Cellular and Molecular Life Sciences

, Volume 67, Issue 5, pp 797–806 | Cite as

Sulindac sulfide suppresses 5-lipoxygenase at clinically relevant concentrations

  • Svenja D. Steinbrink
  • Carlo Pergola
  • Ulrike Bühring
  • Sven George
  • Julia Metzner
  • Astrid S. Fischer
  • Ann-Kathrin Häfner
  • Joanna M. Wisniewska
  • Gerd Geisslinger
  • Oliver Werz
  • Dieter Steinhilber
  • Thorsten J. MaierEmail author
Research Article


Sulindac is a non-selective inhibitor of cyclooxygenases (COX) used to treat inflammation and pain. Additionally, non-COX targets may account for the drug’s chemo-preventive efficacy against colorectal cancer and reduced gastrointestinal toxicity. Here, we demonstrate that the pharmacologically active metabolite of sulindac, sulindac sulfide (SSi), targets 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of proinflammatory leukotrienes (LTs). SSi inhibited 5-LO in ionophore A23187- and LPS/fMLP-stimulated human polymorphonuclear leukocytes (IC50 ≈ 8–10 μM). Importantly, SSi efficiently suppressed 5-LO in human whole blood at clinically relevant plasma levels (IC50 = 18.7 μM). SSi was 5-LO-selective as no inhibition of related lipoxygenases (12-LO, 15-LO) was observed. The sulindac prodrug and the other metabolite, sulindac sulfone (SSo), failed to inhibit 5-LO. Mechanistic analysis demonstrated that SSi directly suppresses 5-LO with an IC50 of 20 μM. Together, these findings may provide a novel molecular basis to explain the COX-independent pharmacological effects of sulindac under therapy.


Cyclooxygenase Leukotrienes Leukocytes NSAIDs Off-target effect 



Arachidonic acid


Adenosine deaminase




Cytosolic phospholipase A2-alpha


5-Lipoxygenase-activating protein




5(S)-hydroxy-8,11,14-cis-6-trans-eicosa-tetraenoic acid


12(S)-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid


15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid


12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid


Liquid chromatography coupled with tandem mass spectrometry








Non-steroidal anti-inflammatory drug


Prostaglandin E2


Sodium arsenite


Sodium chloride


Sulindac sulfide


Sulindac sulfone





The work was supported by the “Landes Offensive zur Entwicklung Wissenschaftlich Ökonomischer Exzellenz” (LOEWE), Lipid Signaling Forschungszentrum Frankfurt (LiFF) and the German Excellence Cluster “Cardio-Pulmonary System” (ECCPS). The authors thank Dr. Wesely Mcginnstraub, California, USA, for the linguistic revision of the manuscript. The authors declare no conflicting financial interests. C.P. received a Carl Zeiss stipend.


