Cellular and Molecular Life Sciences

, Volume 67, Issue 12, pp 2025–2038

Tubulin chaperone E binds microtubules and proteasomes and protects against misfolded protein stress

  • Olga Voloshin
  • Yana Gocheva
  • Marina Gutnick
  • Natalia Movshovich
  • Anya Bakhrat
  • Keren Baranes-Bachar
  • Dudy Bar-Zvi
  • Ruti Parvari
  • Larisa Gheber
  • Dina Raveh
Research Article


Mutation of tubulin chaperone E (TBCE) underlies hypoparathyroidism, retardation, and dysmorphism (HRD) syndrome with defective microtubule (MT) cytoskeleton. TBCE/yeast Pac2 comprises CAP-Gly, LRR (leucine-rich region), and UbL (ubiquitin-like) domains. TBCE folds α-tubulin and promotes α/β dimerization. We show that Pac2 functions in MT dynamics: the CAP-Gly domain binds α-tubulin and MTs, and functions in suppression of benomyl sensitivity of pac2Δ mutants. Pac2 binds proteasomes: the LRR binds Rpn1, and the UbL binds Rpn10; the latter interaction mediates Pac2 turnover. The UbL also binds the Skp1-Cdc53-F-box (SCF) ubiquitin ligase complex; these competing interactions for the UbL may impact on MT dynamics. pac2Δ mutants are sensitive to misfolded protein stress. This is suppressed by ectopic PAC2 with both the CAP-Gly and UbL domains being essential. We propose a novel role for Pac2 in the misfolded protein stress response based on its ability to interact with both the MT cytoskeleton and the proteasomes.


Pac2 CAP-Gly Ubiquitin-like domain Rpn1 Rpn10 Proteasome TBCE 


  1. 1.
    Parvari R, Hershkovitz E, Grossman N, Gorodischer R, Loeys B, Zecic A, Mortier G, Gregory S, Sharony R, Kambouris M, Sakati N, Meyer BF, Al Aqeel AI, Al Humaidan AK, Al Zanhrani F, Al Swaid A, Al Othman J, Diaz GA, Weiner R, Khan KT, Gordon R, Gelb BD (2002) Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet 32:448–452CrossRefPubMedGoogle Scholar
  2. 2.
    Hoyt MA, Macke JP, Roberts BT, Geiser JR (1997) Saccharomyces cerevisiae PAC2 functions with CIN1, 2 and 4 in a pathway leading to normal microtubule stability. Genetics 146:849–857PubMedGoogle Scholar
  3. 3.
    Radcliffe PA, Hirata D, Vardy L, Toda T (1999) Functional dissection and hierarchy of tubulin-folding cofactor homologues in fission yeast. Mol Biol Cell 10:2987–3001PubMedGoogle Scholar
  4. 4.
    Tian G, Lewis SA, Feierbach B, Stearns T, Rommelaere H, Ampe C, Cowan NJ (1997) Tubulin subunits exist in an activated conformational state generated and maintained by protein cofactors. J Cell Biol 138:821–832CrossRefPubMedGoogle Scholar
  5. 5.
    Feierbach B, Nogales E, Downing KH, Stearns T (1999) Alf1p, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin. J Cell Biol 144:113–124CrossRefPubMedGoogle Scholar
  6. 6.
    Cowan NJ, Lewis SA (2001) Type II chaperonins, prefoldin, and the tubulin-specific chaperones. Adv Protein Chem 59:73–104CrossRefPubMedGoogle Scholar
  7. 7.
    Lopez-Fanarraga M, Avila J, Guasch A, Coll M, Zabala JC (2001) Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. J Struct Biol 135:219–229CrossRefPubMedGoogle Scholar
  8. 8.
    Bommel H, Xie G, Rossoll W, Wiese S, Jablonka S, Boehm T, Sendtner M (2002) Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease. J Cell Biol 159:563–569CrossRefPubMedGoogle Scholar
  9. 9.
    Martin N, Jaubert J, Gounon P, Salido E, Haase G, Szatanik M, Guenet JL (2002) A missense mutation in Tbce causes progressive motor neuronopathy in mice. Nat Genet 32:443–447CrossRefPubMedGoogle Scholar
  10. 10.
    Riehemann K, Sorg C (1993) Sequence homologies between four cytoskeleton-associated proteins. Trends Biochem Sci 18:82–83CrossRefPubMedGoogle Scholar
  11. 11.
    Grynberg M, Jaroszewski L, Godzik A (2003) Domain analysis of the tubulin cofactor system: a model for tubulin folding and dimerization. BMC Bioinformatics 4:46–53CrossRefPubMedGoogle Scholar
  12. 12.
    Scheel J, Pierre P, Rickard JE, Diamantopoulos GS, Valetti C, van der Goot FG, Haner M, Aebi U, Kreis TE (1999) Purification and analysis of authentic CLIP-170 and recombinant fragments. J Biol Chem 274:25883–25891CrossRefPubMedGoogle Scholar
  13. 13.
    Culver-Hanlon TL, Lex SA, Stephens AD, Quintyne NJ, King SJ (2006) A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat Cell Biol 8:264–270CrossRefPubMedGoogle Scholar
  14. 14.
    Rickard JE, Kreis TE (1996) CLIPs for organelle-microtubule interactions. Trends Cell Biol 6:178–183CrossRefPubMedGoogle Scholar
  15. 15.
    Wang W, Ding J, Allen E, Zhu P, Zhang L, Vogel H, Yang Y (2005) Gigaxonin interacts with tubulin folding cofactor B and controls its degradation through the ubiquitin-proteasome pathway. Curr Biol 15:2050–2055CrossRefPubMedGoogle Scholar
  16. 16.
    Lytle BL, Peterson FC, Qiu SH, Luo M, Zhao Q, Markley JL, Volkman BF (2004) Solution structure of a ubiquitin-like domain from tubulin-binding cofactor B. J Biol Chem 279:46787–46793CrossRefPubMedGoogle Scholar
  17. 17.
    Kortazar D, Carranza G, Bellido J, Villegas JC, Fanarraga ML, Zabala JC (2006) Native tubulin-folding cofactor E purified from baculovirus-infected Sf9 cells dissociates tubulin dimers. Protein Expr Purif 30:30Google Scholar
  18. 18.
    Kortazar D, Fanarraga ML, Carranza G, Bellido J, Villegas JC, Avila J, Zabala JC (2007) Role of cofactors B (TBCB) and E (TBCE) in tubulin heterodimer dissociation. Exp Cell Res 313:425–436CrossRefPubMedGoogle Scholar
  19. 19.
    Glickman MH, Raveh D (2005) Proteasome plasticity. FEBS Lett 579:3214–3223CrossRefPubMedGoogle Scholar
  20. 20.
    Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187CrossRefPubMedGoogle Scholar
  21. 21.
    Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615CrossRefPubMedGoogle Scholar
  22. 22.
    Guterman A, Glickman MH (2004) Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J Biol Chem 279:1729–1738CrossRefPubMedGoogle Scholar
  23. 23.
    Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488CrossRefPubMedGoogle Scholar
  24. 24.
    Hartmann-Petersen R, Gordon C (2004) Protein degradation: recognition of ubiquitinylated substrates. Curr Biol 14:R754–R756CrossRefPubMedGoogle Scholar
  25. 25.
    Elsasser S, Finley D (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7:742–749CrossRefPubMedGoogle Scholar
  26. 26.
    Kaplun L, Tzirkin R, Bakhrat A, Shabek N, Ivantsiv Y, Raveh D (2005) The DNA damage-inducible UbL–UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol Cell Biol 25:5355–5362CrossRefPubMedGoogle Scholar
  27. 27.
    Ivantsiv Y, Kaplun L, Tzirkin-Goldin R, Shabek N, Raveh D (2006) Turnover of SCFUfo1 complexes requires the UbL–UbA motif protein, Ddi1. Mol Cell Biol 26:1579–1588CrossRefPubMedGoogle Scholar
  28. 28.
    Goh AM, Walters KJ, Elsasser S, Verma R, Deshaies RJ, Finley D, Howley PM (2008) Components of the ubiquitin-proteasome pathway compete for surfaces on Rad23 family proteins. BMC Biochem 9:4CrossRefPubMedGoogle Scholar
  29. 29.
    Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, Muller B, Feng MT, Tubing F, Dittmar GA, Finley D (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4:725–730CrossRefPubMedGoogle Scholar
  30. 30.
    Ishii T, Funakoshi M, Kobayashi H (2006) Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway. EMBO J 25:5492–5503CrossRefPubMedGoogle Scholar
  31. 31.
    Matiuhin Y, Kirkpatrick DS, Ziv I, Kim W, Dakshinamurthy A, Kleifeld O, Gygi SP, Reis N, Glickman MH (2008) Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 32:415–425CrossRefPubMedGoogle Scholar
  32. 32.
    Saeki Y, Saitoh A, Toh-e A, Yokosawa H (2002) Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochem Biophys Res Commun 293:986–992CrossRefPubMedGoogle Scholar
  33. 33.
    Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J, Deshaies RJ (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425–3439PubMedGoogle Scholar
  34. 34.
    Lipson C, Alalouf G, Bajorek M, Rabinovich E, Atir-Lande A, Glickman M, Bar-Nun S (2008) A proteasomal ATPase contributes to dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates. J Biol Chem 283:7166–7175CrossRefPubMedGoogle Scholar
  35. 35.
    Verma R, Oania R, Graumann J, Deshaies RJ (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118:99–110CrossRefPubMedGoogle Scholar
  36. 36.
    Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691CrossRefPubMedGoogle Scholar
  37. 37.
    Solsbacher J, Maurer P, Bischoff FR, Schlenstedt G (1998) Cse1p is involved in export of yeast importin alpha from the nucleus. Mol Cell Biol 18:6805–6815PubMedGoogle Scholar
  38. 38.
    Adams A, Gottschling DE, Kaiser CA, Stearns T (1997) Methods in Yeast Genetics. CSHL Press, NYGoogle Scholar
  39. 39.
    Kaplun L, Ivantsiv Y, Bakhrat A, Raveh D (2003) DNA damage response-mediated degradation of Ho endonuclease via the ubiquitin system involves its nuclear export. J Biol Chem 278:48727–48734CrossRefPubMedGoogle Scholar
  40. 40.
    Babbitt SE, Kiss A, Deffenbaugh AE, Chang YH, Bailly E, Erdjument-Bromage H, Tempst P, Buranda T, Sklar LA, Baumler J, Gogol E, Skowyra D (2005) ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle. Cell 121:553–565CrossRefPubMedGoogle Scholar
  41. 41.
    Tone Y, Tanahashi N, Tanaka K, Fujimuro M, Yokosawa H, Toh-e A (2000) Nob1p, a new essential protein, associates with the 26S proteasome of growing saccharomyces cerevisiae cells. Gene 243:37–45CrossRefPubMedGoogle Scholar
  42. 42.
    Huang TG, Hackney DD (1994) Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J Biol Chem 269:16493–16501PubMedGoogle Scholar
  43. 43.
    Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403CrossRefPubMedGoogle Scholar
  44. 44.
    Ravid T, Hochstrasser M (2007) Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat Cell Biol 9:422–427CrossRefPubMedGoogle Scholar
  45. 45.
    Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW (1999) Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284:662–665CrossRefPubMedGoogle Scholar
  46. 46.
    Jin S, Pan L, Liu Z, Wang Q, Xu Z, Zhang YQ (2009) Drosophila Tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation. Development 136:1571–1581CrossRefPubMedGoogle Scholar
  47. 47.
    Tarailo M, Tarailo S, Rose AM (2007) Synthetic lethal interactions identify phenotypic “interologs” of the spindle assembly checkpoint components. Genetics 177:2525–2530CrossRefPubMedGoogle Scholar
  48. 48.
    Raasi S, Orlov I, Fleming KG, Pickart CM (2004) Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J Mol Biol 341:1367–1379CrossRefPubMedGoogle Scholar
  49. 49.
    van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra RD (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16:6020–6028PubMedGoogle Scholar
  50. 50.
    Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, Finley D, Vierstra RD (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J Biol Chem 273:1970–1981CrossRefPubMedGoogle Scholar
  51. 51.
    Heessen S, Masucci MG, Dantuma NP (2005) The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol Cell 18:225–235CrossRefPubMedGoogle Scholar
  52. 52.
    Mayor T, Lipford JR, Graumann J, Smith GT, Deshaies RJ (2005) Analysis of polyubiquitin conjugates reveals that the rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol Cell Proteomics 4:741–751CrossRefPubMedGoogle Scholar
  53. 53.
    Sun XM, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A, Cohen GM (2004) Caspase activation inhibits proteasome function during apoptosis. Mol Cell 14:81–93CrossRefPubMedGoogle Scholar
  54. 54.
    Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481–490CrossRefPubMedGoogle Scholar
  55. 55.
    Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN (2000) Activity and regulation of the centrosome-associated proteasome. J Biol Chem 275:409–413CrossRefPubMedGoogle Scholar
  56. 56.
    Wakefield JG, Huang JY, Raff JW (2000) Centrosomes have a role in regulating the destruction of cyclin B in early Drosophila embryos. Curr Biol 10:1367–1370CrossRefPubMedGoogle Scholar
  57. 57.
    Hames RS, Crookes RE, Straatman KR, Merdes A, Hayes MJ, Faragher AJ, Fry AM (2005) Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Mol Biol Cell 16:1711–1724CrossRefPubMedGoogle Scholar
  58. 58.
    Yang F, Jiang Q, Zhao J, Ren Y, Sutton MD, Feng J (2005) Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem 280:17154–17162CrossRefPubMedGoogle Scholar
  59. 59.
    Zhao J, Ren Y, Jiang Q, Feng J (2003) Parkin is recruited to the centrosome in response to inhibition of proteasomes. J Cell Sci 116:4011–4019CrossRefPubMedGoogle Scholar
  60. 60.
    Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EM (2006) Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2:e1CrossRefPubMedGoogle Scholar
  61. 61.
    Hughes JR, Meireles AM, Fisher KH, Garcia A, Antrobus PR, Wainman A, Zitzmann N, Deane C, Ohkura H, Wakefield JG (2008) A microtubule interactome: complexes with roles in cell cycle and mitosis. PLoS Biol 6:e98CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Olga Voloshin
    • 1
  • Yana Gocheva
    • 1
  • Marina Gutnick
    • 1
  • Natalia Movshovich
    • 2
  • Anya Bakhrat
    • 1
  • Keren Baranes-Bachar
    • 1
  • Dudy Bar-Zvi
    • 1
  • Ruti Parvari
    • 3
  • Larisa Gheber
    • 2
  • Dina Raveh
    • 1
  1. 1.Department of Life SciencesBen Gurion University of the NegevBeershebaIsrael
  2. 2.Department of Clinical BiochemistryBen Gurion University of the NegevBeershebaIsrael
  3. 3.National Institute of Biotechnology Negev and Department of Virology and Developmental GeneticsFaculty of Health Sciences, Ben Gurion University of the NegevBeershebaIsrael

Personalised recommendations