Cellular and Molecular Life Sciences

, Volume 67, Issue 2, pp 321–333 | Cite as

The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells

  • Jiong-Yu Hu
  • Zhi-Gang Chu
  • Jian Han
  • Yong-ming Dang
  • Hong Yan
  • Qiong Zhang
  • Guang-ping Liang
  • Yue-Sheng Huang
Research Article


In both cardiomyocytes and HeLa cells, hypoxia (1% O2) quickly leads to microtubule disruption, but little is known about how microtubule dynamics change during the early stages of hypoxia. We demonstrate that microtubule associated protein 4 (MAP4) phosphorylation increases while oncoprotein 18/stathmin (Op18) phosphorylation decreases after hypoxia, but their protein levels do not change. p38/MAPK activity increases quickly after hypoxia concomitant with MAP4 phosphorylation, and the activated p38/MAPK signaling leads to MAP4 phosphorylation and to Op18 dephosphorylation, both of which induce microtubule disruption. We confirmed the interaction between phospho-p38 and MAP4 using immunoprecipitation and found that SB203580, a p38/MAPK inhibitor, increases and MKK6(Glu) overexpression decreases hypoxic cell viability. Our results demonstrate that hypoxia induces microtubule depolymerization and decreased cell viability via the activation of the p38/MAPK signaling pathway and changes the phosphorylation levels of its downstream effectors, MAP4 and Op18.


Cardiomyocyte HeLa cells Hypoxia Mitogen-activated protein kinase Microtubule associated protein Oncoprotein 18 Phosphorylation Cell culture 