  1. 1.
    Parente L, Perretti M (2003) Advances in the pathophysiology of constitutive and inducible cyclooxygenases: two enzymes in the spotlight. Biochem Pharmacol 65:153–159CrossRefPubMedGoogle Scholar
  2. 2.
    Grosch S, Maier TJ, Schiffmann S, Geisslinger G (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98:736–747PubMedCrossRefGoogle Scholar
  3. 3.
    Haanen C (2001) Sulindac and its derivatives: a novel class of anticancer agents. Curr Opin Investig Drugs 2:677–683PubMedGoogle Scholar
  4. 4.
    Davies NM, Watson MS (1997) Clinical pharmacokinetics of sulindac. A dynamic old drug. Clin Pharmacokinet 32:437–459CrossRefPubMedGoogle Scholar
  5. 5.
    Williams CS, Goldman AP, Sheng H, Morrow JD, DuBois RN (1999) Sulindac sulfide, but not sulindac sulfone, inhibits colorectal cancer growth. Neoplasia 1:170–176CrossRefPubMedGoogle Scholar
  6. 6.
    Goluboff ET (2001) Exisulind, a selective apoptotic antineoplastic drug. Expert Opin Investig Drugs 10:1875–1882CrossRefPubMedGoogle Scholar
  7. 7.
    Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875CrossRefPubMedGoogle Scholar
  8. 8.
    Werz O, Steinhilber D (2006) Therapeutic options for 5-lipoxygenase inhibitors. Pharmacol Ther 112:701–718CrossRefPubMedGoogle Scholar
  9. 9.
    Werz O, Burkert E, Samuelsson B, Radmark O, Steinhilber D (2002) Activation of 5-lipoxygenase by cell stress is calcium independent in human polymorphonuclear leukocytes. Blood 99:1044–1052CrossRefPubMedGoogle Scholar
  10. 10.
    Fischer L, Szellas D, Radmark O, Steinhilber D, Werz O (2003) Phosphorylation- and stimulus-dependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors. FASEB J 17:949–951CrossRefPubMedGoogle Scholar
  11. 11.
    Brungs M, Radmark O, Samuelsson B, Steinhilber D (1995) Sequential induction of 5-lipoxygenase gene expression and activity in Mono Mac 6 cells by transforming growth factor beta and 1, 25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 92:107–111CrossRefPubMedGoogle Scholar
  12. 12.
    Werz O, Steinhilber D (1996) Selenium-dependent peroxidases suppress 5-lipoxygenase activity in B-lymphocytes and immature myeloid cells. The presence of peroxidase-insensitive 5-lipoxygenase activity in differentiated myeloid cells. Eur J Biochem 242:90–97CrossRefPubMedGoogle Scholar
  13. 13.
    Werz O, Klemm J, Samuelsson B, Radmark O (2001) Phorbol ester up-regulates capacities for nuclear translocation and phosphorylation of 5-lipoxygenase in Mono Mac 6 cells and human polymorphonuclear leukocytes. Blood 97:2487–2495CrossRefPubMedGoogle Scholar
  14. 14.
    Maier TJ, Tausch L, Hoernig M, Coste O, Schmidt R, Angioni C, Metzner J, Groesch S, Pergola C, Steinhilber D, Werz O, Geisslinger G (2008) Celecoxib inhibits 5-lipoxygenase. Biochem Pharmacol 76:862–872CrossRefPubMedGoogle Scholar
  15. 15.
    Albert D, Zundorf I, Dingermann T, Muller WE, Steinhilber D, Werz O (2002) Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem Pharmacol 64:1767–1775CrossRefPubMedGoogle Scholar
  16. 16.
    Surette ME, Palmantier R, Gosselin J, Borgeat P (1993) Lipopolysaccharides prime whole human blood and isolated neutrophils for the increased synthesis of 5-lipoxygenase products by enhancing arachidonic acid availability: involvement of the CD14 antigen. J Exp Med 178:1347–1355CrossRefPubMedGoogle Scholar
  17. 17.
    Siemoneit U, Pergola C, Jazzar B, Northoff H, Skarke C, Jauch J, Werz O (2009) On the interference of boswellic acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance. Eur J Pharmacol 606:246–254CrossRefPubMedGoogle Scholar
  18. 18.
    Rouzer CA, Ford-Hutchinson AW, Morton HE, Gillard JW (1990) MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J Biol Chem 265:1436–1442PubMedGoogle Scholar
  19. 19.
    Feißt C, Pergola C, Rakonjac M, Rossi A, Koeberle A, Dodt G, Hoffmann M, Hoernig C, Fischer L, Steinhilber D, Franke L, Schneider G, Radmark O, Sautebin L, Werz O (2009) Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cell Mol Life Sci 66:2759–2771CrossRefPubMedGoogle Scholar
  20. 20.
    Fischer L, Hornig M, Pergola C, Meindl N, Franke L, Tanrikulu Y, Dodt G, Schneider G, Steinhilber D, Werz O (2007) The molecular mechanism of the inhibition by licofelone of the biosynthesis of 5-lipoxygenase products. Br J Pharmacol 152:471–480CrossRefPubMedGoogle Scholar
  21. 21.
    Brideau C, Chan C, Charleson S, Denis D, Evans JF, Ford-Hutchinson AW, Fortin R, Gillard JW, Guay J, Guevremont D et al (1992) Pharmacology of MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)- indol-2-yl]-2, 2-dimethyl propanoic acid), a potent, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol 70:799–807PubMedGoogle Scholar
