wings. Trends Genet 13:485–489PubMedGoogle Scholar
  11. 11.
    van de Wetering M, Oosterwegel M, Dooijes D, Clevers H (1991) Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 10:123–132PubMedGoogle Scholar
  12. 12.
    van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H (2002) Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 277:17901–17905PubMedGoogle Scholar
  13. 13.
    Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399PubMedGoogle Scholar
  14. 14.
    Takemaru KI, Moon RT (2000) The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 149:249–254PubMedGoogle Scholar
  15. 15.
    Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R (2000) The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19:1839–1850PubMedGoogle Scholar
  16. 16.
    Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H (2001) The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20:4935–4943PubMedGoogle Scholar
  17. 17.
    Rulifson EJ, Wu CH, Nusse R (2000) Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. Mol Cell 6:117–126PubMedGoogle Scholar
  18. 18.
    Bhanot P, Fish M, Jemison JA, Nusse R, Nathans J, Cadigan KM (1999) Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development 126:4175–4186PubMedGoogle Scholar
  19. 19.
    Bhanot P, Brink M, Harryman Samos C, Hsieh J-C, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–230PubMedGoogle Scholar
  20. 20.
    Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407:535–538PubMedGoogle Scholar
  21. 21.
    Wehrli M, Dougan ST, Caldwell K, O’Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S (2000) arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407:527–530PubMedGoogle Scholar
  22. 22.
    Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535PubMedGoogle Scholar
  23. 23.
    Cong F, Schweizer L, Varmus H (2004) Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131:5103–5115PubMedGoogle Scholar
  24. 24.
    Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316:1619–1622PubMedGoogle Scholar
  25. 25.
    Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:867–872PubMedGoogle Scholar
  26. 26.
    Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:873–877PubMedGoogle Scholar
  27. 27.
    Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X (2004) A mechanism for Wnt coreceptor activation. Mol Cell 13:149–156PubMedGoogle Scholar
  28. 28.
    Bryja V, Andersson ER, Schambony A, Esner M, Bryjova L, Biris KK, Hall AC, Kraft B, Cajanek L, Yamaguchi TP, Buckingham M, Arenas E (2009) The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo. Mol Biol Cell 20:924–936PubMedGoogle Scholar
  29. 29.
    Caneparo L, Huang YL, Staudt N, Tada M, Ahrendt R, Kazanskaya O, Niehrs C, Houart C (2007) Dickkopf-1 regulates gastrulation movements by coordinated modulation of Wnt/beta catenin and Wnt/PCP activities, through interaction with the Dally-like homolog Knypek. Genes Dev 21:465–480PubMedGoogle Scholar
  30. 30.
    Tahinci E, Thorne CA, Franklin JL, Salic A, Christian KM, Lee LA, Coffey RJ, Lee E (2007) Lrp6 is required for convergent extension during Xenopus gastrulation. Development 134:4095–4106PubMedGoogle Scholar
  31. 31.
    Brown SD, Twells RC, Hey PJ, Cox RD, Levy ER, Soderman AR, Metzker ML, Caskey CT, Todd JA, Hess JF (1998) Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun 248:879–888PubMedGoogle Scholar
  32. 32.
    He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677PubMedGoogle Scholar
  33. 33.
    Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411:321–325PubMedGoogle Scholar
  34. 34.
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887PubMedGoogle Scholar
  35. 35.
    Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11:951–961PubMedGoogle Scholar
  36. 36.
    Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3:683–686PubMedGoogle Scholar
  37. 37.
    Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280:26770–26775PubMedGoogle Scholar
  38. 38.
    Hsieh JC, Lee L, Zhang L, Wefer S, Brown K, DeRossi C, Wines ME, Rosenquist T, Holdener BC (2003) Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell 112:355–367PubMedGoogle Scholar
  39. 39.
    Culi J, Mann RS (2003) Boca, an endoplasmic reticulum protein required for wingless signaling and trafficking of LDL receptor family members in Drosophila. Cell 112:343–354PubMedGoogle Scholar
  40. 40.
    Brennan K, Gonzalez-Sancho JM, Castelo-Soccio LA, Howe LR, Brown AM (2004) Truncated mutants of the putative Wnt receptor LRP6/Arrow can stabilize beta-catenin independently of Frizzled proteins. Oncogene 23:4873–4884PubMedGoogle Scholar
  41. 41.
    Mao J, Wang J, Liu B, Pan W, Farr GH 3rd, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D (2001) Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 7:801–809PubMedGoogle Scholar
  42. 42.
    Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L, Lucast L, Khoo C, Zhang X, Li L, Abrams CS, Sokol SY, Wu D (2008) Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 321:1350–1353PubMedGoogle Scholar
  43. 43.
    Yamamoto H, Sakane H, Michiue T, Kikuchi A (2008) Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling. Dev Cell 15:37–48PubMedGoogle Scholar
  44. 44.
    Hendriksen J, Jansen M, Brown CM, van der Velde H, van Ham M, Galjart N, Offerhaus GJ, Fagotto F, Fornerod M (2008) Plasma membrane recruitment of dephosphorylated beta-catenin upon activation of the Wnt pathway. J Cell Sci 121:1793–1802PubMedGoogle Scholar
  45. 45.
    MacDonald BT, Yokota C, Tamai K, Zeng X, He X (2008) Wnt signal amplification via activity, cooperativity, and regulation of multiple intracellular PPPSP motifs in the Wnt co-receptor LRP6. J Biol Chem 283:16115–16123PubMedGoogle Scholar
  46. 46.
    Wolf J, Palmby TR, Gavard J, Williams BO, Gutkind JS (2008) Multiple PPPS/TP motifs act in a combinatorial fashion to transduce Wnt signaling through LRP6. FEBS Lett 582:255–261PubMedGoogle Scholar
  47. 47.
    Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, Almeida K, Wang J, Doble B, Woodgett J, Wynshaw-Boris A, Hsieh JC, He X (2008) Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 135:367–375PubMedGoogle Scholar
  48. 48.
    Wan M, Yang C, Li J, Wu X, Yuan H, Ma H, He X, Nie S, Chang C, Cao X (2008) Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev 22:2968–2979PubMedGoogle Scholar
  49. 49.
    Wei Q, Yokota C, Semenov MV, Doble B, Woodgett J, He X (2007) R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling. J Biol Chem 282:15903–15911PubMedGoogle Scholar
  50. 50.
    Kockeritz L, Doble B, Patel S, Woodgett JR (2006) Glycogen synthase kinase-3—an overview of an over-achieving protein kinase. Curr Drug Targets 7:1377–1388PubMedGoogle Scholar
  51. 51.
    Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776PubMedGoogle Scholar
  52. 52.
    Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A (2009) Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156:885–898PubMedGoogle Scholar
  53. 53.
    Mi K, Dolan PJ, Johnson GVW (2006) The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J Biol Chem 281:4787–4794PubMedGoogle Scholar
  54. 54.
    Kirschner LS, Yin Z, Jones GN, Mahoney E (2009) Mouse models of altered protein kinase A signaling. Endocr Relat Cancer 16:773–793PubMedGoogle Scholar
  55. 55.
    Chen AE, Ginty DD, Fan CM (2005) Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433:317–322PubMedGoogle Scholar
  56. 56.
    Suzuki A, Ozono K, Kubota T, Kondou H, Tachikawa K, Michigami T (2008) PTH/cAMP/PKA signaling facilitates canonical Wnt signaling via inactivation of glycogen synthase kinase-3beta in osteoblastic Saos-2 cells. J Cell Biochem 104:304–317PubMedGoogle Scholar
  57. 57.
    Park E, Kim GH, Choi SC, Han JK (2006) Role of PKA as a negative regulator of PCP signaling pathway during Xenopus gastrulation movements. Dev Biol 292:344–357PubMedGoogle Scholar
  58. 58.
    Song BH, Choi SC, Han JK (2003) Local activation of protein kinase A inhibits morphogenetic movements during Xenopus gastrulation. Dev Dyn 227:91–103PubMedGoogle Scholar
  59. 59.
    Ribas C, Penela P, Murga C, Salcedo A, García-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor JF (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta Biomembr 1768:913–922Google Scholar
  60. 60.
    Pronin AN, Morris AJ, Surguchov A, Benovic JL (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J Biol Chem 275:26515–26522PubMedGoogle Scholar
  61. 61.
    Yoshida N, Haga K, Haga T (2003) Identification of sites of phosphorylation by G-protein-coupled receptor kinase 2 in beta-tubulin. Eur J Biochem 270:1154–1163PubMedGoogle Scholar
  62. 62.
    Haga K, Ogawa H, Haga T, Murofushi H (1998) GTP-binding-protein-coupled receptor kinase 2 (GRK2) binds and phosphorylates tubulin. Eur J Biochem 255:363–368PubMedGoogle Scholar
  63. 63.
