Advertisement

Cellular and Molecular Life Sciences

, Volume 67, Issue 12, pp 2057–2068 | Cite as

Tricellulin forms homomeric and heteromeric tight junctional complexes

  • Julie K. Westphal
  • Max J. Dörfel
  • Susanne M. Krug
  • Jimmi D. Cording
  • Jörg Piontek
  • Ingolf E. Blasig
  • Rudolf Tauber
  • Michael Fromm
  • Otmar Huber
Research Article

Abstract

Sealing of the paracellular cleft by tight junctions is of central importance for epithelia and endothelia to function as efficient barriers between the extracellular space and the inner milieu. Occludin and claudins represent the major tight junction components involved in establishing this barrier function. A special situation emerges at sites where three cells join together. Tricellulin, a recently identified tetraspan protein concentrated at tricellular contacts, was reported to organize tricellular as well as bicellular tight junctions. Here we show that in MDCK cells, the tricellulin C-terminus is important for the basolateral translocation of tricellulin, whereas the N-terminal domain appears to be involved in directing tricellulin to tricellular contacts. In this respect, identification of homomeric tricellulin-tricellulin and of heteromeric tricellulin-occludin complexes extends a previously published model and suggests that tricellulin and occludin are transported together to the edges of elongating bicellular junctions and get separated when tricellular contacts are formed.

Keywords

Tricellulin Occludin Tight junction Tricellular contacts Barrier 

Notes

Acknowledgments

This work was supported by the DFG Research Group FOR 721 and the Sonnenfeld-Stiftung. We thank Dr. Michael Schaefer for providing pcDNA3-NYFP, pcDNA3-NCFP, pcDNA3-CYFP and pcDNA3-CCFP vectors and Luise Kosel for technical assistance.

Supplementary material

18_2010_313_MOESM1_ESM.tif (17.3 mb)
Suppl. Fig. 1: (A) Western blot analysis of the expression of the FLAG-tagged tricellulin constructs in stably transfected MDCK C11 cell clones. Please note that clone K5 expresses higher levels of the full-length tricellulin construct compared to clone K13. (B) Localization of the tricellulin constructs in the different clones by confocal immunofluorescence microscopy after PFA fixation. In clone K5 localization of Tric-FLAG3 is not restricted to tricellular contacts but extends into the bicellular tight junctions as previously reported [4]. (TIFF 17745 kb)
18_2010_313_MOESM2_ESM.tif (25.5 mb)
Suppl. Fig. 2: Confocal immunofluorescence images (XYZ scans) reveals co-localization of the tricellulin constructs with ZO-1 at tight junctions. Please note that the TricDC-FLAG3 construct is less efficiently translocated to the tight junctions. For the image presented here, a cell that shows relatively strong membrane staining of TricDC-FLAG3 was chosen. (TIFF 26130 kb)

References

  1. 1.
    Staehelin LA (1973) Further observation on the fine structure of freeze-cleaved tight junctions. J Cell Sci 13:763–786PubMedGoogle Scholar
  2. 2.
    Schulzke JD, Fromm M (2009) Tight junction: molecular structure meets function. Ann NY Acad Sci 1165:1–6CrossRefPubMedGoogle Scholar
  3. 3.
    Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188CrossRefPubMedGoogle Scholar
  4. 4.
    Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945CrossRefPubMedGoogle Scholar
  5. 5.
    Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127CrossRefPubMedGoogle Scholar
  6. 6.
    Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98:15191–15196CrossRefPubMedGoogle Scholar
  7. 7.
    Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293CrossRefPubMedGoogle Scholar
  8. 8.
    Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788CrossRefPubMedGoogle Scholar
  9. 9.
    Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142PubMedGoogle Scholar
  10. 10.
    Schulzke JD, Gitter AH, Mankertz J, Spiegel S, Seidler U, Amasheh S, Saitou M, Tsukita S, Fromm M (2005) Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta 1669:34–42CrossRefPubMedGoogle Scholar
  11. 11.
    Krause G, Winkler L, Mueller SL, Haselhoff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta 1778:631–645PubMedGoogle Scholar
  12. 12.
    Furuse M, Hata M, Furuse K, Yoshida A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111CrossRefPubMedGoogle Scholar
  13. 13.
    Amasheh S, Schmidt T, Mahn M, Florian P, Mankertz J, Tavalali S, Gitter AH, Schulzke JD, Fromm M (2005) Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res 321:89–96CrossRefPubMedGoogle Scholar
  14. 14.
    Wen H, Watry DD, Marcondes MC, Fox HS (2004) Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol 24:8408–8417CrossRefPubMedGoogle Scholar
  15. 15.
    Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976CrossRefPubMedGoogle Scholar
  16. 16.
    Günzel D, Amasheh S, Pfaffenbach S, Richter JF, Kausalya PJ, Hunziker W, Fromm M (2009) Claudin-16 affects transcellular Cl secretion in MDCK cells. J Physiol (Lond) 587:3777–3793CrossRefGoogle Scholar
  17. 17.
    Hou J, Paul DL, Goodenough DA (2005) Paracellin-1 and the modulation of the ion selectivity of tight junctions. J Cell Sci 118:5109–5118CrossRefPubMedGoogle Scholar
  18. 18.
    Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106CrossRefPubMedGoogle Scholar
  19. 19.
    Krause G, Winkler L, Piehl C, Blasig IE, Piontek J, Müller SL (2009) Structure and function of extracellular claudin domains. Ann NY Acad Sci 1165:34–43CrossRefPubMedGoogle Scholar
  20. 20.
    Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE (2008) Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22:146–158CrossRefPubMedGoogle Scholar
  21. 21.
    Mrsny RJ, Brown GT, Gerner-Smidt K, Buret AG, Meddings JB, Quan C, Koval M, Nusrat A (2008) A key claudin extracellular loop domain is critical for epithelial barrier integrity. Am J Pathol 172:905–915CrossRefPubMedGoogle Scholar
  22. 22.
    Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713–3724CrossRefPubMedGoogle Scholar
  23. 23.
    Dörfel MJ, Westphal JK, Huber O (2009) Differential phosphorylation of occludin and tricellulin by CK2 and CK1. Ann NY Acad Sci 1165:69–73CrossRefPubMedGoogle Scholar
  24. 24.
    Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S (2008) Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell 19:4687–4693CrossRefPubMedGoogle Scholar
  25. 25.
    Schlüter H, Moll I, Wolburg H, Franke WW (2007) The different structures containing tight junction proteins in epidermal and other stratified epithelial cells, including squamous cell metaplasia. Eur J Cell Biol 86:645–655CrossRefPubMedGoogle Scholar
  26. 26.
    González-Mariscal L, Hernández S, Vega J (2008) Inventions designed to enhance drug delivery across epithelial and endothelial cells through the paracellular pathway. Recent Pat Drug Deliv Formul 2:145–176CrossRefPubMedGoogle Scholar
  27. 27.
    Chishti MS, Bhatti A, Tamim S, Lee K, McDonald ML, Leal SM, Ahmad W (2008) Splice-site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. J Hum Genet 53:101–105CrossRefPubMedGoogle Scholar
  28. 28.
    Ramzan K, Shaikh RS, Ahmad J, Khan SN, Riazuddin S, Ahmed ZM, Friedman TB, Wilcox ER, Riazuddin S (2005) DFNB48, a new nonsyndromic recessive deafness locus, maps to chromosome 15q23–q25.1. Hum Genet 116:407–412CrossRefPubMedGoogle Scholar
  29. 29.
    Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Riazuddin S, Friedman TB (2006) Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 79:1040–1051CrossRefPubMedGoogle Scholar
  30. 30.
    Weiske J, Albring KF, Huber O (2007) The tumor suppressor Fhit acts as a repressor of β-catenin transcriptional activity. Proc Natl Acad Sci USA 104:20344–20349CrossRefPubMedGoogle Scholar
  31. 31.
    Gekle M, Wünsch S, Oberleithner H, Silbernagel S (1994) Characterization of two MDCK-cell subtypes as model system to study principal cell and intercalated cell properties. Pflügers Arch 428:157–162CrossRefPubMedGoogle Scholar
  32. 32.
    Ehrhardt C, Schmolke M, Matzke A, Knoblauch A, Will C, Wixler V, Ludwig S (2006) Polyethylenimine, a cost-effective transfection reagent. Signal Transduct 6:179–184CrossRefGoogle Scholar
  33. 33.
    Bojarski C, Weiske J, Schöneberg T, Schröder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R, Huber O (2004) The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci 117:2097–2107CrossRefPubMedGoogle Scholar
  34. 34.
    Blasig IE, Winkler L, Lassowski B, Mueller SL, Zuleger N, Krause E, Krause G, Gast K, Kolbe M, Piontek J (2006) On the self-association of transmembrane tight junction proteins. Cell Mol Life Sci 63:505–514CrossRefPubMedGoogle Scholar
  35. 35.
    Li Y, Fanning AS, Anderson JM, Lavie A (2005) Structure of the conserved cytoplasmic C-terminal domain of occludin: identification of the ZO-1 binding surface. J Mol Biol 352:151–164CrossRefPubMedGoogle Scholar
  36. 36.
    Müller SL, Portwich M, Schmidt A, Utepbergenov DI, Huber O, Blasig IE, Krause G (2005) The tight junction protein occludin and the adherens junction protein α-catenin share a common interaction mechanism with ZO-1. J Biol Chem 280:3747–3756CrossRefPubMedGoogle Scholar
  37. 37.
    Huber O, Kemler R, Langosch D (1999) Mutations affecting transmembrane segment interactions impair adhesiveness of E-cadherin. J Cell Sci 112:4415–4423PubMedGoogle Scholar
  38. 38.
    Münter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup G (2007) GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. EMBO J 26:1702–1712CrossRefPubMedGoogle Scholar
  39. 39.
    Kubatzky KF, Ruan W, Gurezka R, Cohen J, Ketteler R, Watowich SS, Neumann D, Langosch D, Klingmüller U (2001) Self assembly of the transmembrane domain promotes signal transduction through the erythropoietin receptor. Curr Biol 11:110–115CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Julie K. Westphal
    • 1
    • 2
  • Max J. Dörfel
    • 1
    • 2
  • Susanne M. Krug
    • 3
  • Jimmi D. Cording
    • 4
  • Jörg Piontek
    • 4
  • Ingolf E. Blasig
    • 4
  • Rudolf Tauber
    • 2
  • Michael Fromm
    • 3
  • Otmar Huber
    • 1
    • 2
  1. 1.Institute of Biochemistry IIJena University HospitalJenaGermany
  2. 2.Institute of Laboratory Medicine and PathobiochemistryCharité-Universitätsmedizin BerlinBerlinGermany
  3. 3.Institute of Clinical PhysiologyCharité-Universitätsmedizin BerlinBerlinGermany
  4. 4.Leibniz-Institute of Molecular Pharmacology (FMP)BerlinGermany

Personalised recommendations