Cellular and Molecular Life Sciences

, Volume 67, Issue 6, pp 841–860 | Cite as

Biological activity of phenolic lipids

  • Maria StasiukEmail author
  • A. Kozubek


Phenolic lipids are a very diversified group of compounds derived from mono and dihydroxyphenols, i.e., phenol, catechol, resorcinol, and hydroquinone. Due to their strong amphiphilic character, these compounds can incorporate into erythrocytes and liposomal membranes. In this review, the antioxidant, antigenotoxic, and cytostatic activities of resorcinolic and other phenolic lipids are described. The ability of these compounds to inhibit bacterial, fungal, protozoan and parasite growth seems to depend on their interaction with proteins and/or on their membrane-disturbing properties.


Amphiphiles Anacardic acids Cashew nut shell liquid (CNSL) Membrane-perturbing properties Phenolic lipids Resorcinolic lipids 



We thank the publishing editor of Cellular and Molecular Life Sciences for inviting us to present this paper and the members and students of the Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, for their support and continuous encouragement throughout the projects.


  1. 1.
    Kozubek A, Tyman JHP (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 99:1–25PubMedGoogle Scholar
  2. 2.
    Ross AB, Åman P, Andersson R, Kamal-Eldin A (2004) Chromatographic analysis of alkylresorcinols and their metabolites. J Chromatogr A 1054:157–164PubMedGoogle Scholar
  3. 3.
    Ross AB, Kamal-Eldin A, Åman P (2004) Dietary alkylresorcinols: absorption, bioactivities, and possible use as biomarkers of whole-grain wheat- and rye-rich foods. Nutr Rev 62:81–95PubMedGoogle Scholar
  4. 4.
    Fardet A, Rock E, Remesy C (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci 48:258–276Google Scholar
  5. 5.
    Bondia-Pons I, Aura AM, Vuorela S, Kolehmainen M, Mykkanen H, Poutanen K (2009) Rye phenolics in nutrition and health. J Cereal Sci 49:323–336Google Scholar
  6. 6.
    Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130PubMedGoogle Scholar
  7. 7.
    Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41:1523–1542PubMedGoogle Scholar
  8. 8.
    Correia S de J, David JP, David JM (2006) Metabolitos secundarios de especies de Anacardiaceae. Quim Nova 29:1287–1300Google Scholar
  9. 9.
    Tyman JHP (2001) Chemistry and biochemistry of anacardic acids. Recent Res Dev Lipids 5:125–145Google Scholar
  10. 10.
    Lubi MC, Thachil ET (2000) Cashew nut shell liquid (CNSL)—a versatile monomer for polymer synthesis. Des Monomers Polym 3:123–153Google Scholar
  11. 11.
    Ross AB, Shepherd MJ, Bach Knudsen KE, Glitsø LV, Bowey E, Phillips J, Rowland I, Guo Z-X, Massy DJ, Åman P, Kamal-Eldin A (2003) Absorption of dietary alkyl-resorcinols in ileal cannulated pigs and rats. Br J Nutr 90:787–794PubMedGoogle Scholar
  12. 12.
    Linko AM, Parikka K, Wahala K, Adlercreutz H (2002) Gas chromatographic-mass spectrometric method for the determination of alkylresorcinols in human plasma. Anal Biochem 308:307–313PubMedGoogle Scholar
  13. 13.
    Linko AM, Juntunen KS, Mykkänen HM, Adlercreutz H (2005) Whole-grain rye bread consumption by women correlates with plasma alkylresorcinols and increases their concentration compared with low-fiber wheat bread. J Nutr 135:580–583PubMedGoogle Scholar
  14. 14.
    Linko AM, Aldercreutz H (2005) Whole-grain rye and wheat alkylresorcinols are incorporated into human erythrocyte membranes. Br J Nutr 93:11–13PubMedGoogle Scholar
  15. 15.
    Kozubek A (1989) Detergent-like effect of phenolic lipids on biological membranes. Acta Univ Wratisl 868:27–32Google Scholar
  16. 16.
    Kozubek A (1995) Determination of octanol/water partition coefficients for long-chain homologs of orcinol from cereal grains. Acta Biochim Pol 42:247–252PubMedGoogle Scholar
  17. 17.
    de Maria P, Filippone P, Fontana A, Gasbarri C, Siani G, Velluto D (2005) Cardanol as a replacement for cholesterol into the lipid bilayer of POPC liposomes. Colloids Surf B Biointerfaces 40:11–18PubMedGoogle Scholar
  18. 18.
    Kozubek A (1995) Interaction of alkylresorcinols with proteins. Acta Biochim Pol 42:241–246PubMedGoogle Scholar
  19. 19.
    Kato T, Seki K, Kaneko R (1990) Insoluble monolayers of irisresorcinol at the air/water interface. Colloid Polym Sci 268:934–937Google Scholar
  20. 20.
    Gulati AS, Subba Rao BC (1964) Drug analogues from the phenolic constituents of cashewnut shell liquid. Indian J Chem 2:337–338Google Scholar
  21. 21.
    Stasiuk M, Kozubek A (2008) Membrane perturbing properties of natural phenolic and resorcinolic lipids. FEBS Lett 582:3607–3613PubMedGoogle Scholar
  22. 22.
    Cieslik-Boczula K, Küpcü S, Rünzler D, Koll A, Köhler G (2009) Effects of the phenolic lipid 3-pentadecylphenol on phospholipid bilayer organization. J Mol Struct 919:373–380Google Scholar
  23. 23.
    Stasiuk M, Bartosiewicz D, Gubernator J, Cieslik-Boczula K, Hof M, Kozubek A (2007) A semisynthetic 5-n-alkylresorcinol derivative and its effect upon biomembrane properties. Z Naturforch 62C:881–888Google Scholar
  24. 24.
    Castro Dantas TN, Vale TYF, Dantas Neto AA, Scatena H Jr, Moura MCPA (2009) Micellization study and adsorption properties of an ionic surfactant synthesized from hydrogenated cardanol in air–water and in air–brine interfaces. Colloid Polym Sci 287:81–87Google Scholar
  25. 25.
    Tyman JHP, Bruce E (2004) Surfactant properties and biodegradation of polyethoxylates from phenolic lipids. J Surfactants Deterg 7:169–173Google Scholar
  26. 26.
    Peungjitton P, Sangvanich P, Pornpakakul S, Petsom A, Roengsumran S (2009) Sodium cardanol sulfonate surfactant from cashew nut shell liquid. J Surfactants Deterg 12:85–89Google Scholar
  27. 27.
