Cellular and Molecular Life Sciences

, Volume 67, Issue 4, pp 611–628

The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes

  • Zita Nagy
  • Anne Riss
  • Sally Fujiyama
  • Arnaud Krebs
  • Meritxell Orpinell
  • Pascal Jansen
  • Adrian Cohen
  • Henk G. Stunnenberg
  • Shigeaki Kato
  • Làszlò Tora
Research Article

Abstract

Histone acetyl transferases (HATs) play a crucial role in eukaryotes by regulating chromatin architecture and locus-specific transcription. The GCN5 HAT was identified as a subunit of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) multiprotein complex. Vertebrate cells express a second HAT, PCAF, that is 73% identical to GCN5. Here, we report the characterization of the mammalian ATAC (Ada-Two-A-Containing) complexes containing either GCN5 or PCAF in a mutually exclusive manner. In vitro ATAC complexes acetylate lysine 14 of histone H3. Moreover, ATAC- or SAGA-specific knock-down experiments suggest that both ATAC and SAGA are involved in the acetylation of histone H3K9 and K14 residues. Despite their catalytic similarities, SAGA and ATAC execute their coactivator functions on distinct sets of inducible target genes. Interestingly, ATAC strongly influences the global phosphorylation level of histone H3S10, suggesting that in mammalian cells a cross-talk exists linking ATAC function to H3S10 phosphorylation.

Keywords

ADA2a GCN5 ATAC2 Histone acetyltransferase Immediate early gene PCAF H3S10P 

Supplementary material

18_2009_199_MOESM1_ESM.doc (2.4 mb)
Suppl Figures (DOC 2434 kb)

