Cellular and Molecular Life Sciences

, Volume 67, Issue 8, pp 1315–1329 | Cite as

Selective effect of burn injury on splenic CD11c+ dendritic cells and CD8α+CD4CD11c+ dendritic cell subsets

  • Julie Patenaude
  • Michele D’Elia
  • Claudine Hamelin
  • Jacques Bernier
Research Article


Burn injury causes an immunosuppression associated with suppressed adaptive immune function. Dendritic cells (DCs) are APCs for which signaling via their Toll-like receptors (TLRs) induces their maturation and activation, which is essential for the adaptive immune response. In this study, we examined if burn injury alters the TLR activity of splenic DCs. After injury, we noticed that DC functions were impaired, characterized by a suppressed capacity to prime naive T cells when triggering the TLR4 signaling cascade using specific ligands (LPS or rHSP60). The observed perturbations on LPS-primed DCs isolated from burned mice exhibited significantly diminished IL-12p40 production and enhanced IL-10 secretion-associated impairment in mitogen-activated protein kinase activation. Interestingly, we observed a decrease of TLR4/MD-2 expression on the CD8α+ DC subset that persisted following LPS stimulation. The altered TLR4 expression on LPS-stimulated CD8α+ DCs was associated with reduced capacity to produce IL-12 after stimulation. Our results suggested that TLR4 reactivity on DCs, especially CD8α+ DCs, is disturbed after burn injury.


Toll-like receptor TLR4 CD8α+ DC subset Lipopolysaccharides HSP60 MAP kinase Interleukine-12 Interleukine-10 



This work was supported by a grant from the Fondation des Pompiers du Québec pour les Grands-Brûlés. Michele D'Elia and Julie Patenaude were supported by a research award from the FRSQ-Fondation de la Recherche en Santé du Québec.