    Bitkov VV, Nenashev VA, Khashaev ZK, Pridachina NN, Shishlov YV, Batrakov SG (1988) Membrane-forming properties of long chain 5-n-alkylresorcinols. Biol Membr 5:1055–1060Google Scholar
  28. 28.
    Bitkov VV, Nenashev VA, Pridachina NN, Batrakov SG (1992) Membrane-structuring properties of bacterial long-chain alkylresorcinols. Biochim Biophys Acta 1108:224–232PubMedGoogle Scholar
  29. 29.
    Kaprelyants AS, Suleimenov MK, Sorokina AD, Deborin GA, El-Registan GI, Stoyanovich FM, Lille YE, Ostrovsky DN (1987) Structural-functional changes in bacterial and model membranes induced by phenolic lipids. Biol Membr 4:254–261Google Scholar
  30. 30.
    Cieslik K, Koll A, Grdadolnik J (2006) Structural characterization of a phenolic lipid and its derivative using vibrational spectroscopy. Vib Spectrosc 41:14–20Google Scholar
  31. 31.
    Grigoriev PA, Schlegel R, Grafe U (1998) Interaction of panosialins with planar lipid bilayers. Bioelectrochem Bioenerg 46:151–154Google Scholar
  32. 32.
    Gordeev KY, Bitkov VV, Pridachina NN, Nenashev VA, Batrakov SG (1991) Bacterial 5-n-alkyl(C19–C25)resorcinols are non-competitive inhibitors of phospholipase A2. Bioorg Khim 17:1357–1364Google Scholar
  33. 33.
    Bitkov VV, Nenashev VA, Khashaev ZH, Pridachina NN, Batrakov SG (1990) Long-chain 5-n-alkylresorcinols as the regulators of structure in lipid membranes. Biol Membr 7:135–140Google Scholar
  34. 34.
    Przeworska E, Gubernator J, Kozubek A (2001) Formation of liposomes by resorcinolic lipids, single-chain phenolic amphiphiles from Anacardium occidentale. Biochim Biophys Acta 1513:75–81PubMedGoogle Scholar
  35. 35.
    Cieslik-Boczula K, Koll A (2009) The effect of 3-pentadecylphenol on DPPC bilayers ATR-IR and 31P NMR studies. Biophys Chem 140:51–56PubMedGoogle Scholar
  36. 36.
    Loiko NG, Mulyukin AL, Kozlova AN, Kaplun AP, Sorokin VV, Borzenkov IA, Nikolaev YA, Kaprel’yants AS, El’-Registan GI (2009) Effect of hexylresorcinol, a chemical analogue of bacterial anabiosis autoinducers on the stability of membrane structures. Appl Biochem Microbiol 45:162–168Google Scholar
  37. 37.
    Kozubek A, Demel RA (1981) The effect of 5-(n-alk(en)yl)resorcinols from rye on membrane structure. Biochim Biophys Acta 642:242–251PubMedGoogle Scholar
  38. 38.
    Hendrich AB, Kozubek A (1991) Calorimetric study on the interactions of 5-n-heptadec(en)ylresorcinols from cereal grains with zwitterionic phospholipid (DPPC). Z Naturforsch 46C:423–427Google Scholar
  39. 39.
    Gerdon S, Hoffmann S, Blume A (1994) Properties of mixed monolayers and bilayers of long-chain 5-n-alkylresorcinols and dipalmitoylphosphatidylcholine. Chem Phys Lipids 71:229–243Google Scholar
  40. 40.
    Kozubek A, Jezierski A, Sikorski AF (1988) The effect of nonadec(en)ylresorcinol on the fluidity of liposome and erythrocyte membranes. Biochim Biophys Acta 944:465–472PubMedGoogle Scholar
  41. 41.
    Stasiuk M, Jaromin A, Kozubek A (2004) The effect of merulinic acid on biomembranes. Biochim Biophys Acta 1667:215–221PubMedGoogle Scholar
  42. 42.
    Kozubek A, Demel RA (1980) Permeability changes of erythrocytes and liposomes by 5-(n-alk(en)yl)resorcinols from rye. Biochim Biophys Acta 603:220–227PubMedGoogle Scholar
  43. 43.
    Gubernator J, Stasiuk M, Kozubek A (1999) Dual effect of alkylresorcinols, natural amphiphilic compounds, upon liposomal permeability. Biochim Biophys Acta 1418:253–260PubMedGoogle Scholar
  44. 44.
    Siwko ME, de Vries AH, Mark AE, Kozubek A, Marrink SJ (2009) Disturb or stabilize? a molecular dynamics study of the effects of resorcinolic lipids on phospholipid bilayers. Biophys J 96:3140–3153PubMedGoogle Scholar
  45. 45.
    Kozubek A (1987) The effect of 5-(n-alk(en)yl)resorcinols on membranes. I. Characterization of the permeability increase induced by 5-(n-heptadecenyl)resorcinol. Acta Biochim Pol 34:357–367PubMedGoogle Scholar
  46. 46.
    Kozubek A (1985) Higher cardol homologues (5-alkenylresorcinols) from rye affect the red cell membrane-water transport. Z Naturforsch 40C:80–84Google Scholar
  47. 47.
    Stasiuk M, Kozubek A (1996) Modulation of hemolytic properties of resorcinolic lipids by divalent cations. Cell Mol Biol Lett 1:189–198Google Scholar
  48. 48.
    Stasiuk M, Kozubek A (1997) Modulation of hemolytic properties of resorcinolic lipids by divalent cations. Dependence of the effect of cations on alkylresorcinol structure. Cell Mol Biol Lett 2:77–87Google Scholar
  49. 49.
    Roufogalis BD, Li Q, Tran VH, Kable EPW, Duke CC (1999) Investigation of plant-derived phenolic compounds as plasma membrane Ca2+-ATPase inhibitors with potential cardiovascular activity. Drug Dev Res 46:235–249Google Scholar
  50. 50.
    Kozubek A (1986) The effect of some nonisoprenoid phenolic lipids upon biological membranes. Acta Univ Wratisl 886:122Google Scholar
  51. 51.
    Komolova GS, Gorskaya IA, Kaverinskaya TV, Sheveleva ID (1989) Influence of alkylresorcinol on respiration, nucleic acid and protein synthesis in isolated thymocytes. Biokhimiia 54:1847–1851PubMedGoogle Scholar
  52. 52.
