Cellular and Molecular Life Sciences

, Volume 67, Issue 2, pp 171–177

Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity

Visions & Reflections (Minireview)

Abstract

The emerging critical implications of Rho/Rho-kinase (ROCK) signaling in neurodegenerative diseases, glaucoma, renoprotection, diabetes and cancer have sparked growing interest in the pharmacological potential of ROCK inhibitors beyond their current application in cardiovascular disease. This article discusses the therapeutic benefits of novel ROCK inhibitors in development, and highlights the recent advances in the current understanding of disease-dependent and isoform-specific functions of ROCK and their potential impact on future therapeutic strategies.

Keywords

Rho-kinase ROCK ROCK1 ROCK2 Fasudil Y-27632 

References

  1. 1.
    Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, Narumiya S (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 15:1885–1893PubMedGoogle Scholar
  2. 2.
    Leung T, Manser E, Tan L, Lim L (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270:29051–29054CrossRefPubMedGoogle Scholar
  3. 3.
    Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 15:2208–2216PubMedGoogle Scholar
  4. 4.
    Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S (1996) ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392:189–193CrossRefPubMedGoogle Scholar
  5. 5.
    Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20249CrossRefPubMedGoogle Scholar
  6. 6.
    Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, Ito M (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272:12257–12260CrossRefPubMedGoogle Scholar
  7. 7.
    Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K (1999) Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 147:1023–1038CrossRefPubMedGoogle Scholar
  8. 8.
    Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248CrossRefPubMedGoogle Scholar
  9. 9.
    Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S (1998) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140:647–657CrossRefPubMedGoogle Scholar
  10. 10.
    Fukata Y, Oshiro N, Kinoshita N, Kawano Y, Matsuoka Y, Bennett V, Matsuura Y, Kaibuchi K (1999) Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility. J Cell Biol 145:347–361CrossRefPubMedGoogle Scholar
  11. 11.
    Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898CrossRefPubMedGoogle Scholar
  12. 12.
    Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K (2000) Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 275:3577–3582CrossRefPubMedGoogle Scholar
  13. 13.
    Sumi T, Matsumoto K, Nakamura T (2001) Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 276:670–676CrossRefPubMedGoogle Scholar
  14. 14.
    Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456CrossRefPubMedGoogle Scholar
  15. 15.
    Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994CrossRefPubMedGoogle Scholar
  16. 16.
    Carbajal JM, Gratrix ML, Yu CH, Schaeffer RC Jr (2000) ROCK mediates thrombin’s endothelial barrier dysfunction. Am J Physiol Cell Physiol 279:C195–C204PubMedGoogle Scholar
  17. 17.
    Gavard J, Gutkind JS (2008) Protein kinase C-related kinase and ROCK are required for thrombin-induced endothelial cell permeability downstream from Galpha12/13 and Galpha11/q. J Biol Chem 283:29888–29896CrossRefPubMedGoogle Scholar
  18. 18.
    McKenzie JA, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 213:221–228CrossRefPubMedGoogle Scholar
  19. 19.
    van Nieuw Amerongen GP, Beckers CM, Achekar ID, Zeeman S, Musters RJ, van Hinsbergh VW (2007) Involvement of Rho kinase in endothelial barrier maintenance. Arterioscler Thromb Vasc Biol 27:2332–2339CrossRefPubMedGoogle Scholar
  20. 20.
    van Nieuw Amerongen GP, Musters RJ, Eringa EC, Sipkema P, van Hinsbergh VW (2008) Thrombin-induced endothelial barrier disruption in intact microvessels: role of RhoA/Rho kinase-myosin phosphatase axis. Am J Physiol Cell Physiol 294:C1234–C1241CrossRefPubMedGoogle Scholar
  21. 21.
    van Nieuw Amerongen GP, van Delft S, Vermeer MA, Collard JG, van Hinsbergh VW (2000) Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ Res 87:335–340PubMedGoogle Scholar
  22. 22.
    Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial junctional permeability. Ann N Y Acad Sci 1123:134–145CrossRefPubMedGoogle Scholar
  23. 23.
    Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, Noda Y, Matsumura F, Taketo MM, Narumiya S (2005) ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol 168:941–953CrossRefPubMedGoogle Scholar
  24. 24.
    Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, Oshima M, Taketo MM, Narumiya S (2003) Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol 23:5043–5055CrossRefPubMedGoogle Scholar
  25. 25.
    Thumkeo D, Shimizu Y, Sakamoto S, Yamada S, Narumiya S (2005) ROCK-I and ROCK-II cooperatively regulate closure of eyelid and ventral body wall in mouse embryo. Genes Cells 10:825–834CrossRefPubMedGoogle Scholar
  26. 26.
    Yoneda A, Multhaupt HA, Couchman JR (2005) The Rho kinases I and II regulate different aspects of myosin II activity. J Cell Biol 170:443–453CrossRefPubMedGoogle Scholar
  27. 27.
    Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105CrossRefPubMedGoogle Scholar
  28. 28.
    Chen YT, Bannister TD, Weiser A, Griffin E, Lin L, Ruiz C, Cameron MD, Schurer S, Duckett D, Schroter T, LoGrasso P, Feng Y (2008) Chroman-3-amides as potent Rho kinase inhibitors. Bioorgan Med Chem Lett 18:6406–6409CrossRefGoogle Scholar
  29. 29.
    Feng Y, Yin Y, Weiser A, Griffin E, Cameron MD, Lin L, Ruiz C, Schurer SC, Inoue T, Rao PV, Schroter T, Lograsso P (2008) Discovery of substituted 4-(pyrazol-4-yl)-phenylbenzodioxane-2-carboxamides as potent and highly selective Rho kinase (ROCK-II) inhibitors. J Med Chem 51:6642–6645CrossRefPubMedGoogle Scholar
  30. 30.
    Goodman KB, Cui H, Dowdell SE, Gaitanopoulos DE, Ivy RL, Sehon CA, Stavenger RA, Wang GZ, Viet AQ, Xu W, Ye G, Semus SF, Evans C, Fries HE, Jolivette LJ, Kirkpatrick RB, Dul E, Khandekar SS, Yi T, Jung DK, Wright LL, Smith GK, Behm DJ, Bentley R, Doe CP, Hu E, Lee D (2007) Development of dihydropyridone indazole amides as selective Rho-kinase inhibitors. J Med Chem 50:6–9CrossRefPubMedGoogle Scholar
  31. 31.
    Lohn M, Plettenburg O, Ivashchenko Y, Kannt A, Hofmeister A, Kadereit D, Schaefer M, Linz W, Kohlmann M, Herbert JM, Janiak P, O’Connor SE, Ruetten H (2009) Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension 54:676–683CrossRefPubMedGoogle Scholar
  32. 32.
    Nakajima M, Hayashi K, Katayama K, Amano Y, Egi Y, Uehata M, Goto N, Kondo T (2003) Wf-536 prevents tumor metastasis by inhibiting both tumor motility and angiogenic actions. Eur J Pharmacol 459:113–120CrossRefPubMedGoogle Scholar
  33. 33.
    Sessions EH, Yin Y, Bannister TD, Weiser A, Griffin E, Pocas J, Cameron MD, Ruiz C, Lin L, Schurer SC, Schroter T, LoGrasso P, Feng Y (2008) Benzimidazole- and benzoxazole-based inhibitors of Rho kinase. Bioorgan Med Chem Lett 18:6390–6393CrossRefGoogle Scholar
  34. 34.
    Stavenger RA, Cui H, Dowdell SE, Franz RG, Gaitanopoulos DE, Goodman KB, Hilfiker MA, Ivy RL, Leber JD, Marino JP Jr, Oh HJ, Viet AQ, Xu W, Ye G, Zhang D, Zhao Y, Jolivette LJ, Head MS, Semus SF, Elkins PA, Kirkpatrick RB, Dul E, Khandekar SS, Yi T, Jung DK, Wright LL, Smith GK, Behm DJ, Doe CP, Bentley R, Chen ZX, Hu E, Lee D (2007) Discovery of aminofurazan-azabenzimidazoles as inhibitors of Rho-kinase with high kinase selectivity and antihypertensive activity. J Med Chem 50:2–5CrossRefPubMedGoogle Scholar
  35. 35.