    Carman CV, Som T, Kim CM, Benovic JL (1998) Binding and phosphorylation of tubulin by G protein-coupled receptor kinases. J Biol Chem 273:20308–20316PubMedGoogle Scholar
  64. 64.
    Pitcher JA, Hall RA, Daaka Y, Zhang J, Ferguson SS, Hester S, Miller S, Caron MG, Lefkowitz RJ, Barak LS (1998) The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J Biol Chem 273:12316–12324PubMedGoogle Scholar
  65. 65.
    Wang L, Gesty-Palmer D, Fields TA, Spurney RF (2009) Inhibition of WNT signaling by G protein-coupled receptor (GPCR) kinase 2 (GRK2). Mol Endocrinol 23:1455–1465PubMedGoogle Scholar
  66. 66.
    Chen M, Philipp M, Wang J, Premont RT, Garrison TR, Caron MG, Lefkowitz RJ, Chen W (2009) G protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J Biol Chem 284:35040–35048PubMedGoogle Scholar
  67. 67.
    Dicker F, Quitterer U, Winstel R, Honold K, Lohse MJ (1999) Phosphorylation-independent inhibition of parathyroid hormone receptor signaling by G protein-coupled receptor kinases. Proc Natl Acad Sci USA 96:5476–5481PubMedGoogle Scholar
  68. 68.
    Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134PubMedGoogle Scholar
  69. 69.
    Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8:149–160PubMedGoogle Scholar
  70. 70.
    Wittenberg C (2005) Cell cycle: cyclin guides the way. Nature 434:34–35PubMedGoogle Scholar
  71. 71.
    Davidson G, Shen J, Huang Y-L, Su Y, Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M, Niehrs C (2009) Cell cycle control of Wnt receptor activation. Dev Cell 17:788–799PubMedGoogle Scholar
  72. 72.
    Sauer K, Weigmann K, Sigrist S, Lehner CF (1996) Novel members of the cdc2-related kinase family in Drosophila: cdk4/6, cdk5, PFTAIRE, and PITSLRE kinase. Mol Biol Cell 7:1759–1769PubMedGoogle Scholar
  73. 73.
    Stowers RS, Garza D, Rascle A, Hogness DS (2000) The L63 gene is necessary for the ecdysone-induced 63E late puff and encodes CDK proteins required for Drosophila development. Dev Biol 221:23–40PubMedGoogle Scholar
  74. 74.
    Stanyon C, Liu G, Mangiola B, Patel N, Giot L, Kuang B, Zhang H, Zhong J, Finley R (2004) A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol 5:R96PubMedGoogle Scholar
  75. 75.
    Jiang M, Gao Y, Yang T, Zhu X, Chen J (2009) Cyclin Y, a novel membrane-associated cyclin, interacts with PFTK1. FEBS Lett 583:2171–2178PubMedGoogle Scholar
  76. 76.
    Boutros R, Dozier C, Ducommun B (2006) The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18:185–191PubMedGoogle Scholar
  77. 77.
    Olmeda D, Castel S, Vilaro S, Cano A (2003) Beta-catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol Biol Cell 14:2844–2860PubMedGoogle Scholar
  78. 78.
    Orford K, Orford CC, Byers SW (1999) Exogenous expression of beta-catenin regulates contact inhibition, anchorage-independent growth, anoikis, and radiation-induced cell cycle arrest. J Cell Biol 146:855–868PubMedGoogle Scholar
  79. 79.
    Lee G, White LS, Hurov KE, Stappenbeck TS, Piwnica-Worms H (2009) Response of small intestinal epithelial cells to acute disruption of cell division through CDC25 deletion. Proc Natl Acad Sci USA 106:4701–4706PubMedGoogle Scholar
  80. 80.
    Marygold SJ, Vincent J-P (2003) Armadillo levels are reduced during mitosis in Drosophila. Mech Dev 120:157–165PubMedGoogle Scholar
  81. 81.
    Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH, Clevers H (2001) Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3:433–438PubMedGoogle Scholar
  82. 82.
    Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T, Nelson WJ, Barth AI (2004) Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117:1117–1128PubMedGoogle Scholar
  83. 83.
    Zhang J, Neisa R, Mao Y (2009) Oncogenic Adenomatous polyposis coli mutants impair the mitotic checkpoint through direct interaction with Mad2. Mol Biol Cell 20:2381–2388PubMedGoogle Scholar
  84. 84.