    Nenashev VA, Pridachina NN, Pronevich LA, Batrakov SG (1989) 5-Alkyl(C19–25)resorcinols as regulators of the oxidation of succinate and NAD-dependent substrates by mitochondria. Biokhimiia 54:784–787PubMedGoogle Scholar
  53. 53.
    Nenashev VA, Pridachina NN, Elregistan GI, Zolotareva IN, Batrakov SG (1994) Effect of autoregulators of anabiosis of some microorganisms on respiration of rat liver mitochondria. Biokhimiia 59:11–15PubMedGoogle Scholar
  54. 54.
    Muto J, Tanabe Y, Kawai K, Iio H (2003) Inhibition of mitochondrial respiration by climacostol. Jpn J Protozool 36:25–26Google Scholar
  55. 55.
    Kieleczawa J, Szalewicz A, Kozubek A, Kulig E (1987) Effect of resorcinols on electron transport in pea chloroplasts. Prog Photosynth Res 2:585–587Google Scholar
  56. 56.
    Toyomizu M, Okamoto K, Ishibashi T, Chen Z, Nakatsu T (2000) Uncoupling effect of anacardic acids from cashew nut shell oil on oxidative phosphorylation of rat liver mitochondria. Life Sci 66:229–234PubMedGoogle Scholar
  57. 57.
    Toyomizu M, Okamoto K, Akiba Y, Nakatsu T, Konishi T (2002) Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes. Biochim Biophys Acta 1558:54–62PubMedGoogle Scholar
  58. 58.
    Arora A, Nair MG, Strasburg GM (1998) Structure–activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355–1363PubMedGoogle Scholar
  59. 59.
    Tsujimoto K, Hayashi A, Ha TJ, Kubo I (2007) Anacardic acids and ferric ion chelation. Z Naturforsch 62C:710–716Google Scholar
  60. 60.
    Nagabhushana KS, Shobha SV, Ravindranath B (1995) Selective ionophoric properties of anacardic acid. J Nat Prod 58:807–810Google Scholar
  61. 61.
    Lodovici M, Guglielmi F, Meoni M, Dolara P (2001) Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol 39:1205–1210PubMedGoogle Scholar
  62. 62.
    Fate GD, Lynn DG (1996) Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J Am Chem Soc 118:11369–11376Google Scholar
  63. 63.
    Hladyszowski J, Zubik L, Kozubek A (1998) Quantum mechanical and experimental oxidation studies of pentadecylresorcinol, olovetol, orcinol and resorcinol. Free Radic Res 28:359–368PubMedGoogle Scholar
  64. 64.
    Musialik M, Litwinienko G (2007) DSC study of linolenic acid autoxidation inhibited by BHT, dehydrozingerone and olivetol. J Therm Anal Calorim 88:781–785Google Scholar
  65. 65.
    Struski DGJ, Kozubek A (1992) Cereal grain alk(en)ylresorcinols protect lipids against ferrous ions-induced peroxidation. Z Naturforsch 47C:47–50Google Scholar
  66. 66.
    Nienartowicz B, Kozubek A (1993) Antioxidant activity of cereal bran resorcinolic lipids. Pol J Food Nutr Sci 2:51–60Google Scholar
  67. 67.
    Winata A, Lorenz K (1996) Antioxidant potential of 5-n-pentadecylresorcinol. J Food Process Preserv 20:417–429Google Scholar
  68. 68.
    Erin AN, Davitashvili NG, Prilipko LL, Boldyrev AA, Lushchak VI, Batrakov SG, Pridachina NN, Serbinova AE, Kagan VE (1987) Influence of alkylresorcin on biological membranes during activation of lipid peroxidation. Biokhimiia 52:1180–1185PubMedGoogle Scholar
  69. 69.
    Kozubek A, Nienartowicz B (1995) Cereal grain resorcinolic lipids inhibit H2O2-induced peroxidation of biological membranes. Acta Biochim Pol 42:309–316PubMedGoogle Scholar
  70. 70.
    Korycińska M, Czelna K, Jaromin K, Kozubek A (2009) Antioxidant activity of rye bran alkylresorcinols and extracts from whole-grain cereal products. Food Chem 116:1013–1018Google Scholar
  71. 71.
    Parikka K, Rowland IR, Welch RW, Wahala K (2006) In vitro antioxidant activity and antigenotoxicity of 5-n-alkylresorcinols. J Agric Food Chem 54:1646–1650PubMedGoogle Scholar
  72. 72.
    Kamal-Eldin A, Pouru A, Eliasson C, Aman P (2000) Alkylresorcinols as antioxidants: hydrogen donation and peroxyl radical scavenging effects. J Sci Food Agric 81:353–356Google Scholar
  73. 73.
    Torres de Pinedo A, Penalver P, Morales JC (2007) Synthesis and evaluation of new phenolic-based antioxidants: structure–activity relationship. Food Chem 103:55–61Google Scholar
  74. 74.
    Trevisan MTS, Pfundstein B, Haubner R, Wurtele G, Spiegelhalder B, Bartsch H, Owen RW (2006) Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem Toxicol 44:188–197PubMedGoogle Scholar
  75. 75.
    Rodrigues FHA, Feitosa JPA, Ricardo NMPS, de Franca FCF, Carioca JOB (2006) Antioxidant activity of cashew shell nut liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1, 4-polyisoprene. J Braz Chem Soc 17:265–271Google Scholar
  76. 76.
    De Lima SG, Feitosa CM, Cito A, Moita Neto JM, Lopes JAD, Leite AS, Brito MC, Dantas SMM, Cavalcante A (2008) Effects of immature cashew nut-shell liquid (Anacardium occidentale) against oxidative damage in Saccharomyces cerevisiae and inhibition of acetylcholinesterase activity. Genet Mol Res 7:806–818PubMedGoogle Scholar
  77. 77.
    Melo-Cavalcante AAC, Rübensam G, Picada JN, da Silva EG, Moreira JCF, Henriques JAP (2003) Mutagenic evaluation, antioxidant potential and antimutagenic activity against hydrogen peroxide of cashew (Anacardium occidentale) apple juice and cajuina. Environ Mol Mutagen 41:360–369PubMedGoogle Scholar
  78. 78.
    Amorati R, Pedulli GF, Valgimigli L, Attanasi OA, Filippone P, Fiorucci C, Saladino R (2001) Absolute rate constants for the reaction of peroxyl radicals with cardanol derivatives. J Chem Soc Perkin I 2:2142–2146Google Scholar
  79. 79.