    Tanihara H, Inatani M, Honjo M, Tokushige H, Azuma J, Araie M (2008) Intraocular pressure-lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol 126:309–315CrossRefPubMedGoogle Scholar
  36. 36.
    Tokushige H, Inatani M, Nemoto S, Sakaki H, Katayama K, Uehata M, Tanihara H (2007) Effects of topical administration of y-39983, a selective rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys. Invest Ophthalmol Vis Sci 48:3216–3222CrossRefPubMedGoogle Scholar
  37. 37.
    Whitlock NA, Harrison B, Mixon T, Yu XQ, Wilson A, Gerhardt B, Eberhart DE, Abuin A, Rice DS (2009) Decreased intraocular pressure in mice following either pharmacological or genetic inhibition of ROCK. J Ocul Pharmacol Therap 25:187–194CrossRefGoogle Scholar
  38. 38.
    Wang Y, Zheng XR, Riddick N, Bryden M, Baur W, Zhang X, Surks HK (2009) ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circ Res 104:531–540CrossRefPubMedGoogle Scholar
  39. 39.
    Riento K, Guasch RM, Garg R, Jin B, Ridley AJ (2003) RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23:4219–4229CrossRefPubMedGoogle Scholar
  40. 40.
    Garg R, Riento K, Keep N, Morris JD, Ridley AJ (2008) N-terminus-mediated dimerization of ROCK-I is required for RhoE binding and actin reorganization. Biochem J 411:407–414CrossRefPubMedGoogle Scholar
  41. 41.
    Komander D, Garg R, Wan PT, Ridley AJ, Barford D (2008) Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure. EMBO J 27:3175–3185CrossRefPubMedGoogle Scholar
  42. 42.
    Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345CrossRefPubMedGoogle Scholar
  43. 43.
    Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352CrossRefPubMedGoogle Scholar
  44. 44.
    Sebbagh M, Hamelin J, Bertoglio J, Solary E, Breard J (2005) Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 201:465–471CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang Y, Li X, Qi J, Wang J, Liu X, Zhang H, Lin SC, Meng A (2009) Rock2 controls TGF{beta} signaling and inhibits mesoderm induction in zebrafish embryos. J Cell Sci 122:2197–2207CrossRefPubMedGoogle Scholar
  46. 46.
    Ongusaha PP, Qi HH, Raj L, Kim YB, Aaronson SA, Davis RJ, Shi Y, Liao JK, Lee SW (2008) Identification of ROCK1 as an upstream activator of the JIP-3 to JNK signaling axis in response to UVB damage. Sci Signal 1, ra14Google Scholar
  47. 47.
    Shea KF, Wells CM, Garner AP, Jones GE (2008) ROCK1 and LIMK2 interact in spread but not blebbing cancer cells. PLoS ONE 3:e3398CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang YM, Bo J, Taffet GE, Chang J, Shi J, Reddy AK, Michael LH, Schneider MD, Entman ML, Schwartz RJ, Wei L (2006) Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J 20:916–925CrossRefPubMedGoogle Scholar
  49. 49.
    Rikitake Y, Oyama N, Wang CY, Noma K, Satoh M, Kim HH, Liao JK (2005) Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1 ± haploinsufficient mice. Circulation 112:2959–2965PubMedGoogle Scholar
  50. 50.
    Wong CC, Wong CM, Tung EK, Man K, Ng IO (2009) Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. Hepatology 49:1583–1594CrossRefPubMedGoogle Scholar
  51. 51.
