Advertisement

Cellular and Molecular Life Sciences

, Volume 67, Issue 5, pp 727–748 | Cite as

Homing endonucleases: from basics to therapeutic applications

  • Maria J. Marcaida
  • Inés G. Muñoz
  • Francisco J. Blanco
  • Jesús PrietoEmail author
  • Guillermo MontoyaEmail author
Review

Abstract

Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12–40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.

Keywords

Homing endonucleases Protein engineering Monogenic diseases Double-strand break DNA repair Gene therapy Protein structure Protein–DNA interaction 

Notes

Acknowledgments

This work was supported European Union MEGATOOLS (LSHG-CT-2006-037226), the Ministerio de Ciencia e Inovación (MICINN) Grant BFU2007-30703-E and BFU2008-01344 to G.M., and the ETORTEK-2008 programme, at the Structural Biology Unit of CIC bioGUNE. M.J.M. holds a Juan de la Cierva contract from the Spanish MICINN.

References

  1. 1.
    Dujon B (2005) Homing nucleases and the yeast mitochondrial omega locus: a historical perspective, vol 16. Springer, BerlinGoogle Scholar
  2. 2.
    Liu Q, Belle A, Shub DA, Belfort M, Edgell DR (2003) SegG endonuclease promotes marker exclusion and mediates co-conversion from a distant cleavage site. J Mol Biol 334:13–23PubMedGoogle Scholar
  3. 3.
    Edgell DR (2005) Free-standing homing endonucleases of T-even phage: freeloaders or functionaries?, vol 16. Springer, BerlinGoogle Scholar
  4. 4.
    Edgell DR (2002) Selfish DNA: new abode for homing endonucleases. Curr Biol 12:R276–R278. doi: S0960982202007996[pii] PubMedGoogle Scholar
  5. 5.
    Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756PubMedGoogle Scholar
  6. 6.
    Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev S, Dryden DT, Dybvig K et al (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812PubMedGoogle Scholar
  7. 7.
    Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35PubMedGoogle Scholar
  8. 8.
    Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973PubMedGoogle Scholar
  9. 9.
    Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:49–95PubMedGoogle Scholar
  10. 10.
    Dassa B, London N, Stoddard BL, Schueler-Furman O, Pietrokovski S (2009) Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res 37:2560–2573. doi: gkp095[pii]10.1093/nar/gkp095 PubMedGoogle Scholar
  11. 11.
    Tsutakawa SE, Morikawa K (2001) The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease. Nucleic Acids Res 29:3775–3783PubMedGoogle Scholar
  12. 12.
    Dalgaard JZ, Klar AJ, Moser MJ, Holley WR, Chatterjee A, Mian IS (1997) Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 25:4626–4638. doi: gka746[pii] PubMedGoogle Scholar
  13. 13.
    Chevalier B, Turmel M, Lemieux C, Monnat RJ Jr, Stoddard BL (2003) Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI. J Mol Biol 329:253–269PubMedGoogle Scholar
  14. 14.
    Thompson AJ, Yuan X, Kudlicki W, Herrin DL (1992) Cleavage and recognition pattern of a double-strand-specific endonuclease (I-creI) encoded by the chloroplast 23S rRNA intron of Chlamydomonas reinhardtii. Gene 119:247–251. doi: 0378-1119(92)90278-W[pii] PubMedGoogle Scholar
  15. 15.
    Turmel M, Otis C, Cote V, Lemieux C (1997) Evolutionarily conserved and functionally important residues in the I-CeuI homing endonuclease. Nucleic Acids Res 25:2610–2619PubMedGoogle Scholar
  16. 16.
    Wang J, Kim HH, Yuan X, Herrin DL (1997) Purification, biochemical characterization and protein-DNA interactions of the I-CreI endonuclease produced in Escherichia coli. Nucleic Acids Res 25:3767–3776PubMedGoogle Scholar
  17. 17.
    Aagaard C, Awayez MJ, Garrett RA (1997) Profile of the DNA recognition site of the archaeal homing endonuclease I-DmoI. Nucleic Acids Res 25:1523–1530PubMedGoogle Scholar
  18. 18.
    Bolduc JM, Spiegel PC, Chatterjee P, Brady KL, Downing ME, Caprara MG, Waring RB, Stoddard BL (2003) Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor. Genes Dev 17:2875–2888PubMedGoogle Scholar
  19. 19.
    Moure CM, Gimble FS, Quiocho FA (2003) The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity. J Mol Biol 334:685–695. doi: S0022283603012233[pii] PubMedGoogle Scholar
  20. 20.
    Chevalier B, Sussman D, Otis C, Noel AJ, Turmel M, Lemieux C, Stephens K, Monnat RJ Jr, Stoddard BL (2004) Metal-dependent DNA cleavage mechanism of the I-CreI LAGLIDADG homing endonuclease. Biochemistry 43:14015–14026PubMedGoogle Scholar
  21. 21.
    Jurica MS, Monnat RJ Jr, Stoddard BL (1998) DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Mol Cell 2:469–476PubMedGoogle Scholar
  22. 22.
    Marcaida MJ, Prieto J, Redondo P, Nadra AD, Alibes A, Serrano L, Grizot S, Duchateau P, Paques F, Blanco FJ et al (2008) Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering. Proc Natl Acad Sci USA 105:16888–16893. doi: 0804795105[pii]10.1073/pnas.0804795105 PubMedGoogle Scholar
  23. 23.
    Moure CM, Gimble FS, Quiocho FA (2002) Crystal structure of the intein homing endonuclease PI-SceI bound to its recognition sequence. Nat Struct Biol 9:764–770PubMedGoogle Scholar
  24. 24.
    Spiegel PC, Chevalier B, Sussman D, Turmel M, Lemieux C, Stoddard BL (2006) The structure of I-CeuI homing endonuclease: evolving asymmetric DNA recognition from a symmetric protein scaffold. Structure 14:869–880PubMedGoogle Scholar
  25. 25.
    Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL (2002) Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10:895–905. doi: S1097276502006901[pii] PubMedGoogle Scholar
  26. 26.
    Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962PubMedGoogle Scholar
  27. 27.
    Grizot S, Smith J, Prieto J, Daboussi F, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G, et al. (2009) Efficient targeting of a SCID gene by an engineered single chain homing endonuclease. Nucleic Acids Res (in press)Google Scholar
  28. 28.
    Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90:6498–6502PubMedGoogle Scholar
  29. 29.
    Kostrewa D, Winkler FK (1995) Mg2 + binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 A resolution. Biochemistry 34:683–696PubMedGoogle Scholar
  30. 30.
    Viadiu H, Aggarwal AK (1998) The role of metals in catalysis by the restriction endonuclease BamHI. Nat Struct Biol 5:910–916. doi: 10.1038/2352 PubMedGoogle Scholar
  31. 31.
    Chevalier BS, Monnat RJ Jr, Stoddard BL (2001) The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites. Nat Struct Biol 8:312–316PubMedGoogle Scholar
  32. 32.
    Moure CM, Gimble FS, Quiocho FA (2008) Crystal structures of I-SceI complexed to nicked DNA substrates: snapshots of intermediates along the DNA cleavage reaction pathway. Nucleic Acids Res 36:3287–3296PubMedGoogle Scholar
  33. 33.
    Ho Y, Kim SJ, Waring RB (1997) A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease. Proc Natl Acad Sci USA 94:8994–8999PubMedGoogle Scholar
  34. 34.
    Ho Y, Waring RB (1999) The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing. J Mol Biol 292:987–1001. doi: 10.1006/jmbi.1999.3070S0022-2836(99)93070-X[pii] PubMedGoogle Scholar
  35. 35.
    Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Paques F (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65PubMedGoogle Scholar
  36. 36.
    Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S et al (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355:443–458. doi: S0022-2836(05)01325-2[pii]10.1016/j.jmb.2005.10.065 PubMedGoogle Scholar
  37. 37.
    Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34:e149. doi: gkl720[pii]10.1093/nar/gkl720 PubMedGoogle Scholar
  38. 38.
    Redondo P, Prieto J, Munoz IG, Alibes A, Stricher F, Serrano L, Cabaniols JP, Daboussi F, Arnould S, Perez C et al (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456:107–111PubMedGoogle Scholar
  39. 39.
    Friedhoff P, Franke I, Meiss G, Wende W, Krause KL, Pingoud A (1999) A similar active site for non-specific and specific endonucleases. Nat Struct Biol 6:112–113. doi: 10.1038/5796 PubMedGoogle Scholar
  40. 40.
    Kuhlmann UC, Moore GR, James R, Kleanthous C, Hemmings AM (1999) Structural parsimony in endonuclease active sites: should the number of homing endonuclease families be redefined? FEBS Lett 463:1–2. doi: S0014-5793(99)01499-4[pii] PubMedGoogle Scholar
  41. 41.
    Mehta P, Katta K, Krishnaswamy S (2004) HNH family subclassification leads to identification of commonality in the His-Me endonuclease superfamily. Protein Sci 13:295–300. doi: 10.1110/ps.03115604 PubMedGoogle Scholar
  42. 42.
    Jakubauskas A, Giedriene J, Bujnicki JM, Janulaitis A (2007) Identification of a single HNH active site in type IIS restriction endonuclease Eco31I. J Mol Biol 370:157–169. doi: S0022-2836(07)00541-4[pii]10.1016/j.jmb.2007.04.049 PubMedGoogle Scholar
  43. 43.
    Azarinskas A, Maneliene Z, Jakubauskas A (2006) Hin4II, a new prototype restriction endonuclease from Haemophilus influenzae RFL4: discovery, cloning and expression in Escherichia coli. J Biotechnol 123:288–296. doi: S0168-1656(05)00789-3[pii]10.1016/j.jbiotec.2005.12.016 PubMedGoogle Scholar
  44. 44.
    Saravanan M, Vasu K, Kanakaraj R, Rao DN, Nagaraja V (2007) R.KpnI, an HNH superfamily REase, exhibits differential discrimination at non-canonical sequences in the presence of Ca2 + and Mg2+. Nucleic Acids Res 35:2777–2786. doi: gkm114[pii]10.1093/nar/gkm114 PubMedGoogle Scholar
  45. 45.
    Cymerman IA, Obarska A, Skowronek KJ, Lubys A, Bujnicki JM (2006) Identification of a new subfamily of HNH nucleases and experimental characterization of a representative member, HphI restriction endonuclease. Proteins 65:867–876. doi: 10.1002/prot.21156 PubMedGoogle Scholar
  46. 46.
    Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–3774PubMedGoogle Scholar
  47. 47.
    Goodrich-Blair H, Scarlato V, Gott JM, Xu MQ, Shub DA (1990) A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1. Cell 63:417–424. doi: 0092-8674(90)90174-D[pii] PubMedGoogle Scholar
  48. 48.
    Goodrich-Blair H, Shub DA (1994) The DNA polymerase genes of several HMU-bacteriophages have similar group I introns with highly divergent open reading frames. Nucleic Acids Res 22:3715–3721PubMedGoogle Scholar
  49. 49.
    Goodrich-Blair H, Shub DA (1996) Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell 84:211–221. doi: S0092-8674(00)80976-9[pii] PubMedGoogle Scholar
  50. 50.
    Landthaler M, Lau NC, Shub DA (2004) Group I intron homing in Bacillus phages SPO1 and SP82: a gene conversion event initiated by a nicking homing endonuclease. J Bacteriol 186:4307–4314. doi: 10.1128/JB.186.13.4307-4314.2004186/13/4307[pii] PubMedGoogle Scholar
  51. 51.
    Landthaler M, Shub DA (2003) The nicking homing endonuclease I-BasI is encoded by a group I intron in the DNA polymerase gene of the Bacillus thuringiensis phage Bastille. Nucleic Acids Res 31:3071–3077PubMedGoogle Scholar
  52. 52.