    Stepanenko IYu, Strakhovskaya MG, Belenikina NS, Nikolaev YuA, Mulyukin AL, Kozlova AN, Revina AA, El’-Registan GI (2004) Protection of Saccharomyces cerevisiae against oxidative and radiation-caused damage by alkylhydroxybenzenes. Microbiology 73:163–169Google Scholar
  80. 80.
    Nikolaev YuA, Mulyukin AL, Stepanenko I Yu, El’-Registan GI (2006) Autoregulation of stress response in microorganisms. Mikrobiologiya 75:489–496Google Scholar
  81. 81.
    Konanykhina IA, Shanenko EF, Loiko NG, Nikolaev YuA, El-Registan GI (2008) Regulatory effect of microbial alkyloxybenzenes of different structure on the stress response of yeast. Appl Biochem Microbiol 44:518–522Google Scholar
  82. 82.
    Grazzini R, Hesk D, Heiminger E, Hildenbrandt G, Reddy CC, Cox-Foster D, Medford J, Craig R, Mumma RO (1991) Inhibition of lipoxygenase and prostaglandin endoperoxide synthase by anacardic acids. Biochem Biophys Res Commun 176:775–780PubMedGoogle Scholar
  83. 83.
    Shobha SV, Ramadoss CS, Ravindranath B (1994) Inhibition of soybean lipoxygenase-1 by anacardic acids, cardols and cardanols. J Nat Prod 57:1755–1757Google Scholar
  84. 84.
    Deszcz L, Kozubek A (1997) Inhibition of soybean lipoxygenases by resorcinolic lipids from cereal bran. Cell Mol Biol Lett 2:213–222Google Scholar
  85. 85.
    Ha TJ, Kubo I (2005) Lipoxygenase inhibitory activity of anacardic acids. J Agric Food Chem 53:4350–4354PubMedGoogle Scholar
  86. 86.
    Kubo I, Masuoka N, Ha TJ, Tsujimoto K (2006) Antioxidant activity of anacardic acids. Food Chem 99:555–562Google Scholar
  87. 87.
    Kubo I, Ha TJ, Tsujimoto K, Tocoli FE, Green IR (2008) Evaluation of lipoxygenase inhibitory activity of anacardic acids. Z Naturforsch 63C:539–546Google Scholar
  88. 88.
    Knodler M, Conrad J, Wenzig EM, Bauer R, Lacorn M, Beifuss U, Carle R, Schieber A (2008) Anti-inflammatory 5-(11′Z-heptadecenyl)- and 5-(8′Z, 11′Z-heptadecadienyl)-resorcinols from mango (Mangifera indica L.) peels. Phytochemistry 69:988–993PubMedGoogle Scholar
  89. 89.
    Hengtrakul P, Mathias M, Lorenz K (1991) Effects of cereal alkylresorcinols on human platelets thromboxane production. J Nutr Biochem 2:20–24Google Scholar
  90. 90.
    Roth M, Gutsche B, Herderich M, Humpf HU, Schreier P (1998) Dioxygenation of Long-Chain Alkadien(trien)ylphenols by Soybean Lipoxygenase. J Agric Food Chem 46:2952–2956Google Scholar
  91. 91.
    Masuoka N, Kubo I (2004) Characterization of xanthine oxidase inhibition by anacardic acids. Biochim Biophys Acta 1688:245–249PubMedGoogle Scholar
  92. 92.
    George J, Kuttan R (1997) Mutagenic, carcinogenic and cocarcinogenic activity of cashew nut shell liquid. Cancer Lett 112:11–16PubMedGoogle Scholar
  93. 93.
    Kozubek A, Gubernator J, Przeworska E, Stasiuk M (2000) Liposomal drug delivery, the novel approach; Plarosomes. Acta Biochim Pol 47:639–649PubMedGoogle Scholar
  94. 94.
    Gasiorowski K, Szyba K, Brokos B, Kozubek A (1996) Antimutagenic activity of alkylresorcinols from cereal grains. Cancer Lett 106:109–115PubMedGoogle Scholar
  95. 95.
    Gasiorowski K, Brokos B, Kozubek A, Oszmianski J (2000) The antimutagenic activity of two plant-derived compounds. A comparative cytogenic study. Cell Mol Biol Lett 5:171–190Google Scholar
  96. 96.
    Melo-Cavalcante AA, Picada JN, Rubensam G, Henriques JAP (2008) Antimutagenic activity of cashew apple (Anacardium occidentale Sapindales, Anacardiaceae) fresh juice and processed juice (cajuina) against methyl methanesulfonate, 4-nitroquinoline N-oxide and benzo[a]pyrene. Genet Mol Biol 31:759–766Google Scholar
  97. 97.
    Davydova OK, Deryabin DG, El’-Registan GI (2006) Influence of chemical analogues of microbial autoregulators on the sensitivity of DNA to UV radiation. Microbiology 75:568–574Google Scholar
  98. 98.
    Giannetti BM, Steglich W, Quack W, Anke T, Oberwinkler F (1978) Antibiotika as Basidiomyceten, VI. Merulinsauren A, B und C, neue antibiotika aus Merulius tremellosus Fr. und Phlebia radiata Fr. Z Naturforsch 33C:807–816Google Scholar
  99. 99.
    Barr JR, Murty VS, Yamaguchi K, Smith DH, Hecht SM (1988) 5-Alkylresorcinols from Hakea amplexicaulis that cleave DNA. Chem Res Toxicol 1:204–207PubMedGoogle Scholar
  100. 100.
    Lytollis W, Scannell RT, An H, Murty VS, Reddy KS, Barr JR, Hecht SM (1995) 5-alkylresorcinols from Hakea trifurcata that cleave DNA. J Am Chem Soc 117:12683–12690Google Scholar
  101. 101.
    Starck SR, Deng JZ, Hecht SM (2000) Naturally occurring alkylresorcinols that mediate DNA damage and inhibit its repair. Biochemistry 39:2413–2419PubMedGoogle Scholar
  102. 102.
    Singh US, Scannell RT, An H, Carter BJ, Hecht SM (1995) DNA cleavage by di- and tri- hydroxyalkylbenzenes. Characterization of products and roles of O2, Cu(II) and alkali. J Am Chem Soc 117:12691–12699Google Scholar
  103. 103.
    Ma J, Jones SH, Hecht SM (2004) Phenolic acid amides: a new type of DNA strand scission agent from Piper caninum. Bioorg Med Chem 12:3885–3889PubMedGoogle Scholar
  104. 104.