  1. 1.
    Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106:259–262CrossRefPubMedGoogle Scholar
  2. 2.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252CrossRefPubMedGoogle Scholar
  3. 3.
    Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255CrossRefPubMedGoogle Scholar
  4. 4.
    Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A (1997) Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388:782–787CrossRefPubMedGoogle Scholar
  5. 5.
    Maldonado-Lopez R, Moser M (2001) Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin Immunol 13:275–282CrossRefPubMedGoogle Scholar
  6. 6.
    Maldonado-Lopez R, Maliszewski C, Urbain J, Moser M (2001) Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(−) dendritic cells to prime Th1/Th2 cells in vivo. J Immunol 167:4345–4350PubMedGoogle Scholar
  7. 7.
    Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, Matsui T, Di Pucchio T, Connolly J, Fay JW, Pascual V, Palucka AK, Banchereau J (2007) Dendritic cell subsets in health and disease. Immunol Rev 219:118–142CrossRefPubMedGoogle Scholar
  8. 8.
    Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519CrossRefPubMedGoogle Scholar
  9. 9.
    Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6:823–835CrossRefPubMedGoogle Scholar
  10. 10.
    An H, Yu Y, Zhang M, Xu H, Qi R, Yan X, Liu S, Wang W, Guo Z, Guo J, Qin Z, Cao X (2002) Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology 106:38–45CrossRefPubMedGoogle Scholar
  11. 11.
    Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K (2000) TAB 2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5:649–658CrossRefPubMedGoogle Scholar
  12. 12.
    Hirata N, Yanagawa Y, Ebihara T, Seya T, Uematsu S, Akira S, Hayashi F, Iwabuchi K, Onoe K (2008) Selective synergy in anti-inflammatory cytokine production upon cooperated signaling via TLR4 and TLR2 in murine conventional dendritic cells. Mol Immunol 45:2734–2742CrossRefPubMedGoogle Scholar
  13. 13.
    O’Sullivan ST, O’Connor TP (1997) Immunosuppression following thermal injury: the pathogenesis of immunodysfunction. Br J Plast Surg 50:615–623CrossRefPubMedGoogle Scholar
  14. 14.
    Lederer JA, Rodrick ML, Mannick JA (1999) The effects of injury on the adaptive immune response. Shock 11:153–159CrossRefPubMedGoogle Scholar
  15. 15.
    Barlow Y (1994) T lymphocytes and immunosuppression in the burned patient: a review. Burns 20:487–490CrossRefPubMedGoogle Scholar
  16. 16.
    Saffle JR, Sullivan JJ, Tuohig GM, Larson CM (1993) Multiple organ failure in patients with thermal injury. Crit Care Med 21:1673–1683CrossRefPubMedGoogle Scholar
  17. 17.
    Patenaude J, D’Elia M, Hamelin C, Garrel D, Bernier J (2005) Burn injury induces a change in T cell homeostasis affecting preferentially CD4+ T cells. J Leukoc Biol 77:141–150CrossRefPubMedGoogle Scholar
  18. 18.
    Mannick JA, Rodrick ML, Lederer JA (2001) The immunologic response to injury. J Am Coll Surg 193:237–244CrossRefPubMedGoogle Scholar
  19. 19.
    Efron P, Moldawer LL (2003) Sepsis and the dendritic cell. Shock 20:386–401CrossRefPubMedGoogle Scholar
  20. 20.
    O’Suilleabhain CB, Kim S, Rodrick MR, Mannick JA, Lederer JA (2001) Injury induces alterations in T-cell NFkappaB and AP-1 activation. Shock 15:432–437CrossRefPubMedGoogle Scholar
  21. 21.
    O’Sullivan ST, Lederer JA, Horgan AF, Chin DH, Mannick JA, Rodrick ML (1995) Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann Surg 222:482–490, discussion 490–502PubMedGoogle Scholar
  22. 22.
    Duan X, Yarmush D, Leeder A, Yarmush ML, Mitchell RN (2008) Burn-induced immunosuppression: attenuated T cell signaling independent of IFN-gamma- and nitric oxide-mediated pathways. J Leukoc Biol 83:305–313CrossRefPubMedGoogle Scholar
  23. 23.
    Daniel T, Alexander M, Hubbard WJ, Chaudry IH, Choudhry MA, Schwacha MG (2006) Nitric oxide contributes to the development of a post-injury Th2 T-cell phenotype and immune dysfunction. J Cell Physiol 208:418–427CrossRefPubMedGoogle Scholar
  24. 24.
    Schwacha MG, Chaudry IH (2002) The cellular basis of post-burn immunosuppression: macrophages and mediators. Int J Mol Med 10:239–243PubMedGoogle Scholar
  25. 25.