    Eddy SR, Gold L (1991) The phage T4 nrdB intron: a deletion mutant of a version found in the wild. Genes Dev 5:1032–1041PubMedGoogle Scholar
  53. 53.
    Drouin M, Lucas P, Otis C, Lemieux C, Turmel M (2000) Biochemical characterization of I-CmoeI reveals that this H-N-H homing endonuclease shares functional similarities with H-N-H colicins. Nucleic Acids Res 28:4566–4572PubMedGoogle Scholar
  54. 54.
    Holloway SP, Deshpande NN, Herrin DL (1999) The catalytic group-I introns of the psbA gene of chlamydomonas reinhardtii : core structures, ORFs and evolutionary implications. Curr Genet 36:69–78. doi: 90360069.294[pii] PubMedGoogle Scholar
  55. 55.
    Shen BW, Landthaler M, Shub DA, Stoddard BL (2004) DNA binding and cleavage by the HNH homing endonuclease I-HmuI. J Mol Biol 342:43–56PubMedGoogle Scholar
  56. 56.
    Johansen S, Embley TM, Willassen NP (1993) A family of nuclear homing endonucleases. Nucleic Acids Res 21:4405PubMedGoogle Scholar
  57. 57.
    Muscarella DE, Vogt VM (1993) A mobile group I intron from Physarum polycephalum can insert itself and induce point mutations in the nuclear ribosomal DNA of saccharomyces cerevisiae. Mol Cell Biol 13:1023–1033PubMedGoogle Scholar
  58. 58.
    Muscarella DE, Ellison EL, Ruoff BM, Vogt VM (1990) Characterization of I-Ppo, an intron-encoded endonuclease that mediates homing of a group I intron in the ribosomal DNA of Physarum polycephalum. Mol Cell Biol 10:3386–3396PubMedGoogle Scholar
  59. 59.
    Wittmayer PK, Raines RT (1996) Substrate binding and turnover by the highly specific I-PpoI endonuclease. Biochemistry 35:1076–1083. doi: 10.1021/bi952363vbi952363v[pii] PubMedGoogle Scholar
  60. 60.
    Wittmayer PK, McKenzie JL, Raines RT (1998) Degenerate DNA recognition by I-PpoI endonuclease. Gene 206:11–21. doi: S0378111997005635[pii] PubMedGoogle Scholar
  61. 61.
    Johansen S, Vogt VM (1994) An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in self-splicing. Cell 76:725–734. doi: 0092-8674(94)90511-8[pii] PubMedGoogle Scholar
  62. 62.
    Johansen S, Elde M, Vader A, Haugen P, Haugli K, Haugli F (1997) In vivo mobility of a group I twintron in nuclear ribosomal DNA of the myxomycete Didymium iridis. Mol Microbiol 24:737–745PubMedGoogle Scholar
  63. 63.
    Haugen P, Wikmark OG, Vader A, Coucheron DH, Sjottem E, Johansen SD (2005) The recent transfer of a homing endonuclease gene. Nucleic Acids Res 33:2734–2741PubMedGoogle Scholar
  64. 64.
    Johansen SD, Haugen P, Nielsen H (2007) Expression of protein-coding genes embedded in ribosomal DNA. Biol Chem 388:679–686. doi: 10.1515/BC.2007.089 PubMedGoogle Scholar
  65. 65.
    Elde M, Haugen P, Willassen NP, Johansen S (1999) I-NjaI, a nuclear intron-encoded homing endonuclease from Naegleria, generates a pentanucleotide 3’ cleavage-overhang within a 19 base-pair partially symmetric DNA recognition site. Eur J Biochem 259:281–288PubMedGoogle Scholar
  66. 66.
    Elde M, Willassen NP, Johansen S (2000) Functional characterization of isoschizomeric His-Cys box homing endonucleases from Naegleria. Eur J Biochem 267:7257–7266. doi: ejb1862[pii] PubMedGoogle Scholar
  67. 67.
    Ellison EL, Vogt VM (1993) Interaction of the intron-encoded mobility endonuclease I-PpoI with its target site. Mol Cell Biol 13:7531–7539PubMedGoogle Scholar
  68. 68.
    Flick KE, Jurica MS, Monnat RJ Jr, Stoddard BL (1998) DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature 394:96–101PubMedGoogle Scholar
  69. 69.
    Flick KE, McHugh D, Heath JD, Stephens KM, Monnat RJ Jr, Stoddard BL (1997) Crystallization and preliminary X-ray studies of I-PpoI: a nuclear, intron-encoded homing endonuclease from Physarum polycephalum. Protein Sci 6:2677–2680PubMedGoogle Scholar
  70. 70.
    Galburt EA, Chevalier B, Tang W, Jurica MS, Flick KE, Monnat RJ Jr, Stoddard BL (1999) A novel endonuclease mechanism directly visualized for I-PpoI. Nat Struct Biol 6:1096–1099. doi: 10.1038/70027 PubMedGoogle Scholar
  71. 71.
    Galburt EA, Chadsey MS, Jurica MS, Chevalier BS, Erho D, Tang W, Monnat RJ Jr, Stoddard BL (2000) Conformational changes and cleavage by the homing endonuclease I-PpoI: a critical role for a leucine residue in the active site. J Mol Biol 300:877–887PubMedGoogle Scholar
  72. 72.
    Eastberg JH, Eklund J, Monnat R Jr, Stoddard BL (2007) Mutability of an HNH nuclease imidazole general base and exchange of a deprotonation mechanism. Biochemistry 46:7215–7225. doi: 10.1021/bi700418d PubMedGoogle Scholar
  73. 73.
    Eklund JL, Ulge UY, Eastberg J, Monnat RJ Jr (2007) Altered target site specificity variants of the I-PpoI His-Cys box homing endonuclease. Nucleic Acids Res 35:5839–5850. doi: gkm624[pii]10.1093/nar/gkm624 PubMedGoogle Scholar
  74. 74.
    Dunin-Horkawicz S, Feder M, Bujnicki JM (2006) Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genomics 7:98. doi: 1471-2164-7-98[pii]10.1186/1471-2164-7-98 PubMedGoogle Scholar
  75. 75.