    Itokawa H, Totsuka N, Nakahara K, Maezuru M, Takeya K, Kondo M, Inamatsu M, Morita H (1989) A quantitative structure-activity relationship for antitumor activity of long-chain phenols from Ginkgo biloba L. Chem Pharm Bull 37:1619–1621PubMedGoogle Scholar
  105. 105.
    Arisawa M, Ohmura K, Kobayashi A, Morita N (1989) A cytotoxic constituent of Lysimachia japonica Thrunb. (Primulaceae) and the structure-activity relationships of related compounds. Chem Pharm Bull 37:2431PubMedGoogle Scholar
  106. 106.
    Itokawa H, Totsuka N, Nakahara K, Takeya K, Lepoittevin JP, Asakawa Y (1987) Antitumor principles from Ginkgo biloba L. Chem Pharm Bull 35:3016–3020PubMedGoogle Scholar
  107. 107.
    Iwatsuki K, Akihisa T, Tokuda H, Ukiya M, Higashihara H, Mukainaka T, Iizuka M, Hayashi Y, Kimura Y, Nishino H (2003) Sterol ferulates, sterols, and 5-alk(en)ylresorcinols from wheat, rye, and corn bran oils and their inhibitory effects on Epstein–Barr virus activation. J Agric Food Chem 51:6683–6688PubMedGoogle Scholar
  108. 108.
    Wyllie AH (1992) Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev 11:95–103PubMedGoogle Scholar
  109. 109.
    Buonanno F, Quassinti L, Bramucci M, Amantini C, Lucciarini R, Santoni G, Iio H, Ortenzi C (2008) The protozoan toxin climacostol inhibits growth and induces apoptosis of human tumor cell lines. Chem Biol Interact 176:151–164PubMedGoogle Scholar
  110. 110.
    Ahlemeyer B, Selke D, Schaper C, Klumpp S, Krieglstein J (2001) Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C. Eur J Pharmacol 430:1–7PubMedGoogle Scholar
  111. 111.
    Filip P, Anke T, Sterner O (2002) 5-(2′-oxoheptadecyl)-resorcinol and 5-(2′-oxononadecyl)-resorcinol, cytotoxic metabolites from a wood-inhabiting Basidiomycete. Z Naturforsch 57C:1004–1008Google Scholar
  112. 112.
    Ruffa MJ, Ferraro G, Wagner ML, Calcagno ML, Campos RH, Cavallaro L (2002) Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line. J Ethnopharmacol 79:335–339PubMedGoogle Scholar
  113. 113.
    Lopez P, Ruffa MJ, Cavallaro L, Campos R, Martino V, Ferraro G (2005) 1, 3-dihydroxy-5-(tridec-40, 70-dienyl)benzene: a new cytotoxic compound from Lithraea molleoides. Phytomedicine 12:108–111PubMedGoogle Scholar
  114. 114.
    Barbini L, Lopez P, Ruffa MJ, Martino V, Ferraro G, Campos R, Cavallaro L (2006) Induction of apoptosis on human hepatocarcinoma cell lines by an alkyl resorcinol isolated from Lithraea molleoides. World J Gastroenterol 12:5959–5963PubMedGoogle Scholar
  115. 115.
    Chen CY, Liu TZ, Liu YW, Tseng WC, Liu RH, Lu FJ, Lin YS, Kuo SH, Chen CH (2007) 6-Shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. J Agric Food Chem 55:948–954PubMedGoogle Scholar
  116. 116.
    Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB (2008) Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-{kappa}B-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-{kappa}B{alpha} kinase, leading to potentiation of apoptosis. Blood 111:4880–4891PubMedGoogle Scholar
  117. 117.
    Hecker H, Johannisson R, Koch E, Siegers CP (2002) In vitro evaluation of the cytotoxic potential of alkylphenols from Ginko biloba L. Toxicology 177:167–177PubMedGoogle Scholar
  118. 118.
    Kubo I, Ochi M, Vieira PC, Komatsu S (1993) Antitumor agents from cashew (Anacardium occidentale) apple juice, J. J Agric Food Chem 41:1012–1015Google Scholar
  119. 119.
    Acevedo HR, Rojas MD, Arceo SD, Soto Hernandez M, Martinez Vazquez M, Terrazas T, del Toro GV (2006) Effect of 6-nonadecyl salicylic acid and its methyl ester on the induction of micronuclei in polychromatic erythrocytes in mouse peripheral blood. Mutat Res 609:43–46PubMedGoogle Scholar
  120. 120.
    Rea AI, Schmidt JM, Setzer WN, Sibanda S, Taylor C, Gwebu ET (2003) Cytotoxic activity of Ozoroa insignis from Zimbabwe. Fitoterapia 74:732–735PubMedGoogle Scholar
  121. 121.
    Kim N, Shin JC, Kim W, Hwang BY, Kim BS, Hong YS, Lee D (2006) Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J Antibiot 59:797–800PubMedGoogle Scholar
  122. 122.
    Jin W, Zjawiony JK (2006) 5-Alkylresorcinols from Merulius incarnatus. J Nat Prod 69:704–706PubMedGoogle Scholar
  123. 123.
    Himejima M, Kubo I (1991) Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agric Food Chem 39:418–421Google Scholar
  124. 124.
    Kubo I, Muroi H, Kubo A (1994) Naturally occurring antiacne agents. J Nat Prod 57:9–17PubMedGoogle Scholar
  125. 125.
    Kraal JH, Hussain AA, Gregorio SB, Akaho E (1979) Exposure time and the effect of hexylresorcinol on bacterial aggregates. J Dent Res 58:2125–2131PubMedGoogle Scholar
  126. 126.
    Kubo I, Muroi H, Himejima M (1993) Structure-antibacterial activity relationships of anacardic acids. J Agric Food Chem 41:1016–1019Google Scholar
  127. 127.
    Kubo I, Komatsu S, Ochi M (1986) Molluscicides from the cashew Anacardium occidentale and their large-scale isolation. J Agric Food Chem 34:970–973Google Scholar
  128. 128.
    Muroi H, Kubo I (1996) Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillin-resistant Staphylococcus aureus. J Appl Bacteriol 80:387–395PubMedGoogle Scholar
  129. 129.
    Bouttier S, Fourniat J, Garofalo C, Gleye C, Laurens A, Hocquemiller R (2002) β-Lactamase Inhibitors from Anacardium occidentale. Pharm Biol 40:231–234Google Scholar
  130. 130.