    Alexander M, Daniel T, Chaudry IH, Schwacha MG (2004) MAP kinases differentially regulate the expression of macrophage hyperactivity after thermal injury. J Cell Physiol 201:35–44CrossRefPubMedGoogle Scholar
  26. 26.
    Guo Z, Kavanagh E, Zang Y, Dolan SM, Kriynovich SJ, Mannick JA, Lederer JA (2003) Burn injury promotes antigen-driven Th2-type responses in vivo. J Immunol 171:3983–3990PubMedGoogle Scholar
  27. 27.
    Kelly JL, O’Suilleabhain CB, Soberg CC, Mannick JA, Lederer JA (1999) Severe injury triggers antigen-specific T-helper cell dysfunction. Shock 12:39–45CrossRefPubMedGoogle Scholar
  28. 28.
    Toliver-Kinsky TE, Lin CY, Herndon DN, Sherwood ER (2003) Stimulation of hematopoiesis by the Fms-like tyrosine kinase 3 ligand restores bacterial induction of Th1 cytokines in thermally injured mice. Infect Immun 71:3058–3067CrossRefPubMedGoogle Scholar
  29. 29.
    Toliver-Kinsky TE, Cui W, Murphey ED, Lin C, Sherwood ER (2005) Enhancement of dendritic cell production by fms-like tyrosine kinase-3 ligand increases the resistance of mice to a burn wound infection. J Immunol 174:404–410PubMedGoogle Scholar
  30. 30.
    Bohannon J, Cui W, Cox R, Przkora R, Sherwood E, Toliver-Kinsky T (2008) Prophylactic treatment with fms-like tyrosine kinase-3 ligand after burn injury enhances global immune responses to infection. J Immunol 180:3038–3048PubMedGoogle Scholar
  31. 31.
    Jobin N, Garrel DR, Bernier J (2000) Increased burn-induced immunosuppression in lipopolysaccharide-resistant mice. Cell Immunol 200:65–75CrossRefPubMedGoogle Scholar
  32. 32.
    McManus AT, Mason AD Jr, McManus WF, Pruitt BA Jr (1985) Twenty-five year review of Pseudomonas aeruginosa bacteremia in a burn center. Eur J Clin Microbiol 4(2):219–223Google Scholar
  33. 33.
    Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752PubMedGoogle Scholar
  34. 34.
    Paterson HM, Murphy TJ, Purcell EJ, Shelley O, Kriynovich SJ, Lien E, Mannick JA, Lederer JA (2003) Injury primes the innate immune system for enhanced Toll-like receptor reactivity. J Immunol 171:1473–1483PubMedGoogle Scholar
  35. 35.
    Hugo P, Kappler JW, Godfrey DI, Marrack PC (1992) A cell line that can induce thymocyte positive selection. Nature 360:679–682CrossRefPubMedGoogle Scholar
  36. 36.
    Ogura H, Hashiguchi N, Tanaka H, Koh T, Noborio M, Nakamori Y, Nishino M, Kuwagata Y, Shimazu T, Sugimoto H (2002) Long-term enhanced expression of heat shock proteins and decelerated apoptosis in polymorphonuclear leukocytes from major burn patients. J Burn Care Rehabil 23:103–109CrossRefPubMedGoogle Scholar
  37. 37.
    Rund TE, Kierulf P, Godal HC, Aune S, Aasen AO (1984) Studies on pathological plasma proteolysis in severely burned patients using chromogenic peptide substrate assays: a preliminary report. Adv Exp Med Biol 167:449–454PubMedGoogle Scholar
  38. 38.
    Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P (1998) Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med 188:2175–2180CrossRefPubMedGoogle Scholar
  39. 39.
    Puig-Kroger A, Relloso M, Fernandez-Capetillo O, Zubiaga A, Silva A, Bernabeu C, Corbi AL (2001) Extracellular signal-regulated protein kinase signaling pathway negatively regulates the phenotypic and functional maturation of monocyte-derived human dendritic cells. Blood 98:2175–2182CrossRefPubMedGoogle Scholar
  40. 40.
    Arrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C (2001) A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol 166:3837–3845PubMedGoogle Scholar
  41. 41.
    Kataranovski M, Nikolic T, Velickovic M, Colic M, Pejnovic N, Vojinovic J (2000) Increased activity of lymph node cells in experimental thermal injury: changes in accessory cells in injured area-draining lymph nodes. Burns 26:525–534CrossRefPubMedGoogle Scholar
  42. 42.
    Maung AA, Fujimi S, MacConmara MP, Tajima G, McKenna AM, Delisle AJ, Stallwood C, Onderdonk AB, Mannick JA, Lederer JA (2008) Injury enhances resistance to Escherichia coli infection by boosting innate immune system function. J Immunol 180:2450–2458PubMedGoogle Scholar
  43. 43.
    Zhang PZ, Qin FJ, Ma CX, Su H, Yu DN, Li C (2007) Characterization and biological significance of peripheral blood dendritic cell subsets in patients with severe burn. Zhonghua Yi Xue Za Zhi 87:2275–2277PubMedGoogle Scholar
  44. 44.
    D’Elia M, Patenaude J, Hamelin C, Garrel DR, Bernier J (2005) Corticosterone binding globulin regulation and thymus changes after thermal injury in mice. Am J Physiol Endocrinol Metab 288:E852–E860CrossRefPubMedGoogle Scholar
  45. 45.
    Ding Y, Chung C-S, Newton S, Chen Y, Carlton S, Albina J, Ayala A (2004) Polymicrobial sepsis induces different effects on splenic and peritoneal dendritic cell function in mice. Shock 22:137–144CrossRefPubMedGoogle Scholar
  46. 46.
    Hotchkiss RS, Tinsley KW, Swanson PE, Grayson MH, Osborne DF, Wagner TH, Cobb JP, Coopersmith C, Karl IE (2002) Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol 168:2493–2500PubMedGoogle Scholar
  47. 47.
    Muthu K, He LK, Melstrom K, Szilagyi A, Gamelli RL, Shankar R (2008) Perturbed bone marrow monocyte development following burn injury and sepsis promote hyporesponsive monocytes. J Burn Care Res 29:12–21PubMedGoogle Scholar
  48. 48.
    Noel JG, Guo X, Wells-Byrum D, Schwemberger S, Caldwell CC, Ogle CK (2005) Effect of thermal injury on splenic myelopoiesis. Shock 23:115–122CrossRefPubMedGoogle Scholar
  49. 49.
    Met O, Buus S, Claesson MH (2003) Peptide-loaded dendritic cells prime and activate MHC-class I-restricted T cells more efficiently than protein-loaded cross-presenting DC. Cell Immunol 222:126–133CrossRefPubMedGoogle Scholar
  50. 50.
    Randow F, Syrbe U, Meisel C, Krausch D, Zuckermann H, Platzer C, Volk HD (1995) Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J Exp Med 181:1887–1892CrossRefPubMedGoogle Scholar
  51. 51.
    Yanagawa Y, Onoe K (2007) Enhanced IL-10 production by TLR4- and TLR2-primed dendritic cells upon TLR restimulation. J Immunol 178:6173–6180PubMedGoogle Scholar
  52. 52.
    De Creus A, Abe M, Lau AH, Hackstein H, Raimondi G, Thomson AW (2005) Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J Immunol 174:2037–2045PubMedGoogle Scholar
  53. 53.
    Fan H, Cook JA (2004) Molecular mechanisms of endotoxin tolerance. J Endotoxin Res 10:71–84CrossRefPubMedGoogle Scholar
  54. 54.
    Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165:618–622PubMedGoogle Scholar
  55. 55.
    Roger T, Froidevaux C, Le Roy D et al (2009) Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci USA 106:2348–2352Google Scholar
  56. 56.
    Lyons A, Kelly JL, Rodrick ML, Mannick JA, Lederer JA (1997) Major injury induces increased production of interleukin-10 by cells of the immune system with a negative impact on resistance to infection. Ann Surg 226:450–458, discussion 458–460CrossRefPubMedGoogle Scholar
  57. 57.
    Re F, Strominger JL (2004) IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells. J Immunol 173:7548–7555PubMedGoogle Scholar
  58. 58.
    Maung AA, Fujimi S, Miller ML, MacConmara MP, Mannick JA, Lederer JA (2005) Enhanced TLR4 reactivity following injury is mediated by increased p38 activation. J Leukoc Biol 78:565–573CrossRefPubMedGoogle Scholar
  59. 59.
    Murphy TJ, Paterson HM, Kriynovich S, Zang Y, Kurt-Jones EA, Mannick JA, Lederer JA (2005) Linking the “two-hit” response following injury to enhanced TLR4 reactivity. J Leukoc Biol 77:16–23PubMedGoogle Scholar
  60. 60.
    Neuenhahn M, Busch DH (2007) Unique functions of splenic CD8alpha+ dendritic cells during infection with intracellular pathogens. Immunol Lett 114:66–72CrossRefPubMedGoogle Scholar
  61. 61.
    Steinman RM, Pack M, Inaba K (1997) Dendritic cells in the T-cell areas of lymphoid organs. Immunol Rev 156:25–37CrossRefPubMedGoogle Scholar
  62. 62.
    Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, Thielemans K, Leo O, Urbain J, Moser M (1999) CD8alpha+ and CD8alpha− subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 189:587–592CrossRefPubMedGoogle Scholar
  63. 63.
    Fukao T, Koyasu S (2003) PI3K and negative regulation of TLR signaling. Trends Immunol 24:358–363CrossRefPubMedGoogle Scholar
  64. 64.
    Robinson SP, Stagg AJ (eds) (2001) Dendritic cell protocols. Methods in molecular medicine, vol 64. Humana Press, New JerseyGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2010

Authors and Affiliations

  • Julie Patenaude
    • 1
  • Michele D’Elia
    • 1
  • Claudine Hamelin
    • 1
  • Jacques Bernier
    • 1
  1. 1.INRS-Institut Armand-FrappierLavalCanada

Personalised recommendations