    Kowalski JC, Belfort M, Stapleton MA, Holpert M, Dansereau JT, Pietrokovski S, Baxter SM, Derbyshire V (1999) Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Res 27:2115–2125. doi: gkc361[pii] PubMedGoogle Scholar
  76. 76.
    Nord D, Sjoberg BM (2008) Unconventional GIY-YIG homing endonuclease encoded in group I introns in closely related strains of the Bacillus cereus group. Nucleic Acids Res 36:300–310. doi: gkm1016[pii]10.1093/nar/gkm1016 PubMedGoogle Scholar
  77. 77.
    Derbyshire V, Kowalski JC, Dansereau JT, Hauer CR, Belfort M (1997) Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J Mol Biol 265:494–506PubMedGoogle Scholar
  78. 78.
    Bujnicki JM, Rotkiewicz P, Kolinski A, Rychlewski L (2001) Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-YIG superfamily member, using NMR restraints and Monte Carlo dynamics. Protein Eng 14:717–721PubMedGoogle Scholar
  79. 79.
    Liu Q, Derbyshire V, Belfort M, Edgell DR (2006) Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res 34:1755–1764. doi: 34/6/1755[pii]10.1093/nar/gkl079 PubMedGoogle Scholar
  80. 80.
    Van Roey P, Meehan L, Kowalski JC, Belfort M, Derbyshire V (2002) Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nat Struct Biol 9:806–811. doi: 10.1038/nsb853nsb853[pii] PubMedGoogle Scholar
  81. 81.
    Sitbon E, Pietrokovski S (2003) New types of conserved sequence domains in DNA-binding regions of homing endonucleases. Trends Biochem Sci 28:473–477. doi: S0968000403001701[pii] PubMedGoogle Scholar
  82. 82.
    Dean AB, Stanger MJ, Dansereau JT, Van Roey P, Derbyshire V, Belfort M (2002) Zinc finger as distance determinant in the flexible linker of intron endonuclease I-TevI. Proc Natl Acad Sci USA 99:8554–8561. doi: 10.1073/pnas.082253699082253699[pii] PubMedGoogle Scholar
  83. 83.
    Liu Q, Dansereau JT, Puttamadappa SS, Shekhtman A, Derbyshire V, Belfort M (2008) Role of the interdomain linker in distance determination for remote cleavage by homing endonuclease I-TevI. J Mol Biol 379:1094–1106. doi: S0022-2836(08)00493-2[pii]10.1016/j.jmb.2008.04.047 PubMedGoogle Scholar
  84. 84.
    Brok-Volchanskaya VS, Kadyrov FA, Sivogrivov DE, Kolosov PM, Sokolov AS, Shlyapnikov MG, Kryukov VM, Granovsky IE (2008) Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage. Nucleic Acids Res 36:2094–2105. doi: gkn053[pii]10.1093/nar/gkn053 PubMedGoogle Scholar
  85. 85.
    Carter JM, Friedrich NC, Kleinstiver B, Edgell DR (2007) Strand-specific contacts and divalent metal ion regulate double-strand break formation by the GIY-YIG homing endonuclease I-BmoI. J Mol Biol 374:306–321. doi: S0022-2836(07)01202-8[pii]10.1016/j.jmb.2007.09.027 PubMedGoogle Scholar
  86. 86.
    Bryk M, Quirk SM, Mueller JE, Loizos N, Lawrence C, Belfort M (1993) The td intron endonuclease I-TevI makes extensive sequence-tolerant contacts across the minor groove of its DNA target. EMBO J 12:4040–4041PubMedGoogle Scholar
  87. 87.
    Mueller JE, Smith D, Bryk M, Belfort M (1995) Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site. EMBO J 14:5724–5735PubMedGoogle Scholar
  88. 88.
    Ibryashkina EM, Sasnauskas G, Solonin AS, Zakharova MV, Siksnys V (2009) Oligomeric structure diversity within the GIY-YIG nuclease family. J Mol Biol 387:10–16. doi: S0022-2836(09)00098-9[pii]10.1016/j.jmb.2009.01.048 PubMedGoogle Scholar
  89. 89.
    Chu FK, Maley G, Pedersen-Lane J, Wang AM, Maley F (1990) Characterization of the restriction site of a prokaryotic intron-encoded endonuclease. Proc Natl Acad Sci USA 87:3574–3578PubMedGoogle Scholar
  90. 90.
    Bell-Pedersen D, Quirk SM, Bryk M, Belfort M (1991) I-TevI, the endonuclease encoded by the mobile td intron, recognizes binding and cleavage domains on its DNA target. Proc Natl Acad Sci USA 88:7719–7723PubMedGoogle Scholar
  91. 91.
    Van Roey P, Waddling CA, Fox KM, Belfort M, Derbyshire V (2001) Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate. EMBO J 20:3631–3637. doi: 10.1093/emboj/20.14.3631 PubMedGoogle Scholar
  92. 92.
    Edgell DR, Shub DA (2001) Related homing endonucleases I-BmoI and I-TevI use different strategies to cleave homologous recognition sites. Proc Natl Acad Sci USA 98:7898–7903. doi: 10.1073/pnas.141222498141222498[pii] PubMedGoogle Scholar
  93. 93.
    Bryk M, Belisle M, Mueller JE, Belfort M (1995) Selection of a remote cleavage site by I-tevI, the td intron-encoded endonuclease. J Mol Biol 247:197–210. doi: S0022-2836(84)70133-1[pii]10.1006/jmbi.1994.0133 PubMedGoogle Scholar
  94. 94.
    Edgell DR, Stanger MJ, Belfort M (2004) Coincidence of cleavage sites of intron endonuclease I-TevI and critical sequences of the host thymidylate synthase gene. J Mol Biol 343:1231–1241. doi: S0022-2836(04)01120-9[pii]10.1016/j.jmb.2004.09.005 PubMedGoogle Scholar
  95. 95.