  22. 22.
    Werz O (2002) 5-lipoxygenase: cellular biology and molecular pharmacology. Curr Drug Targets Inflamm Allergy 1:23–44CrossRefPubMedGoogle Scholar
  23. 23.
    Radmark O, Werz O, Steinhilber D, Samuelsson B (2007) 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci 32:332–341CrossRefPubMedGoogle Scholar
  24. 24.
    Costa D, Gomes A, Reis S, Lima JL, Fernandes E (2005) Hydrogen peroxide scavenging activity by non-steroidal anti-inflammatory drugs. Life Sci 76:2841–2848CrossRefPubMedGoogle Scholar
  25. 25.
    Santos F, Teixeira L, Lucio M, Ferreira H, Gaspar D, Lima JL, Reis S (2008) Interactions of sulindac and its metabolites with phospholipid membranes: an explanation for the peroxidation protective effect of the bioactive metabolite. Free Radic Res 42:639–650CrossRefPubMedGoogle Scholar
  26. 26.
    Egan RW, Gale PH (1985) Inhibition of mammalian 5-lipoxygenase by aromatic disulfides. J Biol Chem 260:11554–11559PubMedGoogle Scholar
  27. 27.
    Riendeau D, Denis D, Choo LY, Nathaniel DJ (1989) Stimulation of 5-lipoxygenase activity under conditions which promote lipid peroxidation. Biochem J 263:565–572PubMedGoogle Scholar
  28. 28.
    Piazza GA, Alberts DS, Hixson LJ, Paranka NS, Li H, Finn T, Bogert C, Guillen JM, Brendel K, Gross PH, Sperl G, Ritchie J, Burt RW, Ellsworth L, Ahnen DJ, Pamukcu R (1997) Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res 57:2909–2915PubMedGoogle Scholar
  29. 29.
    Soh JW, Weinstein IB (2003) Role of COX-independent targets of NSAIDs and related compounds in cancer prevention and treatment. Prog Exp Tumor Res 37:261–285CrossRefPubMedGoogle Scholar
  30. 30.
    Meade EA, Smith WL, DeWitt DL (1993) Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 268:6610–6614PubMedGoogle Scholar
  31. 31.
    Oshima M, Murai N, Kargman S, Arguello M, Luk P, Kwong E, Taketo MM, Evans JF (2001) Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res 61:1733–1740PubMedGoogle Scholar
  32. 32.
    Duggan DE, Hooke KF, Hwang SS (1980) Kinetics of the tissue distributions of sulindac and metabolites. Relevance to sites and rates of bioactivation. Drug Metab Dispos 8:241–246PubMedGoogle Scholar
  33. 33.
    Huls G, Koornstra JJ, Kleibeuker JH (2003) Non-steroidal anti-inflammatory drugs and molecular carcinogenesis of colorectal carcinomas. Lancet 362:230–232CrossRefPubMedGoogle Scholar
  34. 34.
    Melstrom LG, Bentrem DJ, Salabat MR, Kennedy TJ, Ding XZ, Strouch M, Rao SM, Witt RC, Ternent CA, Talamonti MS, Bell RH, Adrian TA (2008) Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin Cancer Res 14:6525–6530CrossRefPubMedGoogle Scholar
  35. 35.
    Romano M, Claria J (2003) Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB J 17:1986–1995CrossRefPubMedGoogle Scholar
  36. 36.
    Rainsford KD (1977) The comparative gastric ulcerogenic activities of non-steroid anti-inflammatory drugs. Agents Actions 7:573–577CrossRefPubMedGoogle Scholar
  37. 37.
    Rainsford KD (1993) Leukotrienes in the pathogenesis of NSAID-induced gastric and intestinal mucosal damage. Agents Actions 39(Spec No):C24–C26CrossRefPubMedGoogle Scholar
  38. 38.
    Cronstein BN, Terkeltaub R (2006) The inflammatory process of gout and its treatment. Arthritis Res Ther 8(Suppl 1):S3CrossRefPubMedGoogle Scholar
  39. 39.
    Serhan CN, Lundberg U, Weissmann G, Samuelsson B (1984) Formation of leukotrienes and hydroxy acids by human neutrophils and platelets exposed to monosodium urate. Prostaglandins 27:563–581CrossRefPubMedGoogle Scholar
  40. 40.
    Ford-Hutchinson AW, Gresser M, Young RN (1994) 5-Lipoxygenase. Annu Rev Biochem 63:383–417CrossRefPubMedGoogle Scholar
  41. 41.
    Werz O, Steinhilber D (2005) Development of 5-lipoxygenase inhibitors—lessons from cellular enzyme regulation. Biochem Pharmacol 70:327–333CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Svenja D. Steinbrink
    • 1
  • Carlo Pergola
    • 3
  • Ulrike Bühring
    • 3
  • Sven George
    • 1
  • Julia Metzner
    • 1
  • Astrid S. Fischer
    • 1
  • Ann-Kathrin Häfner
    • 1
  • Joanna M. Wisniewska
    • 1
  • Gerd Geisslinger
    • 2
  • Oliver Werz
    • 3
  • Dieter Steinhilber
    • 1
  • Thorsten J. Maier
    • 1
    Email author
  1. 1.Institute of Pharmaceutical Chemistry/ZAFESGoethe-UniversityFrankfurt/MainGermany
  2. 2.Pharmazentrum frankfurt/ZAFES, Institute of Clinical PharmacologyGoethe-UniversityFrankfurt/MainGermany
  3. 3.Department of Pharmaceutical Analytics, Pharmaceutical InstituteUniversity of TuebingenTuebingenGermany

Personalised recommendations