References

  1. 1.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705CrossRefPubMedGoogle Scholar
  2. 2.
    Hayes JJ, Hansen JC (2001) Nucleosomes and the chromatin fiber. Curr Opin Genet Dev 11:124–129CrossRefPubMedGoogle Scholar
  3. 3.
    Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719CrossRefPubMedGoogle Scholar
  4. 4.
    Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26:5341–5357CrossRefPubMedGoogle Scholar
  5. 5.
    Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100CrossRefPubMedGoogle Scholar
  6. 6.
    Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527CrossRefPubMedGoogle Scholar
  7. 7.
    Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92:1237–1241CrossRefPubMedGoogle Scholar
  8. 8.
    Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847CrossRefPubMedGoogle Scholar
  9. 9.
    Carrozza MJ, Utley RT, Workman JL, Cote J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19:321–329CrossRefPubMedGoogle Scholar
  10. 10.
    Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120CrossRefPubMedGoogle Scholar
  11. 11.
    Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459CrossRefPubMedGoogle Scholar
  12. 12.
    Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32:959–976CrossRefPubMedGoogle Scholar
  13. 13.
    Nagy Z, Riss A, Romier C, le Guezennec X, Dongre AR, Orpinell M, Han J, Stunnenberg H, Tora L (2009) The human SPT20-containing SAGA complex plays a direct role in the regulation of endoplasmic reticulum stress-induced genes. Mol Cell Biol 29:1649–1660CrossRefPubMedGoogle Scholar
  14. 14.
    Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44CrossRefPubMedGoogle Scholar
  15. 15.
    Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, Wu J, Lill JR, Zha J (2009) The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol 29:1176–1188CrossRefPubMedGoogle Scholar
  16. 16.
    Guelman S, Suganuma T, Florens L, Swanson SK, Kiesecker CL, Kusch T, Anderson S, Yates JR 3rd, Washburn MP, Abmayr SM, Workman JL (2006) Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila. Mol Cell Biol 26:871–882CrossRefPubMedGoogle Scholar
  17. 17.
    Suganuma T, Gutierrez JL, Li B, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL (2008) ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 15:364–372CrossRefPubMedGoogle Scholar
  18. 18.
    Wang YL, Faiola F, Xu M, Pan S, Martinez E (2008) Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 283:33808–33815CrossRefPubMedGoogle Scholar
  19. 19.
    Brand M, Yamamoto K, Staub A, Tora L (1999) Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J Biol Chem 274:18285–18289CrossRefPubMedGoogle Scholar
  20. 20.
    Grant PA, Eberharter A, John S, Cook RG, Turner BM, Workman JL (1999) Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem 274:5895–5900CrossRefPubMedGoogle Scholar
  21. 21.
    Ciurciu A, Komonyi O, Pankotai T, Boros IM (2006) The Drosophila histone acetyltransferase Gcn5 and transcriptional adaptor Ada2a are involved in nucleosomal histone H4 acetylation. Mol Cell Biol 26:9413–9423CrossRefPubMedGoogle Scholar
  22. 22.
    Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L (2001) UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J 20:3187–3196CrossRefPubMedGoogle Scholar
  23. 23.
    Wieczorek E, Brand M, Jacq X, Tora L (1998) Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature 393:187–191CrossRefPubMedGoogle Scholar
  24. 24.
    Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, Potier N, Van-Dorsselaer A, Wurtz JM, Mandel JL, Tora L, Devys D (2004) Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 13:1257–1265CrossRefPubMedGoogle Scholar
  25. 25.
    Brou C, Chaudhary S, Davidson I, Lutz Y, Wu J, Egly JM, Tora L, Chambon P (1993) Distinct TFIID complexes mediate the effect of different transcriptional activators. EMBO J 12:489–499PubMedGoogle Scholar
  26. 26.
    Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S, Suzuki E, Le Guezennec X, Stunnenberg HG, Krasnov A, Georgieva SG, Schule R, Takeyama K, Kato S, Tora L, Devys D (2008) A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 29:92–101CrossRefPubMedGoogle Scholar
  27. 27.
    Zohn IE, Li Y, Skolnik EY, Anderson KV, Han J, Niswander L (2006) p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 125:957–969CrossRefPubMedGoogle Scholar
  28. 28.
    Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W (2003) Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3–K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 17:896–911CrossRefPubMedGoogle Scholar
  29. 29.
    Julien E, Herr W (2003) Proteolytic processing is necessary to separate and ensure proper cell growth and cytokinesis functions of HCF-1. EMBO J 22:2360–2369CrossRefPubMedGoogle Scholar
  30. 30.
    Malecova B, Gross P, Boyer-Guittaut M, Yavuz S, Oelgeschlager T (2007) The initiator core promoter element antagonizes repression of TATA-directed transcription by negative cofactor NC2. J Biol Chem 282:24767–24776CrossRefPubMedGoogle Scholar
  31. 31.
    Muratoglu S, Georgieva S, Papai G, Scheer E, Enunlu I, Komonyi O, Cserpan I, Lebedeva L, Nabirochkina E, Udvardy A, Tora L, Boros I (2003) Two different Drosophila ADA2 homologues are present in distinct GCN5 histone acetyltransferase-containing complexes. Mol Cell Biol 23:306–321CrossRefPubMedGoogle Scholar
  32. 32.
    Leurent C, Sanders SL, Demeny MA, Garbett KA, Ruhlmann C, Weil PA, Tora L, Schultz P (2004) Mapping key functional sites within yeast TFIID. EMBO J 23:719–727CrossRefPubMedGoogle Scholar
  33. 33.
    Demeny MA, Soutoglou E, Nagy Z, Scheer E, Janoshazi A, Richardot M, Argentini M, Kessler P, Tora L (2007) Identification of a small TAF complex and its role in the assembly of TAF-containing complexes. PLoS ONE 2:e316CrossRefPubMedGoogle Scholar
  34. 34.
    Schnitzler GR (2001) Isolation of histones and nucleosome cores from mammalian cells. Curr Protoc Mol Biol Ch 21, Unit 21.5Google Scholar