    Bonocora RP, Shub DA (2001) A novel group I intron-encoded endonuclease specific for the anticodon region of tRNA(fMet) genes. Mol Microbiol 39:1299–1306. doi: mmi2318[pii] PubMedGoogle Scholar
  96. 96.
    Biniszkiewicz D, Cesnaviciene E, Shub DA (1994) Self-splicing group I intron in cyanobacterial initiator methionine tRNA: evidence for lateral transfer of introns in bacteria. EMBO J 13:4629–4635PubMedGoogle Scholar
  97. 97.
    Zhao L, Bonocora RP, Shub DA, Stoddard BL (2007) The restriction fold turns to the dark side: a bacterial homing endonuclease with a PD-(D/E)-XK motif. EMBO J 26:2432–2442. doi: 7601672[pii]10.1038/sj.emboj.7601672 PubMedGoogle Scholar
  98. 98.
    Orlowski J, Boniecki M, Bujnicki JM (2007) I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition. Bioinformatics 23:527–530. doi: btm007[pii]10.1093/bioinformatics/btm007 PubMedGoogle Scholar
  99. 99.
    Zhao L, Pellenz S, Stoddard BL (2009) Activity and specificity of the bacterial PD-(D/E)XK homing endonuclease I-Ssp6803I. J Mol Biol 385:1498–1510. doi: S0022-2836(08)01406-X[pii]10.1016/j.jmb.2008.10.096 PubMedGoogle Scholar
  100. 100.
    Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35PubMedGoogle Scholar
  101. 101.
    Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–750PubMedGoogle Scholar
  102. 102.
    Brugmans L, Kanaar R, Essers J (2007) Analysis of DNA double-strand break repair pathways in mice. Mutat Res 614:95–108PubMedGoogle Scholar
  103. 103.
    Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404PubMedGoogle Scholar
  104. 104.
    van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206PubMedGoogle Scholar
  105. 105.
    Mimitou EP, Symington LS (2009) Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci 34:264–272PubMedGoogle Scholar
  106. 106.
    Lee GS, Neiditch MB, Salus SS, Roth DB (2004) RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 117:171–184PubMedGoogle Scholar
  107. 107.
    McConnell Smith A, Takeuchi R, Pellenz S, Davis L, Maizels N, Monnat RJ Jr, Stoddard BL (2009) Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci USA 106:5099–5104PubMedGoogle Scholar
  108. 108.
    Fortini P, Dogliotti E (2007) Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst) 6:398–409. doi: S1568-7864(06)00317-X[pii]10.1016/j.dnarep.2006.10.008 Google Scholar
  109. 109.
    Dianov GL, Parsons JL (2007) Co-ordination of DNA single strand break repair. DNA Repair (Amst) 6:454–460. doi: S1568-7864(06)00318-1[pii]10.1016/j.dnarep.2006.10.009 Google Scholar
  110. 110.
    Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9:619–631. doi: nrg2380[pii]10.1038/nrg2380 PubMedGoogle Scholar
  111. 111.
    Johnson RD, Jasin M (2001) Double-strand-break-induced homologous recombination in mammalian cells. Biochem Soc Trans 29:196–201PubMedGoogle Scholar
  112. 112.
    Rimseliene R, Maneliene Z, Lubys A, Janulaitis A (2003) Engineering of restriction endonucleases: using methylation activity of the bifunctional endonuclease Eco57I to select the mutant with a novel sequence specificity. J Mol Biol 327:383–391PubMedGoogle Scholar
  113. 113.
    Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M (2003) Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol 326:65–76PubMedGoogle Scholar
  114. 114.
    Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990PubMedGoogle Scholar
  115. 115.
    Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973PubMedGoogle Scholar
  116. 116.
    Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764PubMedGoogle Scholar
  117. 117.
    Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763PubMedGoogle Scholar
  118. 118.
    Alwin S, Gere MB, Guhl E, Effertz K, Barbas CF 3rd, Segal DJ, Weitzman MD, Cathomen T (2005) Custom zinc-finger nucleases for use in human cells. Mol Ther 12:610–617PubMedGoogle Scholar
  119. 119.
    Porteus MH (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13:438–446PubMedGoogle Scholar
  120. 120.
    Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705PubMedGoogle Scholar
  121. 121.
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651PubMedGoogle Scholar
  122. 122.
    Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793PubMedGoogle Scholar
  123. 123.
    Seligman LM, Stephens KM, Savage JH, Monnat RJ Jr (1997) Genetic analysis of the Chlamydomonas reinhardtii I-CreI mobile intron homing system in Escherichia coli. Genetics 147:1653–1664PubMedGoogle Scholar
  124. 124.
    Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7:49–66PubMedGoogle Scholar
  125. 125.
    Doyon JB, Pattanayak V, Meyer CB, Liu DR (2006) Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc 128:2477–2484PubMedGoogle Scholar
  126. 126.
    Chames P, Epinat JC, Guillier S, Patin A, Lacroix E, Paques F (2005) In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res 33:e178PubMedGoogle Scholar
  127. 127.
    Chica RA, Doucet N, Pelletier JN (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol 16:378–384PubMedGoogle Scholar
  128. 128.
    Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ Jr, Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441:656–659PubMedGoogle Scholar
  129. 129.
    Stary A, Sarasin A (2002) The genetics of the hereditary xeroderma pigmentosum syndrome. Biochimie 84:49–60PubMedGoogle Scholar
  130. 130.
    Cleaver JE (2005) Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 5:564–573PubMedGoogle Scholar
  131. 131.
    Aslan G, Karacal N, Gorgu M (1999) New tumor formation on split-thickness skin grafted areas in xeroderma pigmentosum. Ann Plast Surg 43:657–660PubMedGoogle Scholar
  132. 132.
    Sonmez Ergun S (2003) Resurfacing the dorsum of the hand in a patient with Xeroderma pigmentosum. Dermatol Surg 29:782–784PubMedGoogle Scholar
  133. 133.
    Asselineau D, Bernhard B, Bailly C, Darmon M (1985) Epidermal morphogenesis and induction of the 67 kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp Cell Res 159:536–539PubMedGoogle Scholar
  134. 134.