    Green RA, Wollman R, Kaplan KB (2005) APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 16:4609–4622PubMedGoogle Scholar
  85. 85.
    McCartney BM, McEwen DG, Grevengoed E, Maddox P, Bejsovec A, Peifer M (2001) Drosophila APC2 and Armadillo participate in tethering mitotic spindles to cortical actin. Nat Cell Biol 3:933–938PubMedGoogle Scholar
  86. 86.
    Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550PubMedGoogle Scholar
  87. 87.
    Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH Jr, O’Toole ET, Winey M, Salmon ED, Casey PJ, Nelson WJ, Barth AI (2008) beta-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev 22:91–105PubMedGoogle Scholar
  88. 88.
    Kaplan DD, Meigs TE, Kelly P, Casey PJ (2004) Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem 279:10829–10832PubMedGoogle Scholar
  89. 89.
    Hadjihannas MV, Bruckner M, Jerchow B, Birchmeier W, Dietmaier W, Behrens J (2006) Aberrant Wnt/beta-catenin signaling can induce chromosomal instability in colon cancer. Proc Natl Acad Sci USA 103:10747–10752PubMedGoogle Scholar
  90. 90.
    Kim S-M, Choi E-J, Song K-J, Kim S, Seo E, Jho E-H, Kee S-H (2009) Axin localizes to mitotic spindles and centrosomes in mitotic cells. Exp Cell Res 315:943–954PubMedGoogle Scholar
  91. 91.
    Fumoto K, Kadono M, Izumi N, Kikuchi A (2009) Axin localizes to the centrosome and is involved in microtubule nucleation. EMBO Rep 10:606–613PubMedGoogle Scholar
  92. 92.
    Walston TD, Hardin J (2006) Wnt-dependent spindle polarization in the early C. elegans embryo. Semin Cell Dev Biol 17:204–213PubMedGoogle Scholar
  93. 93.
    Walston T, Tuskey C, Edgar L, Hawkins N, Ellis G, Bowerman B, Wood W, Hardin J (2004) Multiple Wnt signaling pathways converge to orient the mitotic spindle in early C. elegans embryos. Dev Cell 7:831–841PubMedGoogle Scholar
  94. 94.
    Schlesinger A, Shelton CA, Maloof JN, Meneghini M, Bowerman B (1999) Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev 13:2028–2038PubMedGoogle Scholar
  95. 95.
    Zhai L, Graves PR, Robinson LC, Italiano M, Culbertson MR, Rowles J, Cobb MH, DePaoli-Roach AA, Roach PJ (1995) Casein kinase I gamma subfamily. Molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the Saccharomyces cerevisiae YCK genes. J Biol Chem 270:12717–12724PubMedGoogle Scholar
  96. 96.
    Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17:675–689PubMedGoogle Scholar
  97. 97.
    Knippschild U, Wolff S, Giamas G, Brockschmidt C, Wittau M, Wurl PU, Eismann T, Stoter M (2005) The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development. Onkologie 28:508–514PubMedGoogle Scholar
  98. 98.
    Kawakami F, Suzuki K, Ohtsuki K (2008) A novel consensus phosphorylation motif in sulfatide- and cholesterol-3-sulfate-binding protein substrates for CK1 in vitro. Biol Pharm Bull 31:193–200PubMedGoogle Scholar
  99. 99.
    Price MA (2006) CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 20:399–410PubMedGoogle Scholar
  100. 100.
    Verheyen EM, Cara JG (2009) Regulation of Wnt/beta-catenin signaling by protein kinases. Dev Dyn 239:34–44Google Scholar
  101. 101.
    Zhang L, Jia J, Wang B, Amanai K, Wharton KA Jr, Jiang J (2006) Regulation of wingless signaling by the CKI family in Drosophila limb development. Dev Biol 299:221–237PubMedGoogle Scholar
  102. 102.
    Swiatek W, Kang H, Garcia BA, Shabanowitz J, Coombs GS, Hunt DF, Virshup DM (2006) Negative regulation of LRP6 function by casein kinase I epsilon phosphorylation. J Biol Chem 281:12233–12241PubMedGoogle Scholar
  103. 103.
    Patwardhan P, Miller WT (2007) Processive phosphorylation: mechanism and biological importance. Cell Signal 19:2218–2226PubMedGoogle Scholar
  104. 104.