    Vishnubhotla R, Sun S, Huq J, Bulic M, Ramesh A, Guzman G, Cho M, Glover SC (2007) ROCK-II mediates colon cancer invasion via regulation of MMP-2 and MMP-13 at the site of invadopodia as revealed by multiphoton imaging. Lab Invest 87:1149–1158CrossRefPubMedGoogle Scholar
  52. 52.
    Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, Oshima H (2003) Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 9:2632–2641PubMedGoogle Scholar
  53. 53.
    Lane J, Martin TA, Watkins G, Mansel RE, Jiang WG (2008) The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int J Oncol 33:585–593PubMedGoogle Scholar
  54. 54.
    Lin SL, Chang D, Ying SY (2007) Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis 28:310–320CrossRefPubMedGoogle Scholar
  55. 55.
    Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, Ostroff GR, Czech MP (2009) Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458:1180–1184CrossRefPubMedGoogle Scholar
  56. 56.
    Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377CrossRefPubMedGoogle Scholar
  57. 57.
    Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res 65:8984–8992CrossRefPubMedGoogle Scholar
  58. 58.
    Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43CrossRefPubMedGoogle Scholar
  59. 59.
    Kast R, Schirok H, Figueroa-Perez S, Mittendorf J, Gnoth MJ, Apeler H, Lenz J, Franz JK, Knorr A, Hutter J, Lobell M, Zimmermann K, Munter K, Augstein KH, Ehmke H, Stasch JP (2007) Cardiovascular effects of a novel potent and highly selective azaindole-based inhibitor of Rho-kinase. Br J Pharmacol 152:1070–1080CrossRefPubMedGoogle Scholar
  60. 60.
    Schirok H, Kast R, Figueroa-Perez S, Bennabi S, Gnoth MJ, Feurer A, Heckroth H, Thutewohl M, Paulsen H, Knorr A, Hutter J, Lobell M, Munter K, Geiss V, Ehmke H, Lang D, Radtke M, Mittendorf J, Stasch JP (2008) Design and synthesis of potent and selective azaindole-based Rho kinase (ROCK) inhibitors. ChemMedChem 3:1893–1904CrossRefPubMedGoogle Scholar
  61. 61.
    Shifrin V, Annand RR, Flusberg D, McGonigle S, Wong E, Paradise E, Bartolozzi A, Ram S, Foudoulakis H, Kirk B, Chesworth R, Riesinger S, Grogan M, Tsaioun K, Malchoff A, Ter-Ovanesyan E, Waechter R, Duffy D, Kim E, Schueller O, Campbell S (2005) Effects of SLx-2119, a novel small molecule inhibitor of Rho-associated kinase ROCK (ROK), on growth of human tumor xenografts in nude mice. AACR Meeting Abstracts 2005, 158Google Scholar
  62. 62.
    Boerma M, Fu Q, Wang J, Loose DS, Bartolozzi A, Ellis JL, McGonigle S, Paradise E, Sweetnam P, Fink LM, Vozenin-Brotons MC, Hauer-Jensen M (2008) Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of Rho kinase or atorvastatin. Blood Coagul Fibrinolysis 19:709–718CrossRefPubMedGoogle Scholar
  63. 63.
    Schueller O, Tong W, Ferkany JW, Sweetnam P (2006) Abstract 1216: Selective ROCK 2 inhibition attenuates arterial plaque formation in an ApoE knockout mouse model. Circulation 114, II_228-b-Google Scholar
  64. 64.
    Seasholtz TM, Wessel J, Rao F, Rana BK, Khandrika S, Kennedy BP, Lillie EO, Ziegler MG, Smith DW, Schork NJ, Brown JH, O’Connor DT (2006) Rho kinase polymorphism influences blood pressure and systemic vascular resistance in human twins: role of heredity. Hypertension 47:937–947CrossRefPubMedGoogle Scholar
  65. 65.
    Rankinen T, Church T, Rice T, Markward N, Blair SN, Bouchard C (2008) A major haplotype block at the rho-associated kinase 2 locus is associated with a lower risk of hypertension in a recessive manner: the HYPGENE study. Hypertens Res 31:1651–1657CrossRefPubMedGoogle Scholar
  66. 66.
    Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A (2001) Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension 38:1307–1310CrossRefPubMedGoogle Scholar
  67. 67.
    Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H (2005) Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 91:391–392CrossRefPubMedGoogle Scholar
  68. 68.
    Honjo M, Inatani M, Kido N, Sawamura T, Yue BY, Honda Y, Tanihara H (2001) Effects of protein kinase inhibitor, HA1077, on intraocular pressure and outflow facility in rabbit eyes. Arch Ophthalmol 119:1171–1178PubMedGoogle Scholar
  69. 69.
    Honjo M, Tanihara H, Inatani M, Kido N, Sawamura T, Yue BY, Narumiya S, Honda Y (2001) Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci 42:137–144PubMedGoogle Scholar
  70. 70.
    Waki M, Yoshida Y, Oka T, Azuma M (2001) Reduction of intraocular pressure by topical administration of an inhibitor of the Rho-associated protein kinase. Curr Eye Res 22:470–474CrossRefPubMedGoogle Scholar
  71. 71.
    Rao PV, Deng PF, Kumar J, Epstein DL (2001) Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest Ophthalmol Vis Sci 42:1029–1037PubMedGoogle Scholar
  72. 72.
    Tian B, Kaufman PL (2005) Effects of the Rho kinase inhibitor Y-27632 and the phosphatase inhibitor calyculin A on outflow facility in monkeys. Exp Eye Res 80:215–225CrossRefPubMedGoogle Scholar
  73. 73.
    Chan CC, Khodarahmi K, Liu J, Sutherland D, Oschipok LW, Steeves JD, Tetzlaff W (2005) Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp Neurol 196:352–364CrossRefPubMedGoogle Scholar
  74. 74.
    Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416–1423PubMedGoogle Scholar
  75. 75.
    Hara M, Takayasu M, Watanabe K, Noda A, Takagi T, Suzuki Y, Yoshida J (2000) Protein kinase inhibition by fasudil hydrochloride promotes neurological recovery after spinal cord injury in rats. J Neurosurg 93:94–101PubMedGoogle Scholar
  76. 76.
    Tanaka H, Yamashita T, Yachi K, Fujiwara T, Yoshikawa H, Tohyama M (2004) Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats. Neuroscience 127:155–164CrossRefPubMedGoogle Scholar
  77. 77.
    Zhou Y, Su Y, Li B, Liu F, Ryder JW, Wu X, Gonzalez-DeWhitt PA, Gelfanova V, Hale JE, May PC, Paul SM, Ni B (2003) Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 302:1215–1217CrossRefPubMedGoogle Scholar
  78. 78.
    Bauer PO, Wong HK, Oyama F, Goswami A, Okuno M, Kino Y, Miyazaki H, Nukina N (2009) Inhibition of Rho kinases enhances the degradation of mutant huntingtin. J Biol Chem 284:13153–13164CrossRefPubMedGoogle Scholar
  79. 79.
    Nakajima M, Hayashi K, Egi Y, Katayama K, Amano Y, Uehata M, Ohtsuki M, Fujii A, Oshita K, Kataoka H, Chiba K, Goto N, Kondo T (2003) Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer Chemother Pharmacol 52:319–324CrossRefPubMedGoogle Scholar
  80. 80.
    Somlyo AV, Phelps C, Dipierro C, Eto M, Read P, Barrett M, Gibson JJ, Burnitz MC, Myers C, Somlyo AP (2003) Rho kinase and matrix metalloproteinase inhibitors cooperate to inhibit angiogenesis and growth of human prostate cancer xenotransplants. FASEB J 17:223–234CrossRefPubMedGoogle Scholar
  81. 81.
    Somlyo AV, Bradshaw D, Ramos S, Murphy C, Myers CE, Somlyo AP (2000) Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun 269:652–659CrossRefPubMedGoogle Scholar
  82. 82.
    Takamura M, Sakamoto M, Genda T, Ichida T, Asakura H, Hirohashi S (2001) Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology 33:577–581CrossRefPubMedGoogle Scholar
  83. 83.