    Arnaudeau-Begard C, Brellier F, Chevallier-Lagente O, Hoeijmakers J, Bernerd F, Sarasin A, Magnaldo T (2003) Genetic correction of DNA repair-deficient/cancer-prone xeroderma pigmentosum group C keratinocytes. Hum Gene Ther 14:983–996PubMedGoogle Scholar
  135. 135.
    Smih F, Rouet P, Romanienko PJ, Jasin M (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 23:5012–5019PubMedGoogle Scholar
  136. 136.
    Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715PubMedGoogle Scholar
  137. 137.
    Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5:1021–1029Google Scholar
  138. 138.
    Pierce AJ, Hu P, Han M, Ellis N, Jasin M (2001) Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 15:3237–3242PubMedGoogle Scholar
  139. 139.
    Yanez RJ, Porter AC (2002) Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line. Nucleic Acids Res 30:740–748PubMedGoogle Scholar
  140. 140.
    Di Primio C, Galli A, Cervelli T, Zoppe M, Rainaldi G (2005) Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52. Nucleic Acids Res 33:4639–4648PubMedGoogle Scholar
  141. 141.
    Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102:12265–12269PubMedGoogle Scholar
  142. 142.
    Saberi A, Hochegger H, Szuts D, Lan L, Yasui A, Sale JE, Taniguchi Y, Murakawa Y, Zeng W, Yokomori K et al (2007) RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair. Mol Cell Biol 27:2562–2571PubMedGoogle Scholar
  143. 143.
    Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18:93–101PubMedGoogle Scholar
  144. 144.
    Donoho G, Jasin M, Berg P (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 18:4070–4078PubMedGoogle Scholar
  145. 145.
    Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445. doi: nature07845[pii]10.1038/nature07845 PubMedGoogle Scholar
  146. 146.
    Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384PubMedGoogle Scholar
  147. 147.
    Muller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB (2002) Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100:1302–1309PubMedGoogle Scholar
  148. 148.
    Cutler C, Antin JH (2001) Peripheral blood stem cells for allogeneic transplantation: a review. Stem Cells 19:108–117PubMedGoogle Scholar
  149. 149.
    Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826PubMedGoogle Scholar
  150. 150.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301PubMedGoogle Scholar
  151. 151.
    Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582PubMedGoogle Scholar
  152. 152.
    Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127:1323–1334PubMedGoogle Scholar
  153. 153.
    Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665PubMedGoogle Scholar
  154. 154.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419PubMedGoogle Scholar
  155. 155.
    Fischer A, Abina SH, Thrasher A, von Kalle C, Cavazzana-Calvo M (2004) LMO2 and gene therapy for severe combined immunodeficiency. N Engl J Med 350:2526–2527 author replyPubMedGoogle Scholar
  156. 156.
    Abbott A (2006) Questions linger about unexplained gene-therapy trial death. Nat Med 12:597PubMedGoogle Scholar
  157. 157.
    Thrasher AJ, Gaspar HB, Baum C, Modlich U, Schambach A, Candotti F, Otsu M, Sorrentino B, Scobie L, Cameron E et al (2006) Gene therapy: X-SCID transgene leukaemogenicity. Nature 443:E5–E6 discussion E6–E7Google Scholar
  158. 158.
    Lehmann K, Schmidt U (2003) Group II introns: structure and catalytic versatility of large natural ribozymes. Crit Rev Biochem Mol Biol 38:249–303PubMedGoogle Scholar
  159. 159.
    Corneo B, Moshous D, Gungor T, Wulffraat N, Philippet P, Le Deist FL, Fischer A, de Villartay JP (2001) Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome. Blood 97:2772–2776PubMedGoogle Scholar
  160. 160.
    Eastberg JH, McConnell Smith A, Zhao L, Ashworth J, Shen BW, Stoddard BL (2007) Thermodynamics of DNA target site recognition by homing endonucleases. Nucleic Acids Res 35:7209–7221. doi: gkm867[pii]10.1093/nar/gkm867 PubMedGoogle Scholar
  161. 161.
    Heath PJ, Stephens KM, Monnat RJ Jr, Stoddard BL (1997) The structure of I-Crel, a group I intron-encoded homing endonuclease. Nat Struct Biol 4:468–476PubMedGoogle Scholar
  162. 162.
    Silva GH, Dalgaard JZ, Belfort M, Van Roey P (1999) Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J Mol Biol 286:1123–1136PubMedGoogle Scholar
  163. 163.
    Edgell DR, Derbyshire V, Van Roey P, LaBonne S, Stanger MJ, Li Z, Boyd TM, Shub DA, Belfort M (2004) Intron-encoded homing endonuclease I-TevI also functions as a transcriptional autorepressor. Nat Struct Mol Biol 11:936–944PubMedGoogle Scholar
  164. 164.
    Seligman LM, Chisholm KM, Chevalier BS, Chadsey MS, Edwards ST, Savage JH, Veillet AL (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30:3870–3879PubMedGoogle Scholar
  165. 165.
    Sussman D, Chadsey M, Fauce S, Engel A, Bruett A, Monnat R Jr, Stoddard BL, Seligman LM (2004) Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 342:31–41PubMedGoogle Scholar
  166. 166.
    Rosen LE, Morrison HA, Masri S, Brown MJ, Springstubb B, Sussman D, Stoddard BL, Seligman LM (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34:4791–4800PubMedGoogle Scholar
  167. 167.
    Gruen M, Chang K, Serbanescu I, Liu DR (2002) An in vivo selection system for homing endonuclease activity. Nucleic Acids Res 30:e29PubMedGoogle Scholar
  168. 168.
    Gimble FS, Moure CM, Posey KL (2003) Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system. J Mol Biol 334:993–1008PubMedGoogle Scholar
  169. 169.
    Steuer S, Pingoud V, Pingoud A, Wende W (2004) Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity. Chembiochem 5:206–213PubMedGoogle Scholar
  170. 170.
    Silva GH, Belfort M, Wende W, Pingoud A (2006) From monomeric to homodimeric endonucleases and back: engineering novel specificity of LAGLIDADG enzymes. J Mol Biol 361:744–754PubMedGoogle Scholar
  171. 171.
    Li H, Pellenz S, Ulge U, Stoddard BL, Monnat RJ Jr (2009) Generation of single-chain LAGLIDADG homing endonucleases from native homodimeric precursor proteins. Nucleic Acids Res 37:1650–1662. doi: gkp004[pii]10.1093/nar/gkp004 PubMedGoogle Scholar
  172. 172.
    Fajardo-Sanchez E, Stricher F, Paques F, Isalan M, Serrano L (2008) Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences. Nucleic Acids Res 36:2163–2173PubMedGoogle Scholar
  173. 173.
    Smith JG, Sylvestre, Arnould S, Duclert A, Epinat J-C, Prieto J, Redondo P, Blanco F, Bravo J, Montoya G, Pâques F, Duchateau P (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids ResGoogle Scholar
  174. 174.
    Ulbrichova D, Hrdinka M, Saudek V, Martasek P (2009) Acute intermittent porphyria–impact of mutations found in the hydroxymethylbilane synthase gene on biochemical and enzymatic protein properties. Febs J 276:2106–2115PubMedGoogle Scholar
  175. 175.
    Wiederholt T, Poblete-Gutierrez P, Gardlo K, Goerz G, Bolsen K, Merk HF, Frank J (2006) Identification of mutations in the uroporphyrinogen III cosynthase gene in German patients with congenital erythropoietic porphyria. Physiol Res 55(Suppl 2):S85–S92PubMedGoogle Scholar
  176. 176.
    Romeo G, Levin EY (1969) Uroporphyrinogen 3 cosynthetase in human congenital erythropoietic porphyria. Proc Natl Acad Sci USA 63:856–863PubMedGoogle Scholar
  177. 177.
    Mendez M, Sorkin L, Rossetti MV, Astrin KH, del CBAM, Parera VE, Aizencang G, Desnick RJ (1998) Familial porphyria cutanea tarda: characterization of seven novel uroporphyrinogen decarboxylase mutations and frequency of common hemochromatosis alleles. Am J Hum Genet 63:1363–1375Google Scholar
  178. 178.
    Schmitt C, Gouya L, Malonova E, Lamoril J, Camadro JM, Flamme M, Rose C, Lyoumi S, Da Silva V, Boileau C et al (2005) Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria. Hum Mol Genet 14:3089–3098PubMedGoogle Scholar
  179. 179.
    Roberts AG, Puy H, Dailey TA, Morgan RR, Whatley SD, Dailey HA, Martasek P, Nordmann Y, Deybach JC, Elder GH (1998) Molecular characterization of homozygous variegate porphyria. Hum Mol Genet 7:1921–1925PubMedGoogle Scholar
  180. 180.
    Rufenacht UB, Gouya L, Schneider-Yin X, Puy H, Schafer BW, Aquaron R, Nordmann Y, Minder EI, Deybach JC (1998) Systematic analysis of molecular defects in the ferrochelatase gene from patients with erythropoietic protoporphyria. Am J Hum Genet 62:1341–1352PubMedGoogle Scholar
  181. 181.
    Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ (1989) A review of the molecular genetics of the human alpha-globin gene cluster. Blood 73:1081–1104PubMedGoogle Scholar
  182. 182.
    Weiss I, Cash FE, Coleman MB, Pressley A, Adams JG, Sanguansermsri T, Liebhaber SA, Steinberg MH (1990) Molecular basis for alpha-thalassemia associated with the structural mutant hemoglobin Suan-Dok (alpha 2 109leu—arg). Blood 76:2630–2636PubMedGoogle Scholar
  183. 183.
    Tassiopoulos S, Deftereos S, Konstantopoulos K, Farmakis D, Tsironi M, Kyriakidis M, Aessopos A (2005) Does heterozygous beta-thalassemia confer a protection against coronary artery disease? Ann NY Acad Sci 1054:467–470PubMedGoogle Scholar
  184. 184.
    Blouin MJ, Beauchemin H, Wright A, De Paepe M, Sorette M, Bleau AM, Nakamoto B, Ou CN, Stamatoyannopoulos G, Trudel M (2000) Genetic correction of sickle cell disease: insights using transgenic mouse models. Nat Med 6:177–182PubMedGoogle Scholar
  185. 185.
    Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, Kastner DL (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604PubMedGoogle Scholar
  186. 186.
    Tzall S, Ellenbogen A, Eng F, Hirschhorn R (1989) Identification and characterization of nine RFLPs at the adenosine deaminase (ADA) locus. Am J Hum Genet 44:864–875PubMedGoogle Scholar
  187. 187.
    Hirschhorn R, Vawter GF, Kirkpatrick JA Jr, Rosen FS (1979) Adenosine deaminase deficiency: frequency and comparative pathology in autosomally recessive severe combined immunodeficiency. Clin Immunol Immunopathol 14:107–120PubMedGoogle Scholar
  188. 188.
    Speckmann C, Pannicke U, Wiech E, Schwarz K, Fisch P, Friedrich W, Niehues T, Gilmour K, Buiting K, Schlesier M et al (2008) Clinical and immunologic consequences of a somatic reversion in a patient with X-linked severe combined immunodeficiency. Blood 112:4090–4097PubMedGoogle Scholar
  189. 189.
    Santagata S, Gomez CA, Sobacchi C, Bozzi F, Abinun M, Pasic S, Cortes P, Vezzoni P, Villa A (2000) N-terminal RAG1 frameshift mutations in Omenn’s syndrome: internal methionine usage leads to partial V(D)J recombination activity and reveals a fundamental role in vivo for the N-terminal domains. Proc Natl Acad Sci USA 97:14572–14577PubMedGoogle Scholar
  190. 190.
    Tabori U, Mark Z, Amariglio N, Etzioni A, Golan H, Biloray B, Toren A, Rechavi G, Dalal I (2004) Detection of RAG mutations and prenatal diagnosis in families presenting with either T-B- severe combined immunodeficiency or Omenn’s syndrome. Clin Genet 65:322–326PubMedGoogle Scholar
  191. 191.