  1. 1.
    Rogers SL, Gelfand VI (2000) Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 12:57–62CrossRefPubMedGoogle Scholar
  2. 2.
    Webster DR (1997) Regulation of post-translationally modified microtubule populations during neonatal cardiac development. J Mol Cell Cardiol 29:1747–1761CrossRefPubMedGoogle Scholar
  3. 3.
    Gomez AM, Kerfant BG, Vassort G (2000) Microtubule disruption modulates Ca2+ signaling in rat cardiac myocytes. Circ Res 86:30–36PubMedGoogle Scholar
  4. 4.
    Rappaport L, Samuel JL (1998) Microtubules in cardiac myocytes. Int Rev Cytol 113:101–143CrossRefGoogle Scholar
  5. 5.
    Webster DR, Patrick DL (2000) Beating rate of isolated neonatal cardiomyocytes is regulated by stable microtubule subset. Am J Physiol Heart Circ 278:H1653–1661Google Scholar
  6. 6.
    Yonemochi H, Saikawa T, Takakura T, Ito S, Takaki R (1990) Effects of calcium antagonists on beta-receptors of cultured cardiac myocytes isolated from neonatal rat ventricle. Circulation 81:1401–1408PubMedGoogle Scholar
  7. 7.
    Webster DR (2002) Microtubules in cardiac toxicity and disease. Cardiovasc Toxicol 2:75–89CrossRefPubMedGoogle Scholar
  8. 8.
    Horwitz LD, Fennessey PV, Shikes RH, Kong Y (1994) Marked reduction in myocardial infarct size due to prolonged infusion of an antioxidant during reperfusion. Circulation 89:1792–1801PubMedGoogle Scholar
  9. 9.
    Hung J, Whitford EG, Parsons RW, Hillman DR (1990) Association of sleep apnoea with myocardial infarction in men. Lancet 336:261–264CrossRefPubMedGoogle Scholar
  10. 10.
    Kyriakides ZS, Kremastinos DT, Michelakakis NA, Matsakas EP, Demovelis T, Toutouzas PK (1991) Coronary collateral circulation in coronary artery disease and systemic hypertension. Am J Cardiol 67:687–690CrossRefPubMedGoogle Scholar
  11. 11.
    Hori M, Sato H, Kitakaze M, Iwai K, Takeda H, Inoue M, Kamada T (1994) Beta-adrenergic stimulation disassembles microtubules in neonatal rat cultured cardiomyocytes through intracellular Ca2+ overload. Circ Res 75:324–334PubMedGoogle Scholar
  12. 12.
    Hein S, Scheffold T, Schaper J (1995) Ischaemia induces early changes to cytoskeletal and contractile protein in diseased human myocardium. J Thorac Cardiov Sur 110:89–98CrossRefGoogle Scholar
  13. 13.
    Vandroux D, Schaeffer C, Tissier C, Lalande A, Bés S, Rochette L, Athias P (2004) Microtubule alteration is an early cellular reaction to the metabolic challenge in ischemic cardiomyocytes. Mol Cell Biochem 258:99–108CrossRefPubMedGoogle Scholar
  14. 14.
    Iwai K, Hori M, Kitabatake A, Kurihara H, Uchida K, Inoue M, Kamada T (1990) Disruption of microtubules as an early sign of irreversible ischemic injury. Immunohistochemical study of in situ canine hearts. Circ Res 67:694–706PubMedGoogle Scholar
  15. 15.
    Skobel E, Kammermeier H (1997) Relation between enzyme release and irreversible cell injury of the heart under the influence of the cytoskeletal modulating agents. Biochim Biophys Acta 1362:128–134PubMedGoogle Scholar
  16. 16.
    Sharma A, Singh M (2000) Possible mechanism of cardioprotective effect of angiotensin preconditioning in isolated rat heart. Eur J Pharmacol 406:85–92CrossRefPubMedGoogle Scholar
  17. 17.
    Sharma A, Singh M (2000) Possible mechanism of cardioprotective effect of ischaemic preconditioning in isolated rat heart. Pharmacol Res 41:635–640CrossRefPubMedGoogle Scholar
  18. 18.
    Sang OY, Sejeong S, Arthur MM (2005) Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the α6β4 integrin. Cancer Res 7:2761–2769Google Scholar
  19. 19.
    Cassimeris L (1999) Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr Opin Cell Biol 11:134–141CrossRefPubMedGoogle Scholar
  20. 20.
    Walczak CE (2000) Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol 12:52–56CrossRefPubMedGoogle Scholar
  21. 21.
    Drewes G, Lichtenberg KB, Doring F, Mandelkow EM, Biernat J, Goris J, Doree M, Mandelkow E (1992) Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 11:2131–2138PubMedGoogle Scholar
  22. 22.
    Ookata K, Hisanaga S, Sugita M, Okuyama A, Murofushi H, Kitazawa H, Chari S, Bulinski JC, Kishimoto T (1997) MAP4 is the in vivo substrate for CDC2 kinase in Hela cells: identification of an M-phase specific and a cell cycle-independent phosphorylation site in MAP4. Biochemistry 36:15873–15883CrossRefPubMedGoogle Scholar
  23. 23.
    Faruki S, Karsenti E (1994) Purification of microtubule proteins from Xenopus egg extracts: identification of a 230 K MAP4-like protein. Cell Motil Cytoskeleton 28:108–118CrossRefPubMedGoogle Scholar
  24. 24.
    Sobel A (1991) Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci 16:301–305CrossRefPubMedGoogle Scholar
  25. 25.
    Belmont LD, Mitchison TJ (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84:623–631CrossRefPubMedGoogle Scholar
  26. 26.
    Andersen SSL, Ashford AJ, Tournebize R, Gavet O, Sobel A, Hyman AA, Karsenti E (1997) Mitotic chromatin regulates phosphorylation of stathmin/Op18. Nature 389:640–643CrossRefPubMedGoogle Scholar
  27. 27.