    Kubo I, Nihei K, Tsujimoto K (2003) Antibacterial action of anacardic acids against methicillin resistant Staphylococcus aureus (MRSA). J Agric Food Chem 51:7624–7628PubMedGoogle Scholar
  131. 131.
    Muroi H, Nihei K, Tsujimoto K, Kubo I (2004) Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorg Med Chem 12:583–587PubMedGoogle Scholar
  132. 132.
    Nagabhushana KS, Umamaheshwari S, Tocoli FE, Prabhu SK, Green IR, Ramadoss CSJ (2002) Inhibition of soybean and potato lipoxygenases by bhilawanols from bhilawan (Semecarpus anacardium) nut shell liquid and some synthetic salicylic acid analogues. J Enzyme Inhib Med Chem 2002(17):255–259Google Scholar
  133. 133.
    Green IR, Tocoli FE, Hwa Lee S, Nihei K, Kubo I (2007) Molecular design of anti-MRSA agents based on the anacardic acid scaffold. Bioorg Med Chem 15:6236–6241PubMedGoogle Scholar
  134. 134.
    Begum P, Hashidoko Y, Islam MdT, Ogawa Y, Tahara S (2002) Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides. Z Naturforsch 57C:874–882Google Scholar
  135. 135.
    Narasimhan B, Panghal A, Singh N, Dhake AS (2008) Efficiency of anacardic acid as preservative in tomato products. J Food Process Preserv 32:600–609Google Scholar
  136. 136.
    Kubo J, Lee JR, Kubo I (1999) Anti-Helicobacter pylori agents from the cashew apple. J Agric Food Chem 47:533–537PubMedGoogle Scholar
  137. 137.
    Castillo-Juarez I, Rivero-Cruz F, Celis H, Romero I (2007) Anti-Helicobacter pylori activity of anacardic acids from Amphipterygium adstringens. J Ethnopharmacol 114:72–77PubMedGoogle Scholar
  138. 138.
    Muroi H, Kubo I (1993) Bactericidal activity of anacardic acids against Streptococcus mutans and their potentiation. J Agric Food Chem 41:1780–1783Google Scholar
  139. 139.
    Green IR, Tocoli FE, Lee SH, Nihei K, Kubo I (2008) Design and evaluation of anacardic acid derivatives as anticavity agents. Eur J Med Chem 43:1315–1320PubMedGoogle Scholar
  140. 140.
    Feresin GE, Tapia A, Sortino M, Zacchino S, de Arias AR, Inchausti A, Yaluff G, Rodriguez J, Theoduloz C, Schmeda-Hirschmann G (2003) Bioactive alkyl phenols and embelin from Oxalis erythrorhiza. J Ethnopharmacol 88:241–247PubMedGoogle Scholar
  141. 141.
    Chitra M, Shyamala Devi CS, Sukumar E (2003) Antibacterial activity of embelin. Fitoterapia 74:401–403PubMedGoogle Scholar
  142. 142.
    Mulyukin AL, Lusta KA, Gryaznova MN, Kozlova AN, Duzha MV, Duda VI, El’-Registan GI (1996) Formation of resting cells by Bacillus cereus and Micrococcus luteus. Microbiology 65:683–689Google Scholar
  143. 143.
    Demkina EV, Soina VS, El’-Registan GI, Zvyagintsev DG (2000) Reproductive resting forms of Arthrobacter globiformis. Microbiology 69:309–313Google Scholar
  144. 144.
    Mulyukin AL, Kozlova AN, Kaprel’yants AS, El’-Registan GI (1996) The d1 autoregulatory factor in Micrococcus luteus cells and culture liquid: detection and accumulation dynamics. Microbiology 65:15–20Google Scholar
  145. 145.
    Osipov GA, El’-Registan GI, Svetlichnyi VA, Kozlova AN, Duda VI (1985) Chemical nature of the autoregulating factor d1 in Pseudomonas carboxydoflava. Mikrobiologiya 54:186–190Google Scholar
  146. 146.
    Kolpakov AI, Il’inskaya ON, Bespalov MM, Kupriyanova-Ashina FG, Gal’chenko VF, Kurganov BI, El’-Registan GI (2000) Stabilization of enzymes by dormancy autoinducers as a possible mechanism of resistance of resting microbial forms. Microbiology 69:180–185Google Scholar
  147. 147.
    Il’inskaya ON, Kolpakov AI, Shmidt MA, Doroshenko EV, Mulyukin AL, El’-Registan GI (2002) The role of bacterial growth autoregulators (alkyl hydroxybenzenes) in the response of staphylococci to stresses. Mikrobiologiya 71:23–29Google Scholar
  148. 148.
    Mulyukin AL, Filippova SN, Kozlova AN, Surgucheva NA, Bogdanova TI, Tsaplina IA, El’-Registan GI (2006) Non-species-specific effects of unacylated homoserine lactone and hexylresorcinol, low molecular weight autoregulators, on the growth and development of bacteria. Microbiology 75:405–414Google Scholar
  149. 149.
    Davydova OK, Deryabin KG, El’-Registan GI (2007) IR spectroscopic research on the impact of chemical analogues of autoregulatory d1 factors of microorganisms on structural changes in DNA. Microbiology 76:266–272Google Scholar
  150. 150.
    Funa N, Ozawa H, Hirata, Horinouchi S (2006) Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci USA 103:6356–6361PubMedGoogle Scholar
  151. 151.
    Segura D, Vite O, Romero Y, Moreno S, Castañeda M, Espín G (2009) Isolation and characterization of Azotobacter vinelandii mutants impaired in alkylresorcinol synthesis: alkylresorcinols are not essential for cyst desiccation resistance. J Bacteriol 191:3142–3148PubMedGoogle Scholar
  152. 152.
    Rejman J, Kozubek A (2004) The effect of alkylresorcinol on lipid metabolism in Azotobacter chroococcum. Z Naturforsch 59C:393–398Google Scholar
  153. 153.
    Moré MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:1655–1658PubMedGoogle Scholar
  154. 154.
    Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedGoogle Scholar
  155. 155.
    Cojocaru M, Droby S, Glotter E, Goldman A, Gottlieb HE, Jacoby B, Prusky D (1986) 5-(12-Heptadecenyl)-resorcinol, the major component of the antifungal activity in the peel of mango fruit. Phytochemistry 25:1093–1095Google Scholar
  156. 156.