    Ying H, Biroc SL, Li WW, Alicke B, Xuan JA, Pagila R, Ohashi Y, Okada T, Kamata Y, Dinter H (2006) The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Mol Cancer Ther 5:2158–2164CrossRefPubMedGoogle Scholar
  84. 84.
    Nagatoya K, Moriyama T, Kawada N, Takeji M, Oseto S, Murozono T, Ando A, Imai E, Hori M (2002) Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int 61:1684–1695CrossRefPubMedGoogle Scholar
  85. 85.
    Kanda T, Wakino S, Hayashi K, Homma K, Ozawa Y, Saruta T (2003) Effect of fasudil on Rho-kinase and nephropathy in subtotally nephrectomized spontaneously hypertensive rats. Kidney Int 64:2009–2019CrossRefPubMedGoogle Scholar
  86. 86.
    Kikuchi Y, Yamada M, Imakiire T, Kushiyama T, Higashi K, Hyodo N, Yamamoto K, Oda T, Suzuki S, Miura S (2007) A Rho-kinase inhibitor, fasudil, prevents development of diabetes and nephropathy in insulin-resistant diabetic rats. J Endocrinol 192:595–603CrossRefPubMedGoogle Scholar
  87. 87.
    Nishikimi T, Akimoto K, Wang X, Mori Y, Tadokoro K, Ishikawa Y, Shimokawa H, Ono H, Matsuoka H (2004) Fasudil, a Rho-kinase inhibitor, attenuates glomerulosclerosis in Dahl salt-sensitive rats. J Hypertens 22:1787–1796CrossRefPubMedGoogle Scholar
  88. 88.
    Nishikimi T, Koshikawa S, Ishikawa Y, Akimoto K, Inaba C, Ishimura K, Ono H, Matsuoka H (2007) Inhibition of Rho-kinase attenuates nephrosclerosis and improves survival in salt-loaded spontaneously hypertensive stroke-prone rats. J Hypertens 25:1053–1063CrossRefPubMedGoogle Scholar
  89. 89.
    Satoh S, Yamaguchi T, Hitomi A, Sato N, Shiraiwa K, Ikegaki I, Asano T, Shimokawa H (2002) Fasudil attenuates interstitial fibrosis in rat kidneys with unilateral ureteral obstruction. Eur J Pharmacol 455:169–174CrossRefPubMedGoogle Scholar
  90. 90.
    Kolavennu V, Zeng L, Peng H, Wang Y, Danesh FR (2008) Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes 57:714–723CrossRefPubMedGoogle Scholar
  91. 91.
    Kanda T, Wakino S, Homma K, Yoshioka K, Tatematsu S, Hasegawa K, Takamatsu I, Sugano N, Hayashi K, Saruta T (2006) Rho-kinase as a molecular target for insulin resistance and hypertension. FASEB J 20:169–171PubMedGoogle Scholar
  92. 92.
    Chitaley K, Wingard CJ, Clinton Webb R, Branam H, Stopper VS, Lewis RW, Mills TM (2001) Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 7:119–122CrossRefPubMedGoogle Scholar
  93. 93.
    Rajasekaran M, White S, Baquir A, Wilkes N (2005) Rho-kinase inhibition improves erectile function in aging male Brown-Norway rats. J Androl 26:182–188PubMedGoogle Scholar
  94. 94.
    Wingard CJ, Johnson JA, Holmes A, Prikosh A (2003) Improved erectile function after Rho-kinase inhibition in a rat castrate model of erectile dysfunction. Am J Physiol Regul Integr Comp Physiol 284:R1572–R1579PubMedGoogle Scholar
  95. 95.
    Teixeira CE, Ying Z, Webb RC (2005) Proerectile effects of the Rho-kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]homopiperazine (H-1152) in the rat penis. J Pharmacol Exp Ther 315:155–162CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Discovery Biology, Translational Research InstituteThe Scripps Research Institute, Scripps FloridaJupiterUSA

Personalised recommendations