  35. 35.
    Kouskouti A, Scheer E, Staub A, Tora L, Talianidis I (2004) Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell 14:175–182CrossRefPubMedGoogle Scholar
  36. 36.
    Gamper AM, Roeder RG (2008) Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage. Mol Cell Biol 28:2517–2527CrossRefPubMedGoogle Scholar
  37. 37.
    Fukuyama K, Yoshida M, Yamashita A, Deyama T, Baba M, Suzuki A, Mohri H, Ikezawa Z, Nakajima H, Hirai S, Ohno S (2000) MAPK upstream kinase (MUK)-binding inhibitory protein, a negative regulator of MUK/dual leucine zipper-bearing kinase/leucine zipper protein kinase. J Biol Chem 275:21247–21254CrossRefPubMedGoogle Scholar
  38. 38.
    Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121:859–872CrossRefPubMedGoogle Scholar
  39. 39.
    Inostroza JA, Mermelstein FH, Ha I, Lane WS, Reinberg D (1992) Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489CrossRefPubMedGoogle Scholar
  40. 40.
    Meisterernst M, Roeder RG (1991) Family of proteins that interact with TFIID and regulate promoter activity. Cell 67:557–567CrossRefPubMedGoogle Scholar
  41. 41.
    Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178CrossRefPubMedGoogle Scholar
  42. 42.
    Kamada K, Shu F, Chen H, Malik S, Stelzer G, Roeder RG, Meisterernst M, Burley SK (2001) Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Cell 106:71–81CrossRefPubMedGoogle Scholar
  43. 43.
    Bu P, Evrard YA, Lozano G, Dent SY (2007) Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol Cell Biol 27:3405–3416CrossRefPubMedGoogle Scholar
  44. 44.
    Kikuchi H, Takami Y, Nakayama T (2005) GCN5: a supervisor in all-inclusive control of vertebrate cell cycle progression through transcription regulation of various cell cycle-related genes. Gene 347:83–97CrossRefPubMedGoogle Scholar
  45. 45.
    Ciurciu A, Komonyi O, Boros IM (2008) Loss of ATAC-specific acetylation of histone H4 at Lys12 reduces binding of JIL-1 to chromatin and phosphorylation of histone H3 at Ser10. J Cell Sci 121:3366–3372CrossRefPubMedGoogle Scholar
  46. 46.
    Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851CrossRefPubMedGoogle Scholar
  47. 47.
    Balasubramanian R, Pray-Grant MG, Selleck W, Grant PA, Tan S (2002) Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation. J Biol Chem 277:7989–7995CrossRefPubMedGoogle Scholar
  48. 48.
    Kusch T, Guelman S, Abmayr SM, Workman JL (2003) Two Drosophila Ada2 homologues function in different multiprotein complexes. Mol Cell Biol 23:3305–3319CrossRefPubMedGoogle Scholar
  49. 49.
    Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29:1524–1533CrossRefPubMedGoogle Scholar
  50. 50.
    Hark AT, Vlachonasios KE, Pavangadkar KA, Rao S, Gordon H, Adamakis ID, Kaldis A, Thomashow MF, Triezenberg SJ (2009) Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions. Biochim Biophys Acta 1789:117–124PubMedGoogle Scholar
  51. 51.
    Pankotai T, Komonyi O, Bodai L, Ujfaludi Z, Muratoglu S, Ciurciu A, Tora L, Szabad J, Boros I (2005) The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions. Mol Cell Biol 25:8215–8227CrossRefPubMedGoogle Scholar
  52. 52.
    Baker SP, Grant PA (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26:5329–5340CrossRefPubMedGoogle Scholar
  53. 53.
    Carre C, Ciurciu A, Komonyi O, Jacquier C, Fagegaltier D, Pidoux J, Tricoire H, Tora L, Boros IM, Antoniewski C (2008) The Drosophila NURF remodelling and the ATAC histone acetylase complexes functionally interact and are required for global chromosome organization. EMBO Rep 9:187–192CrossRefPubMedGoogle Scholar
  54. 54.
    Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295CrossRefPubMedGoogle Scholar
  55. 55.
    Forsberg EC, Lam LT, Yang XJ, Nakatani Y, Bresnick EH (1997) Human histone acetyltransferase GCN5 exists in a stable macromolecular complex lacking the adapter ADA2. Biochemistry 36:15918–15924CrossRefPubMedGoogle Scholar
  56. 56.
    van Ingen H, van Schaik FM, Wienk H, Ballering J, Rehmann H, Dechesne AC, Kruijzer JA, Liskamp RM, Timmers HT, Boelens R (2008) Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3. Structure 16:1245–1256CrossRefPubMedGoogle Scholar
  57. 57.
    Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M, Timmers HT (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69CrossRefPubMedGoogle Scholar
  58. 58.
    Huisinga KL, Pugh BF (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13:573–585CrossRefPubMedGoogle Scholar
  59. 59.
    Venters BJ, Pugh BF (2009) A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res 19:360–371CrossRefPubMedGoogle Scholar
  60. 60.
    Lebedeva LA, Nabirochkina EN, Kurshakova MM, Robert F, Krasnov AN, Evgen’ev MB, Kadonaga JT, Georgieva SG, Tora L (2005) Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation. Proc Natl Acad Sci USA 102:18087–18092CrossRefPubMedGoogle Scholar
  61. 61.
    Clayton AL, Mahadevan LC (2003) MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett 546:51–58CrossRefPubMedGoogle Scholar
  62. 62.
    Sterner DE, Grant PA, Roberts SM, Duggan LJ, Belotserkovskaya R, Pacella LA, Winston F, Workman JL, Berger SL (1999) Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 19:86–98PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Zita Nagy
    • 1
  • Anne Riss
    • 1
  • Sally Fujiyama
    • 2
  • Arnaud Krebs
    • 1
  • Meritxell Orpinell
    • 1
  • Pascal Jansen
    • 3
  • Adrian Cohen
    • 3
  • Henk G. Stunnenberg
    • 3
  • Shigeaki Kato
    • 2
  • Làszlò Tora
    • 1
  1. 1.Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)CNRS UMR 7104, INSERM U 964, Université de StrasbourgIllkirch Cedex, CU de StrasbourgFrance
  2. 2.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyoJapan
  3. 3.Department of Molecular BiologyNCMLS 274, Radboud University NijmegenNijmegenThe Netherlands

Personalised recommendations