    Droby S, Prusky D, Jacoby B, Goldman A (1987) Induction of antifungal resorcinols in flesh of unripe mango fruits and its relation to latent infection by Alternaria alternata. Physiol Mol Plant Pathol 30:285–292Google Scholar
  157. 157.
    Hassan MK, Dann EK, Irving DE, Coates LM (2007) Concentrations of constitutive alk(en)ylresorcinols in peel of commercial mango varieties and resistance to postharvest anthracnose. Physiol Mol Plant Pathol 71:158–165Google Scholar
  158. 158.
    Garcia S, Garcia C, Heinzen H, Moyna P (1997) Chemical basis of the resistance of barley seeds to pathogenic fungi. Phytochemistry 44:415–418PubMedGoogle Scholar
  159. 159.
    Lee SJ, Park WH, Moon HI (2001) Identification of chemical components of corn kernel pericarp wax associated with resistance to Aspergillus flavus infection and aflatoxin production. J Agric Food Chem 49:4635–4641Google Scholar
  160. 160.
    Melo-Cavalcante AAC, Rübensam G, Erdtmann B, Brendel M, Henriques JAP (2005) Cashew (Anacardium occidentale) apple juice lowers mutagenicity of aflatoxin B1 in S. typhimurium TA102. Genet Mol Biol 28:328–333Google Scholar
  161. 161.
    Reiss J (1989) Influence of alkylresorcinols from rye and related compounds on the growth of food-borne molds. Cereal Chem 66:491–493Google Scholar
  162. 162.
    Zarnowski R, Kozubek A, Pietr SJ (1999) Effect of rye 5-n-alkylresorcinols on in vitro growth of phytopatogenic Fusarium and Rhizoctonia fungi. Bull Acad Pol Sci Biol 47:231–235Google Scholar
  163. 163.
    Jimenez-Romero C, Torres-Mendoza D, Gonzalez LDU, Ortego-Barria E, McPhail KL, Gerwick WH, Cubillas-Rios L (2007) Hydroxyalkenylresorcinols from Stylogyne turbacensis. J Nat Prod 70:1249–1252PubMedGoogle Scholar
  164. 164.
    Lee SJ, Park WH, Moon HI (2009) Bioassay-guided isolation of antiplasmodial anacardic acids derivatives from the whole plants of Viola websteri Hemsl. Parasitol Res 104:463–466PubMedGoogle Scholar
  165. 165.
    Suresh M, Ray RK (1990) Cardol: the antifilarian principle from Anacardium occidentale. Curr Sci 59:477–479Google Scholar
  166. 166.
    Ahn YJ, Kwon M, Park HM, Han CK (1997) Potent insecticidal activity of Ginkgo biloba-derived trilactone terpenes against Nilaparvata lugens. ACS Symp Ser 658:90–105Google Scholar
  167. 167.
    Kwon M, Ahn YJ, Yoo JK, Choi BR (1996) Potent insecticidal activity of extracts from Ginkgo biloba leaves against Nilaparvata lugens (Homoptera: Delphacidae). Appl Entomol Zool 31:162–166Google Scholar
  168. 168.
    Pan W, Luo P, Fu R, Gao P, Long Z, Xu F, Xiao H, Liu S (2006) Acaricidal activity against Panonychus citri of a ginkgolic acid from the external seed coat of Ginkgo biloba. Pest Manag Sci 62:283–287PubMedGoogle Scholar
  169. 169.
    Lomonaco D, Santiago GMP, Ferreira YS, Arriaga AMC, Mazzetto SE, Mele G, Vasapollo G (2009) Study of technical CNSL and its main components as new green larvicides. Green Chem 11:31–33Google Scholar
  170. 170.
    He W, Van Puyvelde L, Bosselaers J, De Kimpe N, Van der Flaas M, Roymans A, Mathenge SG, Mudida FP, Chalo Mutiso PB (2002) Activity of 6-pentadecylsalicylic acid from Ozoroa insignis against marine crustaceans. Pharm Biol 40:74–76Google Scholar
  171. 171.
    Schultz DJ, Olsen C, Cobbs GA, Stolowich NJ, Parrott MM (2006) Bioactivity of anacardic acid against Colorado potato beetle (Leptinotarsa decemlineata) larvae. J Agric Food Chem 54:7522–7529PubMedGoogle Scholar
  172. 172.
    Sikorski AF, Michalak K, Bobrowska M, Kozubek A (1987) Interaction of spectrin with some amphipatic compounds. Stud Biophys 121:183–191Google Scholar
  173. 173.
    Wang D, Girard TJ, Kasten TP, LaChance RM, Miller-Wideman MA, Durley RC (1998) Inhibitory activity of unsaturated fatty acids and anacardic acids toward soluble tissue factor—factor VIIa complex. J Nat Prod 61:1352–1355PubMedGoogle Scholar
  174. 174.
    Kozubek A, Nietubyc M, Sikorski AF (1992) Modulation of the activities of membrane enzymes by cereal grain resorcinolic lipids. Z Naturforsch 47C:41–46Google Scholar
  175. 175.
    Stasiuk M, Bartosiewicz D, Kozubek A (2008) Inhibitory effect of some natural and semisynthetic phenolic lipids upon acetylcholinesterase activity. Food Chem 108:996–1001Google Scholar
  176. 176.
    de Paula AAN, Martins JBL, Gargano R, dos Santos ML, Romeiro LAS (2007) Electronic structure calculations toward new potentially AChE inhibitors. Chem Phys Let 446:304–308Google Scholar
  177. 177.
    Kozubek A, Wroblewski Z (1990) Cereal grain long chain amphiphilic resorcinolic lipids inhibit significantly binding of fibrinogen by platelets whereas short chain resorcinolic lipids and fatty acids do not. Stud Biophys 139:177–181Google Scholar
  178. 178.
    Kozubek A (1992) The effect of resorcinolic lipids on phospholipid hydrolysis by phospholipase A2. Z Naturforsch 47C:608–612Google Scholar
  179. 179.
    Aoyagi T, Yagisawa M, Kumagai M, Hamada M, Okami Y, Takeuchi T, Umezawa H (1971) An enzyme inhibitor, panosialin, produced by streptomyces: I. Biological activity, isolation and characterization of panosialin. J Antibiot 24:860–869PubMedGoogle Scholar
  180. 180.
    Kumagai M, Suhara Y, Aoyagi T, Umezawa H (1971) An enzyme inhibitor, panosialin, produced by streptomyces: II. Chemistry of panosialins, 5-alkylbenzene-1, 3-disulfates. J Antibiot 24:870–875PubMedGoogle Scholar
  181. 181.