    Songyang Z (1999) Recognition and regulation of primary-sequence motifs by signaling modular domains. Prog Biophys Mol Biol 71:359–372PubMedGoogle Scholar
  105. 105.
    Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, Roach PJ (1990) Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem 265:14264–14269PubMedGoogle Scholar
  106. 106.
    Yum S, Lee S-J, Piao S, Xu Y, Jung J, Jung Y, Oh S, Lee J, Park B-J, Ha N-C (2009) The role of the Ser/Thr cluster in the phosphorylation of PPPSP motifs in Wnt coreceptors. Biochem Biophys Res Commun 381:345–349PubMedGoogle Scholar
  107. 107.
    Piao S, Lee S-H, Kim H, Yum S, Stamos JL, Xu Y, Lee S-J, Lee J, Oh S, Han J-K, Park B-J, Weis WI, Ha N-C (2008) Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS ONE 3:e4046PubMedGoogle Scholar
  108. 108.
    Wang Y, Roach PJ (1993) Inactivation of rabbit muscle glycogen synthase by glycogen synthase kinase-3. Dominant role of the phosphorylation of Ser-640 (site-3a). J Biol Chem 268:23876–23880PubMedGoogle Scholar
  109. 109.
    Fiol CJ, Wang A, Roeske RW, Roach PJ (1990) Ordered multisite protein phosphorylation. Analysis of glycogen synthase kinase 3 action using model peptide substrates. J Biol Chem 265:6061–6065PubMedGoogle Scholar
  110. 110.
    Wu G, Huang H, Garcia Abreu J, He X (2009) Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One 4:e4926PubMedGoogle Scholar
  111. 111.
    Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E (2008) LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of beta-catenin. Proc Natl Acad Sci USA 105:8032–8037PubMedGoogle Scholar
  112. 112.
    Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J (2003) Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 12:1251–1260PubMedGoogle Scholar
  113. 113.
    Schwarz-Romond T, Metcalfe C, Bienz M (2007) Dynamic recruitment of Axin by Dishevelled protein assemblies. J Cell Sci 120:2402–2412PubMedGoogle Scholar
  114. 114.
    Schwarz-Romond T, Fiedler M, Shibata N, Butler JP, Kikuchi A, Higuchi Y, Bienz M (2007) The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol 14:484–492PubMedGoogle Scholar
  115. 115.
    Capelluto DG, Kutateladze TG, Habas R, Finkielstein CV, He X, Overduin M (2002) The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 419:726–729PubMedGoogle Scholar
  116. 116.
    Simons M, Gault WJ, Gotthardt D, Rohatgi R, Klein TJ, Shao Y, Lee HJ, Wu AL, Fang Y, Satlin LM, Dow JT, Chen J, Zheng J, Boutros M, Mlodzik M (2009) Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nat Cell Biol 11:286–294PubMedGoogle Scholar
  117. 117.
    Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW (2003) The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 1:E10PubMedGoogle Scholar
  118. 118.
    Tolwinski NS, Wehrli M, Rives A, Erdeniz N, DiNardo S, Wieschaus E (2003) Wg/Wnt signal can be transmitted through arrow/LRP5, 6 and Axin independently of Zw3/Gsk3beta activity. Dev Cell 4:407–418PubMedGoogle Scholar
  119. 119.
    Ding VW, Chen R-H, McCormick F (2000) Differential regulation of glycogen synthase kinase 3beta by insulin and Wnt signaling. J Biol Chem 275:32475–32481PubMedGoogle Scholar
  120. 120.
    Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, Matsui T, Rosenzweig A, Taylor WG, Rubin JS, Perrella MA, Lee ME (2001) Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 276:17479–17483PubMedGoogle Scholar
  121. 121.
    McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24:1571–1583PubMedGoogle Scholar
  122. 122.
    Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P (1999) A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett 458:247–251PubMedGoogle Scholar
  123. 123.
    van Amerongen R, Nawijn M, Franca-Koh J, Zevenhoven J, van der Gulden H, Jonkers J, Berns A (2005) Frat is dispensable for canonical Wnt signaling in mammals. Genes Dev 19:425–430PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Division of Molecular EmbryologyDKFZ-ZMBH Alliance, Deutsches KrebsforschungszentrumHeidelbergGermany
  2. 2.Division of Molecular Biology of the Cell IDKFZ-ZMBH Alliance, Deutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations