Cellular and Molecular Life Sciences

, Volume 67, Issue 9, pp 1423–1445 | Cite as

From carrot to clinic: an overview of the retinoic acid signaling pathway

  • Maria Theodosiou
  • Vincent Laudet
  • Michael SchubertEmail author


Vitamin A is essential for the formation and maintenance of many body tissues. It is also important for embryonic growth and development and can act as a teratogen at critical periods of development. Retinoic acid (RA) is the biologically active form of vitamin A and its signaling is mediated by the RA and retinoid X receptors. In addition to its role as an important molecule during development, RA has also been implicated in clinical applications, both as a potential anti-tumor agent as well as for the treatment of skin diseases. This review presents an overview of how dietary retinoids are converted to RA, hence presenting the major players in RA metabolism and signaling, and highlights examples of treatment applications of retinoids. Moreover, we discuss the origin and diversification of the retinoid pathway, which are important factors for understanding the evolution of ligand-specificity among retinoid receptors.


Retinoic acid signaling Metabolism Retinoids Therapy Evolution Vertebrates Invertebrates 



The authors would like to thank Gabriel V. Markov, Jasmin Schulz, and Gérard Benoit for critical reading of the manuscript, and the ANR (ANR-07-BLAN-0038 and ANR-09-BLAN-0262-02), the CNRS, and CRESCENDO (a European Union Integrated Project of FP6) for providing financial support. Furthermore, we would like to apologize to all colleagues, whose original work and contributions could not be cited in this article due to space limitations.


  1. 1.
    Collins MD, Mao GE (1999) Teratology of retinoids. Annu Rev Pharmacol Toxicol 39:399–430PubMedCrossRefGoogle Scholar
  2. 2.
    Morriss-Kay GM, Ward SJ (1999) Retinoids and mammalian development. Int Rev Cytol 188:73–131PubMedCrossRefGoogle Scholar
  3. 3.
    Kastner P, Mark M, Chambon P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83:859–869PubMedCrossRefGoogle Scholar
  4. 4.
    Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66:606–630PubMedCrossRefGoogle Scholar
  5. 5.
    Sommer A (1998) Xerophthalmia and vitamin A status. Prog Retin Eye Res 17:9–31PubMedCrossRefGoogle Scholar
  6. 6.
    Melhus H, Michaelsson K, Kindmark A, Bergstrom R, Holmberg L, Mallmin H, Wolk A, Ljunghall S (1998) Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture. Ann Intern Med 129:770–778PubMedGoogle Scholar
  7. 7.
    Silveira ER, Moreno FS (1998) Natural retinoids and β-carotene: from food to their actions on gene expression. J Nutr Biochem 9:446–456CrossRefGoogle Scholar
  8. 8.
    Napoli JL (1996) Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin Immunol Immunopathol 80:S52–S62PubMedCrossRefGoogle Scholar
  9. 9.
    Achkar CC, Derguini F, Blumberg B, Langston A, Levin AA, Speck J, Evans RM, Bolado J Jr, Nakanishi K, Buck J, Gudas LJ (1996) 4-Oxoretinol, a new natural ligand and transactivator of the retinoic acid receptors. Proc Natl Acad Sci USA 93:4879–4884PubMedCrossRefGoogle Scholar
  10. 10.
    Buck J, Derguini F, Levi E, Nakanishi K, Hammerling U (1991) Intracellular signaling by 14-hydroxy-4,14-retro-retinol. Science 254:1654–1656PubMedCrossRefGoogle Scholar
  11. 11.
    Moore T (1930) Vitamin A and carotene: the absence of the liver oil vitamin A from carotene. VI. The conversion of carotene to vitamin A in vivo. Biochem J 24:692–702PubMedGoogle Scholar
  12. 12.
    Karrer P, Helfenstein A, Wehrli H, Wettstein A (1930) Uber die Konstitution des Lycopins und Carotins. Helv Chim Acta 13Google Scholar
  13. 13.
    Simoes-Costa MS, Azambuja AP, Xavier-Neto J (2008) The search for non-chordate retinoic acid signaling: lessons from chordates. J Exp Zool B Mol Dev Evol 310:54–72PubMedCrossRefGoogle Scholar
  14. 14.
    Holland LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernandez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallbook F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18:1100–1111PubMedCrossRefGoogle Scholar
  15. 15.
    von Lintig J, Hessel S, Isken A, Kiefer C, Lampert JM, Voolstra O, Vogt K (2005) Towards a better understanding of carotenoid metabolism in animals. Biochim Biophys Acta 1740:122–131Google Scholar
  16. 16.
    Chen H, Howald WN, Juchau MR (2000) Biosynthesis of all-trans-retinoic acid from all-trans-retinol: catalysis of all-trans-retinol oxidation by human P-450 cytochromes. Drug Metab Dispos 28:315–322PubMedGoogle Scholar
  17. 17.
    Albalat R (2009) The retinoic acid machinery in invertebrates: ancestral elements and vertebrate innovations. Mol Cell Endocrinol 313:23–35PubMedCrossRefGoogle Scholar
  18. 18.
    Levin MS (1993) Cellular retinol-binding proteins are determinants of retinol uptake and metabolism in stably transfected Caco-2 cells. J Biol Chem 268:8267–8276PubMedGoogle Scholar
  19. 19.
    Ghyselinck NB, Bavik C, Sapin V, Mark M, Bonnier D, Hindelang C, Dierich A, Nilsson CB, Hakansson H, Sauvant P, Azais-Braesco V, Frasson M, Picaud S, Chambon P (1999) Cellular retinol-binding protein I is essential for vitamin A homeostasis. EMBO J 18:4903–4914PubMedCrossRefGoogle Scholar
  20. 20.
    E X, Zhang L, Lu J, Tso P, Blaner WS, Levin MS, Li E (2002) Increased neonatal mortality in mice lacking cellular retinol-binding protein II. J Biol Chem 277:36617–36623Google Scholar
  21. 21.
    Piantedosi R, Ghyselinck N, Blaner WS, Vogel S (2005) Cellular retinol-binding protein type III is needed for retinoid incorporation into milk. J Biol Chem 280:24286–242892PubMedCrossRefGoogle Scholar
  22. 22.
    Gottesman ME, Quadro L, Blaner WS (2001) Studies of vitamin A metabolism in mouse model systems. Bioessays 23:409–419PubMedCrossRefGoogle Scholar
  23. 23.
    Herr FM, Ong DE (1992) Differential interaction of lecithin–retinol acyltransferase with cellular retinol binding proteins. Biochemistry 31:6748–6755PubMedCrossRefGoogle Scholar
  24. 24.
    Batten ML, Imanishi Y, Maeda T, Tu DC, Moise AR, Bronson D, Possin D, Van Gelder RN, Baehr W, Palczewski K (2004) Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J Biol Chem 279:10422–10432PubMedCrossRefGoogle Scholar
  25. 25.
    O’Byrne SM, Wongsiriroj N, Libien J, Vogel S, Goldberg IJ, Baehr W, Palczewski K, Blaner WS (2005) Retinoid absorption and storage is impaired in mice lacking lecithin:retinol acyltransferase (LRAT). J Biol Chem 280:35647–35657PubMedCrossRefGoogle Scholar
  26. 26.
    Ross AC (1982) Retinol esterification by rat liver microsomes. Evidence for a fatty acyl coenzyme A: retinol acyltransferase. J Biol Chem 257:2453–2459PubMedGoogle Scholar
  27. 27.
    Blomhoff R, Green MH, Berg T, Norum KR (1990) Transport and storage of vitamin A. Science 250:399–404PubMedCrossRefGoogle Scholar
  28. 28.
    Zanotti G, Berni R (2004) Plasma retinol-binding protein: structure and interactions with retinol, retinoids, and transthyretin. Vitam Horm 69:271–295PubMedCrossRefGoogle Scholar
  29. 29.
    Soprano DR, Soprano KJ, Goodman DS (1986) Retinol-binding protein messenger RNA levels in the liver and in extrahepatic tissues of the rat. J Lipid Res 27:166–171PubMedGoogle Scholar
  30. 30.
    Kanai M, Raz A, Goodman DS (1968) Retinol-binding protein: the transport protein for vitamin A in human plasma. J Clin Invest 47:2025–2044PubMedGoogle Scholar
  31. 31.
    Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, Freeman S, Cosma MP, Colantuoni V, Gottesman ME (1999) Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J 18:4633–4644PubMedCrossRefGoogle Scholar
  32. 32.
    Duester G (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell 134:921–931PubMedCrossRefGoogle Scholar
  33. 33.
    Niederreither K, Abu-Abed S, Schuhbaur B, Petkovich M, Chambon P, Dolle P (2002) Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nat Genet 31:84–88PubMedGoogle Scholar
  34. 34.
    Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825PubMedCrossRefGoogle Scholar
  35. 35.
    Blaner WS (2007) STRA6, a cell-surface receptor for retinol-binding protein: the plot thickens. Cell Metab 5:164–166PubMedCrossRefGoogle Scholar
  36. 36.
    Pasutto F, Sticht H, Hammersen G, Gillessen-Kaesbach G, Fitzpatrick DR, Nurnberg G, Brasch F, Schirmer-Zimmermann H, Tolmie JL, Chitayat D, Houge G, Fernandez-Martinez L, Keating S, Mortier G, Hennekam RC, von der Wense A, Slavotinek A, Meinecke P, Bitoun P, Becker C, Nurnberg P, Reis A, Rauch A (2007) Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 80:550–560PubMedCrossRefGoogle Scholar
  37. 37.
    Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B, Bonniere M, Delahaye S, Munnich A, Encha-Razavi F, Lyonnet S, Vekemans M, Attie-Bitach T, Etchevers HC (2007) Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 80:1179–1187PubMedCrossRefGoogle Scholar
  38. 38.
    Pares X, Farres J, Kedishvili N, Duester G (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: medium-chain and short-chain dehydrogenases/reductases in retinoid metabolism. Cell Mol Life Sci 65:3936–3949PubMedCrossRefGoogle Scholar
  39. 39.
    Molotkov A, Fan X, Deltour L, Foglio MH, Martras S, Farres J, Pares X, Duester G (2002) Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci USA 99:5337–5342PubMedCrossRefGoogle Scholar
  40. 40.
    Duester G, Mic FA, Molotkov A (2003) Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid. Chem Biol Interact 143–144:201–210PubMedCrossRefGoogle Scholar
  41. 41.
    Molotkov A, Fan X, Duester G (2002) Excessive vitamin A toxicity in mice genetically deficient in either alcohol dehydrogenase Adh1 or Adh3. Eur J Biochem 269:2607–2612PubMedCrossRefGoogle Scholar
  42. 42.
    Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K, Rey JP, Ma JX, Staehling-Hampton K, Trainor PA (2007) RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 21:1113–1124PubMedCrossRefGoogle Scholar
  43. 43.
    Strate I, Min TH, Iliev D, Pera EM (2009) Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system. Development 136:461–472PubMedCrossRefGoogle Scholar
  44. 44.
    Albalat R, Canestro C (2009) Identification of Aldh1a, Cyp26 and RAR orthologs in protostomes pushes back the retinoic acid genetic machinery in evolutionary time to the bilaterian ancestor. Chem Biol Interact 178:188–196PubMedCrossRefGoogle Scholar
  45. 45.
    Haselbeck RJ, Hoffmann I, Duester G (1999) Distinct functions for Aldh1 and Raldh2 in the control of ligand production for embryonic retinoid signaling pathways. Dev Genet 25:353–364PubMedCrossRefGoogle Scholar
  46. 46.
    Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448PubMedCrossRefGoogle Scholar
  47. 47.
    Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dolle P (2000) Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127:75–85PubMedGoogle Scholar
  48. 48.
    Dupe V, Matt N, Garnier JM, Chambon P, Mark M, Ghyselinck NB (2003) A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. Proc Natl Acad Sci USA 100:14036–14041PubMedCrossRefGoogle Scholar
  49. 49.
    Lin M, Zhang M, Abraham M, Smith SM, Napoli JL (2003) Mouse retinal dehydrogenase 4 (RALDH4), molecular cloning, cellular expression, and activity in 9-cis-retinoic acid biosynthesis in intact cells. J Biol Chem 278:9856–9861PubMedCrossRefGoogle Scholar
  50. 50.
    Campo-Paysaa F, Marletaz F, Laudet V, Schubert M (2008) Retinoic acid signaling in development: tissue-specific functions and evolutionary origins. Genesis 46:640–656PubMedCrossRefGoogle Scholar
  51. 51.
    Canestro C, Postlethwait JH, Gonzalez-Duarte R, Albalat R (2006) Is retinoic acid genetic machinery a chordate innovation? Evol Dev 8:394–406PubMedCrossRefGoogle Scholar
  52. 52.
    Napoli JL (1996) Retinoic acid biosynthesis and metabolism. FASEB J 10:993–1001PubMedGoogle Scholar
  53. 53.
    Delva L, Bastie JN, Rochette-Egly C, Kraiba R, Balitrand N, Despouy G, Chambon P, Chomienne C (1999) Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol Cell Biol 19:7158–7167PubMedGoogle Scholar
  54. 54.
    Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274:23695–23698PubMedCrossRefGoogle Scholar
  55. 55.
    Lampron C, Rochette-Egly C, Gorry P, Dolle P, Mark M, Lufkin T, LeMeur M, Chambon P (1995) Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 121:539–548PubMedGoogle Scholar
  56. 56.
    Jackman WR, Mougey JM, Panopoulou GD, Kimmel CB (2004) crabp and maf highlight the novelty of the amphioxus club-shaped gland. Acta Zool (Stockholm) 85:91–99CrossRefGoogle Scholar
  57. 57.
    Petkovich PM (2001) Retinoic acid metabolism. J Am Acad Dermatol 45:S136–S142PubMedCrossRefGoogle Scholar
  58. 58.
    Roberts ES, Vaz AD, Coon MJ (1992) Role of isozymes of rabbit microsomal cytochrome P-450 in the metabolism of retinoic acid, retinol, and retinal. Mol Pharmacol 41:427–433PubMedGoogle Scholar
  59. 59.
    Marill J, Capron CC, Idres N, Chabot GG (2002) Human cytochrome P450s involved in the metabolism of 9-cis- and 13-cis-retinoic acids. Biochem Pharmacol 63:933–943PubMedCrossRefGoogle Scholar
  60. 60.
    White JA, Guo YD, Baetz K, Beckett-Jones B, Bonasoro J, Hsu KE, Dilworth FJ, Jones G, Petkovich M (1996) Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem 271:29922–29927PubMedCrossRefGoogle Scholar
  61. 61.
    White JA, Beckett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, Jones G, Petkovich M (1997) cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J Biol Chem 272:18538–18541PubMedCrossRefGoogle Scholar
  62. 62.
    White RJ, Schilling TF (2008) How degrading: Cyp26s in hindbrain development. Dev Dyn 237:2775–2790PubMedCrossRefGoogle Scholar
  63. 63.
    Tanibe M, Michiue T, Yukita A, Danno H, Ikuzawa M, Ishiura S, Asashima M (2008) Retinoic acid metabolizing factor xCyp26c is specifically expressed in neuroectoderm and regulates anterior neural patterning in Xenopus laevis. Int J Dev Biol 52:893–901PubMedCrossRefGoogle Scholar
  64. 64.
    Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240PubMedCrossRefGoogle Scholar
  65. 65.
    White JA, Ramshaw H, Taimi M, Stangle W, Zhang A, Everingham S, Creighton S, Tam SP, Jones G, Petkovich M (2000) Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all-trans-retinoic acid metabolism. Proc Natl Acad Sci USA 97:6403–6408PubMedCrossRefGoogle Scholar
  66. 66.
    Taimi M, Helvig C, Wisniewski J, Ramshaw H, White J, Amad M, Korczak B, Petkovich M (2004) A novel human cytochrome P450, CYP26C1, involved in metabolism of 9-cis and all-trans isomers of retinoic acid. J Biol Chem 279:77–85PubMedCrossRefGoogle Scholar
  67. 67.
    Reijntjes S, Gale E, Maden M (2004) Generating gradients of retinoic acid in the chick embryo: Cyp26C1 expression and a comparative analysis of the Cyp26 enzymes. Dev Dyn 230:509–517PubMedCrossRefGoogle Scholar
  68. 68.
    Uehara M, Yashiro K, Mamiya S, Nishino J, Chambon P, Dolle P, Sakai Y (2007) CYP26A1 and CYP26C1 cooperatively regulate anterior-posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse. Dev Biol 302:399–411PubMedCrossRefGoogle Scholar
  69. 69.
    Hernandez RE, Putzke AP, Myers JP, Margaretha L, Moens CB (2007) Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 134:177–187PubMedCrossRefGoogle Scholar
  70. 70.
    Laudet V, Gronemeyer H (2002) The nuclear receptor facts book. Academic, San DiegoGoogle Scholar
  71. 71.
    Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM (1990) Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224–229PubMedCrossRefGoogle Scholar
  72. 72.
    Leid M, Kastner P, Chambon P (1992) Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci 17:427–433PubMedCrossRefGoogle Scholar
  73. 73.
    Chambon P (2005) The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol Endocrinol 19:1418–1428PubMedCrossRefGoogle Scholar
  74. 74.
    Mader S, Chen JY, Chen Z, White J, Chambon P, Gronemeyer H (1993) The patterns of binding of RAR, RXR and TR homo- and heterodimers to direct repeats are dictated by the binding specificites of the DNA binding domains. EMBO J 12:5029–5041PubMedGoogle Scholar
  75. 75.
    Perlmann T, Umesono K, Rangarajan PN, Forman BM, Evans RM (1996) Two distinct dimerization interfaces differentially modulate target gene specificity of nuclear hormone receptors. Mol Endocrinol 10:958–966PubMedCrossRefGoogle Scholar
  76. 76.
    Zechel C, Shen XQ, Chambon P, Gronemeyer H (1994) Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J 13:1414–1424PubMedGoogle Scholar
  77. 77.
    Zechel C, Shen XQ, Chen JY, Chen ZP, Chambon P, Gronemeyer H (1994) The dimerization interfaces formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J 13:1425–1433PubMedGoogle Scholar
  78. 78.
    Balmer JE, Blomhoff R (2005) A robust characterization of retinoic acid response elements based on a comparison of sites in three species. J Steroid Biochem Mol Biol 96:347–354PubMedCrossRefGoogle Scholar
  79. 79.
    Durand B, Saunders M, Leroy P, Leid M, Chambon P (1992) All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71:73–85PubMedCrossRefGoogle Scholar
  80. 80.
    Smith WC, Nakshatri H, Leroy P, Rees J, Chambon P (1991) A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J 10:2223–2230PubMedGoogle Scholar
  81. 81.
    Perlmann T, Rangarajan PN, Umesono K, Evans RM (1993) Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev 7:1411–1422PubMedCrossRefGoogle Scholar
  82. 82.
    Predki PF, Zamble D, Sarkar B, Giguere V (1994) Ordered binding of retinoic acid and retinoid-X receptors to asymmetric response elements involves determinants adjacent to the DNA-binding domain. Mol Endocrinol 8:31–39PubMedCrossRefGoogle Scholar
  83. 83.
    Kurokawa R, DiRenzo J, Boehm M, Sugarman J, Gloss B, Rosenfeld MG, Heyman RA, Glass CK (1994) Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371:528–531PubMedCrossRefGoogle Scholar
  84. 84.
    Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330:624–629PubMedCrossRefGoogle Scholar
  85. 85.
    Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450PubMedCrossRefGoogle Scholar
  86. 86.
    Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 7:e002PubMedGoogle Scholar
  87. 87.
    Brand N, Petkovich M, Krust A, Chambon P, de The H, Marchio A, Tiollais P, Dejean A (1988) Identification of a second human retinoic acid receptor. Nature 332:850–853PubMedCrossRefGoogle Scholar
  88. 88.
    Dejean A, Bougueleret L, Grzeschik KH, Tiollais P (1986) Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma. Nature 322:70–72PubMedCrossRefGoogle Scholar
  89. 89.
    Peng X, Maruo T, Cao Y, Punj V, Mehta R, Das Gupta TK, Christov K (2004) A novel RARβ isoform directed by a distinct promoter P3 and mediated by retinoic acid in breast cancer cells. Cancer Res 64:8911–8918PubMedCrossRefGoogle Scholar
  90. 90.
    Zelent A, Mendelsohn C, Kastner P, Krust A, Garnier JM, Ruffenach F, Leroy P, Chambon P (1991) Differentially expressed isoforms of the mouse retinoic acid receptor β generated by usage of two promoters and alternative splicing. EMBO J 10:71–81PubMedGoogle Scholar
  91. 91.
    Liao WL, Tsai HC, Wang HF, Chang J, Lu KM, Wu HL, Lee YC, Tsai TF, Takahashi H, Wagner M, Ghyselinck NB, Chambon P, Liu FC (2008) Modular patterning of structure and function of the striatum by retinoid receptor signaling. Proc Natl Acad Sci USA 105:6765–6770PubMedCrossRefGoogle Scholar
  92. 92.
    Krezel W, Ghyselinck N, Samad TA, Dupe V, Kastner P, Borrelli E, Chambon P (1998) Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279:863–867PubMedCrossRefGoogle Scholar
  93. 93.
    Krust A, Kastner P, Petkovich M, Zelent A, Chambon P (1989) A third human retinoic acid receptor, hRARγ. Proc Natl Acad Sci USA 86:5310–5314PubMedCrossRefGoogle Scholar
  94. 94.
    Zelent A, Krust A, Petkovich M, Kastner P, Chambon P (1989) Cloning of murine α and β retinoic acid receptors and a novel receptor γ predominantly expressed in skin. Nature 339:714–717PubMedCrossRefGoogle Scholar
  95. 95.
    Lohnes D, Kastner P, Dierich A, Mark M, LeMeur M, Chambon P (1993) Function of retinoic acid receptor γ in the mouse. Cell 73:643–658PubMedCrossRefGoogle Scholar
  96. 96.
    Williams JA, Kondo N, Okabe T, Takeshita N, Pilchak DM, Koyama E, Ochiai T, Jensen D, Chu ML, Kane MA, Napoli JL, Enomoto-Iwamoto M, Ghyselinck N, Chambon P, Pacifici M, Iwamoto M (2009) Retinoic acid receptors are required for skeletal growth, matrix homeostasis and growth plate function in postnatal mouse. Dev Biol 328:315–327PubMedCrossRefGoogle Scholar
  97. 97.
    Lohnes D, Mark M, Mendelsohn C, Dolle P, Dierich A, Gorry P, Gansmuller A, Chambon P (1994) Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development 120:2723–2748PubMedGoogle Scholar
  98. 98.
    Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–2771PubMedGoogle Scholar
  99. 99.
    Hamada K, Gleason SL, Levi BZ, Hirschfeld S, Appella E, Ozato K (1989) H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element. Proc Natl Acad Sci USA 86:8289–8293PubMedCrossRefGoogle Scholar
  100. 100.
    Kastner P, Messaddeq N, Mark M, Wendling O, Grondona JM, Ward S, Ghyselinck N, Chambon P (1997) Vitamin A deficiency and mutations of RXRα, RXRβ and RARα lead to early differentiation of embryonic ventricular cardiomyocytes. Development 124:4749–4758PubMedGoogle Scholar
  101. 101.
    Sucov HM, Izpisua-Belmonte JC, Ganan Y, Evans RM (1995) Mouse embryos lacking RXRα are resistant to retinoic-acid-induced limb defects. Development 121:3997–4003PubMedGoogle Scholar
  102. 102.
    Nugent P, Sucov HM, Pisano MM, Greene RM (1999) The role of RXRα in retinoic acid-induced cleft palate as assessed with the RXRα knockout mouse. Int J Dev Biol 43:567–570PubMedGoogle Scholar
  103. 103.
    Kastner P, Mark M, Leid M, Gansmuller A, Chin W, Grondona JM, Decimo D, Krezel W, Dierich A, Chambon P (1996) Abnormal spermatogenesis in RXRβ mutant mice. Genes Dev 10:80–92PubMedCrossRefGoogle Scholar
  104. 104.
    Krezel W, Dupe V, Mark M, Dierich A, Kastner P, Chambon P (1996) RXRγ null mice are apparently normal and compound RXRα +/−/RXRβ −/−/RXRγ −/− mutant mice are viable. Proc Natl Acad Sci USA 93:9010–9014PubMedGoogle Scholar
  105. 105.
    Brown NS, Smart A, Sharma V, Brinkmeier ML, Greenlee L, Camper SA, Jensen DR, Eckel RH, Krezel W, Chambon P, Haugen BR (2000) Thyroid hormone resistance and increased metabolic rate in the RXR-γ-deficient mouse. J Clin Invest 106:73–79PubMedCrossRefGoogle Scholar
  106. 106.
    Schug TT, Berry DC, Shaw NS, Travis SN, Noy N (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129:723–733PubMedCrossRefGoogle Scholar
  107. 107.
    Berry DC, Noy N (2007) Is PPARβ/δ a retinoid receptor? PPAR Res 2007:73256PubMedGoogle Scholar
  108. 108.
    Shaw N, Elholm M, Noy N (2003) Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor β/δ. J Biol Chem 278:41589–41592PubMedCrossRefGoogle Scholar
  109. 109.
    Di-Poi N, Tan NS, Michalik L, Wahli W, Desvergne B (2002) Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol Cell 10:721–733PubMedCrossRefGoogle Scholar
  110. 110.
    Tan NS, Michalik L, Desvergne B, Wahli W (2004) Peroxisome proliferator-activated receptor-β as a target for wound healing drugs. Expert Opin Ther Targets 8:39–48PubMedCrossRefGoogle Scholar
  111. 111.
    Wolf G (2008) Retinoic acid as cause of cell proliferation or cell growth inhibition depending on activation of one of two different nuclear receptors. Nutr Rev 66:55–59PubMedCrossRefGoogle Scholar
  112. 112.
    Stehlin-Gaon C, Willmann D, Zeyer D, Sanglier S, Van Dorsselaer A, Renaud JP, Moras D, Schule R (2003) All-trans retinoic acid is a ligand for the orphan nuclear receptor RORβ. Nat Struct Biol 10:820–825PubMedCrossRefGoogle Scholar
  113. 113.
    Park JI, Tsai SY, Tsai MJ (2003) Molecular mechanism of chicken ovalbumin upstream promoter-transcription factor (COUP-TF) actions. Keio J Med 52:174–181PubMedGoogle Scholar
  114. 114.
    Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 13:1037–1049PubMedCrossRefGoogle Scholar
  115. 115.
    Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ, Xu HE (2008) Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol 6:e227PubMedCrossRefGoogle Scholar
  116. 116.
    Allenby G, Janocha R, Kazmer S, Speck J, Grippo JF, Levin AA (1994) Binding of 9-cis-retinoic acid and all-trans-retinoic acid to retinoic acid receptors α, β, and γ. Retinoic acid receptor γ binds all-trans-retinoic acid preferentially over 9-cis-retinoic acid. J Biol Chem 269:16689–16695PubMedGoogle Scholar
  117. 117.
    Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954PubMedGoogle Scholar
  118. 118.
    Repa JJ, Hanson KK, Clagett-Dame M (1993) All-trans-retinol is a ligand for the retinoic acid receptors. Proc Natl Acad Sci USA 90:7293–7297PubMedCrossRefGoogle Scholar
  119. 119.
    Pijnappel WW, Hendriks HF, Folkers GE, van den Brink CE, Dekker EJ, Edelenbosch C, van der Saag PT, Durston AJ (1993) The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature 366:340–344PubMedCrossRefGoogle Scholar
  120. 120.
    Schuchardt JP, Wahlstrom D, Ruegg J, Giese N, Stefan M, Hopf H, Pongratz I, Hakansson H, Eichele G, Pettersson K, Nau H (2009) The endogenous retinoid metabolite S-4-oxo-9-cis-13, 14-dihydro-retinoic acid activates retinoic acid receptor signalling both in vitro and in vivo. FEBS J 276:3043–3059PubMedCrossRefGoogle Scholar
  121. 121.
    Matsumoto A, Mizukami H, Mizuno S, Umegaki K, Nishikawa J, Shudo K, Kagechika H, Inoue M (2007) β-Cryptoxanthin, a novel natural RAR ligand, induces ATP-binding cassette transporters in macrophages. Biochem Pharmacol 74:256–264PubMedCrossRefGoogle Scholar
  122. 122.
    Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H (2007) RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov 6:793–810PubMedCrossRefGoogle Scholar
  123. 123.
    Boehm MF, Zhang L, Badea BA, White SK, Mais DE, Berger E, Suto CM, Goldman ME, Heyman RA (1994) Synthesis and structure–activity relationships of novel retinoid X receptor-selective retinoids. J Med Chem 37:2930–2941PubMedCrossRefGoogle Scholar
  124. 124.
    de Lera AR, Bourguet W, Altucci L, Gronemeyer H (2007) Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nat Rev Drug Discov 6:811–820PubMedCrossRefGoogle Scholar
  125. 125.
    Kistler A (1987) Limb bud cell cultures for estimating the teratogenic potential of compounds. Validation of the test system with retinoids. Arch Toxicol 60:403–414PubMedCrossRefGoogle Scholar
  126. 126.
    Pignatello MA, Kauffman FC, Levin AA (1997) Multiple factors contribute to the toxicity of the aromatic retinoid, TTNPB (Ro 13–7410): binding affinities and disposition. Toxicol Appl Pharmacol 142:319–327PubMedCrossRefGoogle Scholar
  127. 127.
    Germain P, Gaudon C, Pogenberg V, Sanglier S, Van Dorsselaer A, Royer CA, Lazar MA, Bourguet W, Gronemeyer H (2009) Differential action on coregulator interaction defines inverse retinoid agonists and neutral antagonists. Chem Biol 16:479–489PubMedCrossRefGoogle Scholar
  128. 128.
    Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406PubMedCrossRefGoogle Scholar
  129. 129.
    Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6:329–344PubMedCrossRefGoogle Scholar
  130. 130.
    Wolf G (2006) Is 9-cis-retinoic acid the endogenous ligand for the retinoic acid-X receptor? Nutr Rev 64:532–538PubMedGoogle Scholar
  131. 131.
    Dmetrichuk JM, Carlone RL, Jones TR, Vesprini ND, Spencer GE (2008) Detection of endogenous retinoids in the molluscan CNS and characterization of the trophic and tropic actions of 9-cis retinoic acid on isolated neurons. J Neurosci 28:13014–13024PubMedCrossRefGoogle Scholar
  132. 132.
    Nowickyj SM, Chithalen JV, Cameron D, Tyshenko MG, Petkovich M, Wyatt GR, Jones G, Walker VK (2008) Locust retinoid X receptors: 9-cis retinoic acid in embryos from a primitive insect. Proc Natl Acad Sci USA 105:9540–9545PubMedCrossRefGoogle Scholar
  133. 133.
    Hopkins P (2001) Limb regeneration in the fiddler crab, Uca pugilator: hormonal and growth factor control. Am Zool 41:389–398CrossRefGoogle Scholar
  134. 134.
    Viviano CM, Horton CE, Maden M, Brockes JP (1995) Synthesis and release of 9-cis retinoic acid by the urodele wound epidermis. Development 121:3753–3762Google Scholar
  135. 135.
    Bourguet W, Vivat V, Wurtz JM, Chambon P, Gronemeyer H, Moras D (2000) Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol Cell 5:289–298PubMedCrossRefGoogle Scholar
  136. 136.
    de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, Perlmann T (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144PubMedCrossRefGoogle Scholar
  137. 137.
    Goldstein JT, Dobrzyn A, Clagett-Dame M, Pike JW, DeLuca HF (2003) Isolation and characterization of unsaturated fatty acids as natural ligands for the retinoid-X receptor. Arch Biochem Biophys 420:185–193PubMedCrossRefGoogle Scholar
  138. 138.
    Tocchini-Valentini GD, Rochel N, Escriva H, Germain P, Peluso-Iltis C, Paris M, Sanglier-Cianferani S, Van Dorsselaer A, Moras D, Laudet V (2009) Structural and functional insights into the ligand-binding domain of a nonduplicated retinoid X nuclear receptor from the invertebrate chordate amphioxus. J Biol Chem 284:1938–1948PubMedCrossRefGoogle Scholar
  139. 139.
    Lehmann JM, Jong L, Fanjul A, Cameron JF, Lu XP, Haefner P, Dawson MI, Pfahl M (1992) Retinoids selective for retinoid X receptor response pathways. Science 258:1944–1946PubMedCrossRefGoogle Scholar
  140. 140.
    Boehm MF, Zhang L, Zhi L, McClurg MR, Berger E, Wagoner M, Mais DE, Suto CM, Davies JA, Heyman RA, Nadzan AM (1995) Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells. J Med Chem 38:3146–3155PubMedCrossRefGoogle Scholar
  141. 141.
    Minucci S, Leid M, Toyama R, Saint-Jeannet JP, Peterson VJ, Horn V, Ishmael JE, Bhattacharyya N, Dey A, Dawid IB, Ozato K (1997) Retinoid X receptor (RXR) within the RXR-retinoic acid receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression. Mol Cell Biol 17:644–655PubMedGoogle Scholar
  142. 142.
    Balmer JE, Blomhoff R (2002) Gene expression regulation by retinoic acid. J Lipid Res 43:1773–1808PubMedCrossRefGoogle Scholar
  143. 143.
    Astrom A, Pettersson U, Chambon P, Voorhees JJ (1994) Retinoic acid induction of human cellular retinoic acid-binding protein-II gene transcription is mediated by retinoic acid receptor-retinoid X receptor heterodimers bound to one far upstream retinoic acid-responsive element with 5-base pair spacing. J Biol Chem 269:22334–22339PubMedGoogle Scholar
  144. 144.
    McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302PubMedCrossRefGoogle Scholar
  145. 145.
    Kessel M (1992) Respecification of vertebral identities by retinoic acid. Development 115:487–501PubMedGoogle Scholar
  146. 146.
    Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104PubMedCrossRefGoogle Scholar
  147. 147.
    Marletaz F, Holland LZ, Laudet V, Schubert M (2006) Retinoic acid signaling and the evolution of chordates. Int J Biol Sci 2:38–47PubMedGoogle Scholar
  148. 148.
    Langston AW, Thompson JR, Gudas LJ (1997) Retinoic acid-responsive enhancers located 3′ of the Hox A and Hox B homeobox gene clusters. Functional analysis. J Biol Chem 272:2167–2175PubMedCrossRefGoogle Scholar
  149. 149.
    Manzanares M, Wada H, Itasaki N, Trainor PA, Krumlauf R, Holland PW (2000) Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. Nature 408:854–857PubMedCrossRefGoogle Scholar
  150. 150.
    Wada H, Escriva H, Zhang S, Laudet V (2006) Conserved RARE localization in amphioxus Hox clusters and implications for Hox code evolution in the vertebrate neural crest. Dev Dyn 235:1522–1531PubMedCrossRefGoogle Scholar
  151. 151.
    Kanda M, Wada H, Fujiwara S (2009) Epidermal expression of Hox1 is directly activated by retinoic acid in the Ciona intestinalis embryo. Dev Biol 335:454–463PubMedCrossRefGoogle Scholar
  152. 152.
    Feng L, Hernandez RE, Waxman JS, Yelon D, Moens CB (2010) Dhrs3a regulates retinoic acid biosynthesis through a feedback inhibition mechanism. Dev Biol 338:1–14PubMedCrossRefGoogle Scholar
  153. 153.
    Hua S, Kittler R, White KP (2009) Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137:1259–1271PubMedCrossRefGoogle Scholar
  154. 154.
    Chen N, Onisko B, Napoli JL (2008) The nuclear transcription factor RARα associates with neuronal RNA granules and suppresses translation. J Biol Chem 283:20841–20847PubMedCrossRefGoogle Scholar
  155. 155.
    Poon MM, Chen L (2008) Retinoic acid-gated sequence-specific translational control by RARα. Proc Natl Acad Sci USA 105:20303–20308PubMedCrossRefGoogle Scholar
  156. 156.
    Liao YP, Ho SY, Liou JC (2004) Non-genomic regulation of transmitter release by retinoic acid at developing motoneurons in Xenopus cell culture. J Cell Sci 117:2917–2924PubMedCrossRefGoogle Scholar
  157. 157.
    Liou JC, Ho SY, Shen MR, Liao YP, Chiu WT, Kang KH (2005) A rapid, nongenomic pathway facilitates the synaptic transmission induced by retinoic acid at the developing synapse. J Cell Sci 118:4721–4730PubMedCrossRefGoogle Scholar
  158. 158.
    Masia S, Alvarez S, de Lera AR, Barettino D (2007) Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 21:2391–2402PubMedCrossRefGoogle Scholar
  159. 159.
    Fanjul A, Dawson MI, Hobbs PD, Jong L, Cameron JF, Harlev E, Graupner G, Lu XP, Pfahl M (1994) A new class of retinoids with selective inhibition of AP-1 inhibits proliferation. Nature 372:107–111PubMedCrossRefGoogle Scholar
  160. 160.
    Baeuerle PA, Baltimore D (1996) NF-κB: ten years after. Cell 87:13–20PubMedCrossRefGoogle Scholar
  161. 161.
    Austenaa LM, Carlsen H, Ertesvag A, Alexander G, Blomhoff HK, Blomhoff R (2004) Vitamin A status significantly alters nuclear factor-κB activity assessed by in vivo imaging. FASEB J 18:1255–1257PubMedGoogle Scholar
  162. 162.
    Austenaa LM, Carlsen H, Hollung K, Blomhoff HK, Blomhoff R (2009) Retinoic acid dampens LPS-induced NF-κB activity: results from human monoblasts and in vivo imaging of NF-κB reporter mice. J Nutr Biochem 20:726–734PubMedCrossRefGoogle Scholar
  163. 163.
    Aggarwal S, Kim SW, Cheon K, Tabassam FH, Yoon JH, Koo JS (2006) Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol Biol Cell 17:566–575PubMedCrossRefGoogle Scholar
  164. 164.
    Ochoa WF, Torrecillas A, Fita I, Verdaguer N, Corbalan-Garcia S, Gomez-Fernandez JC (2003) Retinoic acid binds to the C2-domain of protein kinase Cα. Biochemistry 42:8774–8779PubMedCrossRefGoogle Scholar
  165. 165.
    Farrar NR, Dmetrichuk JM, Carlone RL, Spencer GE (2009) A novel, nongenomic mechanism underlies retinoic acid-induced growth cone turning. J Neurosci 29:14136–14142PubMedCrossRefGoogle Scholar
  166. 166.
    Escriva H, Holland ND, Gronemeyer H, Laudet V, Holland LZ (2002) The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development 129:2905–2916PubMedGoogle Scholar
  167. 167.
    Holland LZ, Holland ND (1996) Expression of AmphiHox-1 and AmphiPax-1 in amphioxus embryos treated with retinoic acid: insights into evolution and patterning of the chordate nerve cord and pharynx. Development 122:1829–1838PubMedGoogle Scholar
  168. 168.
    Schubert M, Yu JK, Holland ND, Escriva H, Laudet V, Holland LZ (2005) Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development 132:61–73PubMedCrossRefGoogle Scholar
  169. 169.
    Onai T, Lin HC, Schubert M, Koop D, Osborne PW, Alvarez S, Alvarez R, Holland ND, Holland LZ (2009) Retinoic acid and Wnt/β-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Dev Biol 332:223–233PubMedCrossRefGoogle Scholar
  170. 170.
    Schubert M, Holland ND, Laudet V, Holland LZ (2006) A retinoic acid-Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus. Dev Biol 296:190–202PubMedCrossRefGoogle Scholar
  171. 171.
    Schubert M, Holland ND, Escriva H, Holland LZ, Laudet V (2004) Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus). Proc Natl Acad Sci USA 101:10320–10325PubMedCrossRefGoogle Scholar
  172. 172.
    Hinman VF, Degnan BM (1998) Retinoic acid disrupts anterior ectodermal and endodermal development in ascidian larvae and postlarvae. Dev Genes Evol 208:336–345PubMedCrossRefGoogle Scholar
  173. 173.
    Katsuyama Y, Saiga H (1998) Retinoic acid affects patterning along the anterior-posterior axis of the ascidian embryo. Dev Growth Differ 40:413–422PubMedCrossRefGoogle Scholar
  174. 174.
    Fujiwara S (2006) Retinoids and nonvertebrate chordate development. J Neurobiol 66:645–652PubMedCrossRefGoogle Scholar
  175. 175.
    Yagi K, Makabe KW (2002) Retinoic acid differently affects the formation of palps and surrounding neurons in the ascidian tadpole. Dev Genes Evol 212:288–292PubMedCrossRefGoogle Scholar
  176. 176.
    Rinkevich Y, Paz G, Rinkevich B, Reshef R (2007) Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol 5:e71PubMedCrossRefGoogle Scholar
  177. 177.
    Sciarrino S, Matranga V (1995) Effects of retinoic acid and dimethylsulfoxide on the morphogenesis of the sea urchin embryo. Cell Biol Int 19:675–680PubMedCrossRefGoogle Scholar
  178. 178.
    Dmetrichuk JM, Carlone RL, Spencer GE (2006) Retinoic acid induces neurite outgrowth and growth cone turning in invertebrate neurons. Dev Biol 294:39–49PubMedCrossRefGoogle Scholar
  179. 179.
    Fields AL, Soprano DR, Soprano KJ (2007) Retinoids in biological control and cancer. J Cell Biochem 102:886–898PubMedCrossRefGoogle Scholar
  180. 180.
    Wolbach SB, Howe PR (1925) Tissue changes following deprivation of fat-soluble A vitamin. Nutr Rev 36:16–19CrossRefGoogle Scholar
  181. 181.
    Dragnev KH, Rigas JR, Dmitrovsky E (2000) The retinoids and cancer prevention mechanisms. Oncologist 5:361–368PubMedCrossRefGoogle Scholar
  182. 182.
    Niles RM (2000) Recent advances in the use of vitamin A (retinoids) in the prevention and treatment of cancer. Nutrition 16:1084–1089PubMedCrossRefGoogle Scholar
  183. 183.
    Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu LJ, Wang ZY (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572PubMedGoogle Scholar
  184. 184.
    Borrow J, Goddard AD, Sheer D, Solomon E (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249:1577–1580PubMedCrossRefGoogle Scholar
  185. 185.
    de The H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347:558–561PubMedCrossRefGoogle Scholar
  186. 186.
    de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675–684PubMedCrossRefGoogle Scholar
  187. 187.
    Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VV, Dmitrovsky E, Evans RM (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66:663–674PubMedCrossRefGoogle Scholar
  188. 188.
    Kastner P, Perez A, Lutz Y, Rochette-Egly C, Gaub MP, Durand B, Lanotte M, Berger R, Chambon P (1992) Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J 11:629–642PubMedGoogle Scholar
  189. 189.
    Hummel JL, Zhang T, Wells RA, Kamel-Reid S (2002) The retinoic acid receptor α (RARα) chimeric proteins PML-, PLZF-, NPM-, and NuMA-RARα have distinct intracellular localization patterns. Cell Growth Differ 13:173–183PubMedGoogle Scholar
  190. 190.
    Fenaux P, Chevret S, Guerci A, Fegueux N, Dombret H, Thomas X, Sanz M, Link H, Maloisel F, Gardin C, Bordessoule D, Stoppa AM, Sadoun A, Muus P, Wandt H, Mineur P, Whittaker JA, Fey M, Daniel MT, Castaigne S, Degos L (2000) Long-term follow-up confirms the benefit of all-trans retinoic acid in acute promyelocytic leukemia. European APL group. Leukemia 14:1371–1377PubMedCrossRefGoogle Scholar
  191. 191.
    Tallman MS, Nabhan C, Feusner JH, Rowe JM (2002) Acute promyelocytic leukemia: evolving therapeutic strategies. Blood 99:759–767PubMedCrossRefGoogle Scholar
  192. 192.
    Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG, Atwater S, Bishop JM (1997) A PMLRARα transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 94:2551–2556PubMedCrossRefGoogle Scholar
  193. 193.
    Licht JD (2006) Reconstructing a disease: What essential features of the retinoic acid receptor fusion oncoproteins generate acute promyelocytic leukemia? Cancer Cell 9:73–74PubMedCrossRefGoogle Scholar
  194. 194.
    Seewaldt VL, Johnson BS, Parker MB, Collins SJ, Swisshelm K (1995) Expression of retinoic acid receptor β mediates retinoic acid-induced growth arrest and apoptosis in breast cancer cells. Cell Growth Differ 6:1077–1088PubMedGoogle Scholar
  195. 195.
    Sun SY, Lotan R (2002) Retinoids and their receptors in cancer development and chemoprevention. Crit Rev Oncol Hematol 41:41–55PubMedCrossRefGoogle Scholar
  196. 196.
    Castillo L, Milano G, Santini J, Demard F, Pierrefite V (1997) Analysis of retinoic acid receptor β expression in normal and malignant laryngeal mucosa by a sensitive and routine applicable reverse transcription-polymerase chain reaction enzyme-linked immunosorbent assay method. Clin Cancer Res 3:2137–2142PubMedGoogle Scholar
  197. 197.
    Picard E, Seguin C, Monhoven N, Rochette-Egly C, Siat J, Borrelly J, Martinet Y, Martinet N, Vignaud JM (1999) Expression of retinoid receptor genes and proteins in non-small-cell lung cancer. J Natl Cancer Inst 91:1059–1066PubMedCrossRefGoogle Scholar
  198. 198.
    Widschwendter M, Berger J, Daxenbichler G, Muller-Holzner E, Widschwendter A, Mayr A, Marth C, Zeimet AG (1997) Loss of retinoic acid receptor β expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer. Cancer Res 57:4158–4161PubMedGoogle Scholar
  199. 199.
    Berard J, Gaboury L, Landers M, De Repentigny Y, Houle B, Kothary R, Bradley WE (1994) Hyperplasia and tumours in lung, breast and other tissues in mice carrying a RARβ4-like transgene. EMBO J 13:5570–5580PubMedGoogle Scholar
  200. 200.
    Wang Z, Boudjelal M, Kang S, Voorhees JJ, Fisher GJ (1999) Ultraviolet irradiation of human skin causes functional vitamin A deficiency, preventable by all-trans retinoic acid pre-treatment. Nat Med 5:418–422PubMedCrossRefGoogle Scholar
  201. 201.
    De Luca LM (1991) Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. FASEB J 5:2924–2933PubMedGoogle Scholar
  202. 202.
    Lee JS, Newman RA, Lippman SM, Huber MH, Minor T, Raber MN, Krakoff IH, Hong WK (1993) Phase I evaluation of all-trans-retinoic acid in adults with solid tumors. J Clin Oncol 11:959–966PubMedGoogle Scholar
  203. 203.
    Reynolds CP (2000) Differentiating agents in pediatric malignancies: retinoids in neuroblastoma. Curr Oncol Rep 2:511–518PubMedCrossRefGoogle Scholar
  204. 204.
    Rigas JR, Dragnev KH (2005) Emerging role of rexinoids in non-small cell lung cancer: focus on bexarotene. Oncologist 10:22–33PubMedCrossRefGoogle Scholar
  205. 205.
    So PL, Fujimoto MA, Epstein EH Jr (2008) Pharmacologic retinoid signaling and physiologic retinoic acid receptor signaling inhibit basal cell carcinoma tumorigenesis. Mol Cancer Ther 7:1275–1284PubMedCrossRefGoogle Scholar
  206. 206.
    Yen A, Fenning R, Chandraratna R, Walker P, Varvayanis S (2004) A retinoic acid receptor β/γ-selective prodrug (tazarotene) plus a retinoid X receptor ligand induces extracellular signal-regulated kinase activation, retinoblastoma hypophosphorylation, G0 arrest, and cell differentiation. Mol Pharmacol 66:1727–1737PubMedCrossRefGoogle Scholar
  207. 207.
    Kraemer KH, DiGiovanna JJ, Peck GL (1992) Chemoprevention of skin cancer in xeroderma pigmentosum. J Dermatol 19:715–718PubMedGoogle Scholar
  208. 208.
    Tanaka T, De Luca LM (2009) Therapeutic potential of “rexinoids” in cancer prevention and treatment. Cancer Res 69:4945–4947PubMedCrossRefGoogle Scholar
  209. 209.
    Tanaka T, Suh KS, Lo AM, De Luca LM (2007) p21WAF1/CIP1 is a common transcriptional target of retinoid receptors: pleiotropic regulatory mechanism through retinoic acid receptor (RAR)/retinoid X receptor (RXR) heterodimer and RXR/RXR homodimer. J Biol Chem 282:29987–29997PubMedCrossRefGoogle Scholar
  210. 210.
    Crowe DL, Chandraratna RA (2004) A retinoid X receptor (RXR)-selective retinoid reveals that RXRα is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res 6:R546–R555PubMedCrossRefGoogle Scholar
  211. 211.
    Mukherjee R, Davies PJ, Crombie DL, Bischoff ED, Cesario RM, Jow L, Hamann LG, Boehm MF, Mondon CE, Nadzan AM, Paterniti JR Jr, Heyman RA (1997) Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386:407–410PubMedCrossRefGoogle Scholar
  212. 212.
    Singh Ahuja H, Liu S, Crombie DL, Boehm M, Leibowitz MD, Heyman RA, Depre C, Nagy L, Tontonoz P, Davies PJ (2001) Differential effects of rexinoids and thiazolidinediones on metabolic gene expression in diabetic rodents. Mol Pharmacol 59:765–773PubMedGoogle Scholar
  213. 213.
    Benoit G, Altucci L, Flexor M, Ruchaud S, Lillehaug J, Raffelsberger W, Gronemeyer H, Lanotte M (1999) RAR-independent RXR signaling induces t(15;17) leukemia cell maturation. EMBO J 18:7011–7018PubMedCrossRefGoogle Scholar
  214. 214.
    Ruchaud S, Duprez E, Gendron MC, Houge G, Genieser HG, Jastorff B, Doskeland SO, Lanotte M (1994) Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line. Proc Natl Acad Sci USA 91:8428–8432PubMedCrossRefGoogle Scholar
  215. 215.
    Liby K, Royce DB, Risingsong R, Williams CR, Wood MD, Chandraratna RA, Sporn MB (2007) A new rexinoid, NRX194204, prevents carcinogenesis in both the lung and mammary gland. Clin Cancer Res 13:6237–6243PubMedCrossRefGoogle Scholar
  216. 216.
    Wu K, Kim HT, Rodriquez JL, Hilsenbeck SG, Mohsin SK, Xu XC, Lamph WW, Kuhn JG, Green JE, Brown PH (2002) Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. Cancer Epidemiol Biomarkers Prev 11:467–474PubMedGoogle Scholar
  217. 217.
    Wu K, Zhang Y, Xu XC, Hill J, Celestino J, Kim HT, Mohsin SK, Hilsenbeck SG, Lamph WW, Bissonette R, Brown PH (2002) The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res 62:6376–6380PubMedGoogle Scholar
  218. 218.
    Klopper JP, Sharma V, Berenz A, Hays WR, Loi M, Pugazhenthi U, Said S, Haugen BR (2009) Retinoid and thiazolidinedione therapies in melanoma: an analysis of differential response based on nuclear hormone receptor expression. Mol Cancer 8:16PubMedCrossRefGoogle Scholar
  219. 219.
    Rendi MH, Suh N, Lamph WW, Krajewski S, Reed JC, Heyman RA, Berchuck A, Liby K, Risingsong R, Royce DB, Williams CR, Sporn MB (2004) The selective estrogen receptor modulator arzoxifene and the rexinoid LG100268 cooperate to promote transforming growth factor β-dependent apoptosis in breast cancer. Cancer Res 64:3566–3571PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2010

Authors and Affiliations

  • Maria Theodosiou
    • 1
  • Vincent Laudet
    • 1
  • Michael Schubert
    • 1
    Email author
  1. 1.Institut de Génomique Fonctionnelle de LyonUniversité de Lyon (Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon)Lyon Cedex 07France

Personalised recommendations