    Notarangelo LD, Mella P, Jones A, de Saint Basile G, Savoldi G, Cranston T, Vihinen M, Schumacher RF (2001) Mutations in severe combined immune deficiency (SCID) due to JAK3 deficiency. Hum Mutat 18:255–263PubMedGoogle Scholar
  192. 192.
    Saglio G, Storlazzi CT, Giugliano E, Surace C, Anelli L, Rege-Cambrin G, Zagaria A, Jimenez Velasco A, Heiniger A, Scaravaglio P et al (2002) A 76-kb duplicon maps close to the BCR gene on chromosome 22 and the ABL gene on chromosome 9: possible involvement in the genesis of the Philadelphia chromosome translocation. Proc Natl Acad Sci USA 99:9882–9887PubMedGoogle Scholar
  193. 193.
    Rae J, Newburger PE, Dinauer MC, Noack D, Hopkins PJ, Kuruto R, Curnutte JT (1998) X-Linked chronic granulomatous disease: mutations in the CYBB gene encoding the gp91-phox component of respiratory-burst oxidase. Am J Hum Genet 62:1320–1331PubMedGoogle Scholar
  194. 194.
    Li A, Prasad A, Mincemoyer R, Satorius C, Epstein N, Finkel T, Quyyumi AA (1999) Relationship of the C242T p22phox gene polymorphism to angiographic coronary artery disease and endothelial function. Am J Med Genet 86:57–61PubMedGoogle Scholar
  195. 195.
    Roos D, de Boer M, Koker MY, Dekker J, Singh-Gupta V, Ahlin A, Palmblad J, Sanal O, Kurenko-Deptuch M, Jolles S et al (2006) Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the p47phox component of the phagocyte NADPH oxidase. Hum Mutat 27:1218–1229PubMedGoogle Scholar
  196. 196.
    Nunoi H, Iwata M, Tatsuzawa S, Onoe Y, Shimizu S, Kanegasaki S, Matsuda I (1995) AG dinucleotide insertion in a patient with chronic granulomatous disease lacking cytosolic 67-kD protein. Blood 86:329–333PubMedGoogle Scholar
  197. 197.
    Santacroce R, Acquila M, Belvini D, Castaldo G, Garagiola I, Giacomelli SH, Lombardi AM, Minuti B, Riccardi F, Salviato R et al (2008) Identification of 217 unreported mutations in the F8 gene in a group of 1, 410 unselected Italian patients with hemophilia A. J Hum Genet 53:275–284PubMedGoogle Scholar
  198. 198.
    Ljung R, Petrini P, Tengborn L, Sjorin E (2001) Haemophilia B mutations in Sweden: a population-based study of mutational heterogeneity. Br J Haematol 113:81–86PubMedGoogle Scholar
  199. 199.
    Rogatko A, Auerbach AD (1988) Segregation analysis with uncertain ascertainment: application to Fanconi anemia. Am J Hum Genet 42:889–897PubMedGoogle Scholar
  200. 200.
    Hillmen P, Lewis SM, Bessler M, Luzzatto L, Dacie JV (1995) Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 333:1253–1258PubMedGoogle Scholar
  201. 201.
    Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche CM, Simoneaux DK et al (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259:990–993PubMedGoogle Scholar
  202. 202.
    Stolarski B, Pronicka E, Korniszewski L, Pollak A, Kostrzewa G, Rowinska E, Wlodarski P, Skorka A, Gremida M, Krajewski P et al (2006) Molecular background of polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome in a Polish population: novel AIRE mutations and an estimate of disease prevalence. Clin Genet 70:348–354PubMedGoogle Scholar
  203. 203.
    Ahonen P (1985) Autoimmune polyendocrinopathy–candidosis–ectodermal dystrophy (APECED): autosomal recessive inheritance. Clin Genet 27:535–542PubMedCrossRefGoogle Scholar
  204. 204.
    Robertson KD, Jones PA (1999) Tissue-specific alternative splicing in the human INK4a/ARF cell cycle regulatory locus. Oncogene 18:3810–3820PubMedGoogle Scholar
  205. 205.
    Kannengiesser C, Dalle S, Leccia MT, Avril MF, Bonadona V, Chompret A, Lasset C, Leroux D, Thomas L, Lesueur F et al (2007) New founder germline mutations of CDKN2A in melanoma-prone families and multiple primary melanoma development in a patient receiving levodopa treatment. Genes Chromosomes Cancer 46:751–760PubMedGoogle Scholar
  206. 206.
    Lynch HT, Fusaro RM, Johnson JA (1984) Xeroderma pigmentosum. Complementation group C and malignant melanoma. Arch Dermatol 120:175–179PubMedGoogle Scholar
  207. 207.
    Cleaver JE, Thompson LH, Richardson AS, States JC (1999) A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat 14:9–22PubMedGoogle Scholar
  208. 208.
    Nichols AF, Ong P, Linn S (1996) Mutations specific to the xeroderma pigmentosum group E Ddb- phenotype. J Biol Chem 271:24317–24320PubMedGoogle Scholar
  209. 209.
    Defesche JC, Schuurman EJ, Klaaijsen LN, Khoo KL, Wiegman A, Stalenhoef AF (2008) Silent exonic mutations in the low-density lipoprotein receptor gene that cause familial hypercholesterolemia by affecting mRNA splicing. Clin Genet 73:573–578PubMedGoogle Scholar
  210. 210.
    Yamaguchi S, Brailey LL, Morizono H, Bale AE, Tuchman M (2006) Mutations and polymorphisms in the human ornithine transcarbamylase (OTC) gene. Hum Mutat 27:626–632PubMedGoogle Scholar
  211. 211.
    Nyhan WL, Wong DF (1996) New approaches to understanding Lesch-Nyhan disease. N Engl J Med 334:1602–1604PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Macromolecular Crystallography GroupStructural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO)MadridSpain
  2. 2.Ikerbasque Professor Structural Biology UnitCIC bioGUNEDerioSpain

Personalised recommendations