    Shinoda K, Shitara K, Yoshihara Y, Kusano A, Uosaki Y, Ohta S, Hanai N, Takahashi I (1998) Panosialins, inhibitors of an a1, 3-fucosyltransferase Fuc-TVII, suppress the expression of selectin ligands on U937 cells. Glycoconj J 15:1079–1083PubMedGoogle Scholar
  182. 182.
    Tsuge N, Mizokami M, Imai S, Shimazu A, Seto H (1992) Adipostatins A and B, new inhibitors of glycerol-3-phosphate dehydrogenase. J Antibiot 45:886–891PubMedGoogle Scholar
  183. 183.
    Rejman J, Kozubek A (1997) Long-chain orcinol homologs from cereal bran are effective inhibitors of glycerophosphate dehydrogenase. Cell Mol Biol Lett 2:411–419Google Scholar
  184. 184.
    Rejman J, Kozubek A (2004) Inhibitory effect of natural phenolic lipids upon NAD-dependent dehydrogenases and on triglyceride accumulation in 3T3–L1 cells in culture. J Agric Food Chem 52:246–250PubMedGoogle Scholar
  185. 185.
    Irie J, Murata M, Homma S (1996) Glycerol-3-phosphate dehydrogenase inhibitors, anacardic acids, from Ginkgo biloba. Biosci Biotechnol Biochem 60:240–243Google Scholar
  186. 186.
    Murata M, Irie J, Homma S (1997) Inhibition of lipid synthesis of bacteria, yeast and animal cells by anacardic acids, glycerol-3-phosphate dehydrogenase inhibitors from Ginkgo. Lebensm Wiss Technol 30:458–463Google Scholar
  187. 187.
    Pereira JM, Severino RP, Vieira PC, Fernandes JB, da Silva M, Zottis A, Andricopulo AD, Oliva G, Correa AG (2008) Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi. Bioorg Med Chem 16:8889–8895PubMedGoogle Scholar
  188. 188.
    Freitas RF, Prokopczyk IM, Zottis A, Oliva G, Andricopulo AD, Trevisan MTS, Vilegas W, Silva MGV, Montanari CA (2009) Discovery of novel Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase inhibitors. Bioorg Med Chem 17:2476–2482PubMedGoogle Scholar
  189. 189.
    Vincieri FF, Vinzenzini MT, Vanni P (1981) Extraction of active compounds from sarcotesta of Ginkgo biloba seed: inhibition of some dehydrogenase activities. Riv Ital EPPOS 63:79–82Google Scholar
  190. 190.
    Sun Y, Jiang X, Chen S, Price BD (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580:4353–4356PubMedGoogle Scholar
  191. 191.
    Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300*. J Biol Chem 278:19134–19140PubMedGoogle Scholar
  192. 192.
    Eliseeva ED, Valkov V, Jung M, Jung MO (2007) Characterization of novel inhibitors of histone acetyltransferases. Mol Cancer Ther 6:2391–2398PubMedGoogle Scholar
  193. 193.
    Souto JA, Conte M, Alvarez R, Nebbioso A, Carafa V, Altucci L, de Lera AR (2008) Synthesis of benzamides related to anacardic acid and their histone acetyltransferase (HAT) inhibitory activities. Chemmedchem 3:1435–1442PubMedGoogle Scholar
  194. 194.
    Sbardella G, Castellano S, Vicidomini C, Rotili D, Nebbioso A, Miceli M, Altucci L, Mai A (2008) Identification of long chain alkylidenemalonates as novel small molecule modulators of histone acetyltransferases. Bioorg Med Chem Lett 18:2788–2792PubMedGoogle Scholar
  195. 195.
    Schmeck B, Lorenz J, N’Guessan PD, Opitz B, van Laak V, Zahlten J, Slevogt H, Witzenrath M, Flieger A, Suttorp N, Hippenstiel S (2008) Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression. J Immunol 181:940–947PubMedGoogle Scholar
  196. 196.
    Cui L, Miao J, Furuya T, Fan Q, Li XY, Rathod PK, Su XZ, Cui LW (2008) Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development. Eukaryot Cell 7:1200–1210PubMedGoogle Scholar
  197. 197.
    Toyomizu M, Sugiyama S, Jin RL, Nakatsu T (1993) Glucosidase and aldose reductase inhibitors: constituents of cashew, Anacardium occidentale, nut shell liquid. Phytother Res 7:252–254Google Scholar
  198. 198.
    Kubo I, Kinst-Hori I, Yokokawa Y (1994) Tyrosinase inhibitors from Anacardium occidentale fruits. J Nat Prod 57:545–551PubMedGoogle Scholar
  199. 199.
    Kishore AH, Vedamurthy BM, Mantelingu K, Agrawal S, Reddy BAA, Roy S, Rangappa KS, Kundu TK (2008) Specific small-molecule activator of Aurora kinase A induces autophosphorylation in a cell-free systems. J Med Chem 51:792–797PubMedGoogle Scholar
  200. 200.
    Fukuda I, Ito A, Hirai G, Nishimura S, Kawasaki H, Saitoh H, Kimura KI, Sodeoka M, Yoshida M (2009) Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol. 16:133–140PubMedGoogle Scholar
  201. 201.
    Martirosova EI, Karpekina TA, El’-Registan GI (2004) Enzyme modification by natural chemical chaperons of microorganisms. Microbiology 73:609–615Google Scholar
  202. 202.
    YuA Nikolaev, Loiko NG, Stepanenko IYu, Shanenko EF, Martirosova EI, Plakunov VK, Kozlova AN, Borzenkov IA, Korotina OA, Rodin DS, Krupyanskii YuF, El-Registan GI (2008) Changes in physicochemical properties of proteins, caused by modification with alkylhydroxybenzenes. Appl Biochem Microbiol 44:143–150Google Scholar
  203. 203.
    Chen J, Zhang JH, Wang LK, Sucheck SJ, Snow AM, Hecht SM (1998) Inhibitors of DNA polymerase β from Schoepfia californica. J Chem Soc Chem Commun 24:2769–2770Google Scholar
  204. 204.
    Hecht SM (2003) Inhibitors of the lyase activity of DNA polymerase beta. Pharm Biol 41:68–77Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of Lipids and Liposomes, Faculty of BiotechnologyUniversity of WroclawWroclawPoland

Personalised recommendations