    Marklund U, Brattsand G, Osterman O, Ohlsson PI, Gullberg M (1993) Multiple signal transduction pathways induce phosphorylation of serines 16, 25, and 38 of oncoprotein 18 in T lymphocytes. J Biol Chem 268:25671–25680PubMedGoogle Scholar
  28. 28.
    Antonson B, Lutjens R, Dipaolo G, Kassel D, Allet B, Bernard A, Catsicas S, Grenningloh G (1997) Purification, characterization and in vitro phosphorylation of the neuron-specific membrane-associated protein SCG10. Protein Expr Purif 9:363–371CrossRefGoogle Scholar
  29. 29.
    Melander GH, Larsson N, Marklund Y, Gullberg M (1998) Regulation of microtubule dynamics by extracellular signals: cAMP-dependent protein kinase switches off the activity of oncoprotein 18 in intact cells. J Cell Biol 140:131–141CrossRefGoogle Scholar
  30. 30.
    Andersen SS, Wittmann T (2002) Toward reconstitution of in vivo microtubule dynamics in vitro. Bioessays 24:305–307CrossRefPubMedGoogle Scholar
  31. 31.
    Yoshinori S, Naoyuki T, Kazuyuki T, Takashi K, Yoshio Y (1997) Hypoxia and hypoxia/reoxygenation activate p65PAK, p38mitogen-activated protein kinase (MAPK), and stress-activated protein kinase (SAPK) in cultured rat cardiac myocyte. Biochem Biophys Res Commun 239:840–844CrossRefGoogle Scholar
  32. 32.
    Florian B, Philipp S, Stephan G, Oliver H, Michael G, Ulrich K, Fleck E, Graf K (2002) Hypoxia activates β1-integrin via ERK1/2 and p38 MAP kinase in human vascular smooth muscle cells. Biochem Biophys Res Commun 296:890–896CrossRefGoogle Scholar
  33. 33.
    Hoshi M, Ohta K, Gotoh Y, Mori A, Murofushi H, Sakai H, Nishida E (1992) Mitogen-activated-protein-kinase-catalyzed phosphorylation of microtubule-associated proteins, microtubule-associated protein 2 and microtubule-associated protein 4, induces an alteration in their function. Eur J Biochem 203:43–52CrossRefPubMedGoogle Scholar
  34. 34.
    Birukova AA, Birukov KG, Gorshkov B, Liu F, Garcia JG, Verin AD (2005) MAP kinase in lung endothelial permeability induced by microtubule disassembly. Am J Physiol Lung C 289:75–84CrossRefGoogle Scholar
  35. 35.
    McMillin JB, Hudson E, Buja LM (1993) Long chain acyl Co-A metabolism by mitochondrial carnitine palmitoyltransferase: a cell model for pathological studies. Methods Toxicol II:301–309Google Scholar
  36. 36.
    Seko Y, Takahashi M, Tobe K, Kadowaki T, Yazaki Y (1997) Hypoxia and hypoxia/reoxygenation activate p65(PAK), p38mitogen-activated protein kinase (MAPK), and stress-activated protein kinase (SAPK) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 239:840–844CrossRefPubMedGoogle Scholar
  37. 37.
    Joel R, Alan JW, Tamera B, Benoit D, Roger JD (1996) Mkk3- and Mkk6-regulated gene expression is mediated by the p38 mitogen-activate protein kinase signal transduction pathway. Mol Cell Bio 3:1247–1255Google Scholar
  38. 38.
    Wang Y, Krushell LA, Edelmann GM (1996) Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase. Proc Natl Acad Sci USA 93:3932–3936CrossRefPubMedGoogle Scholar
  39. 39.
    Putnam AJ, Cunningham JJ, Dennis RG, Linderman JJ, Mooney DJ (1998) Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. J Cell Sci 111:3379–3387PubMedGoogle Scholar
  40. 40.
    Takeuchi A, Mishina Y, Miyaishi O, Kojima E, Hasegawa T, Isobe K (2003) Heterozygosity with respect to zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat Genet 33:172–176CrossRefPubMedGoogle Scholar
  41. 41.
    Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158:227–233CrossRefPubMedGoogle Scholar
  42. 42.
    Brito DA, Rieder CL (2009) The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. Cell Motil Cytoskeleton 66:437–447CrossRefPubMedGoogle Scholar
  43. 43.
    Wan X, O’Wuinn RP, Pierce HL, Joglekar AP, Gall WE, Deluca JG, Carroll CW, Liu ST, Yen TJ, McEwen BF, Stukenberg PT, Desai A, Salmon ED (2009) Protein architecture of the human kinetochore microtubule attachment site. Cell 137:672–684CrossRefPubMedGoogle Scholar
  44. 44.
    Sato H, Nagai T, Kuppuswamy D, Narishige T, Koide M, Menick DR, Cooper G (1997) Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol 138:963–973CrossRefGoogle Scholar
  45. 45.
    Mangan ME, Olmsted JB (1996) A muscle-specific variant of microtubule-associated protein 4 (MAP4) is required in myogenesis. Development 122:771–781PubMedGoogle Scholar
  46. 46.
    Hidefumi K, Junko I, Atsuko U, Kazu HF, Tomohiko JI, Hirokazu H, Ookata K, Murofushi H, Bulinski JC, Kishimoto T, Hisanaga S (2000) Ser787 in the proline-rich region of human MAP4 is a critical phosphorylation site that reduces its activity to promote tubulin polymerization. Cell Struct Funct 25:33–39CrossRefGoogle Scholar
  47. 47.
    Larsson N, Marklund U, Melander GH, Brattsand G, Gullberg M (1997) Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol 17:5530–5539PubMedGoogle Scholar
  48. 48.
    Escuin D, Kline ER, Giannakakou P (2005) Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1α accumulation and activity by disrupting microtubule function Cancer Res 65:9021–9028Google Scholar
  49. 49.
    Yoshie M, Miyajima E, Satoru K, Tamura K (2009) Stathmin, a microtubule regulatory protein, is associated with hypoxia-inducible factor-1α levels in human endometrial and endothelial cells. Endocrinology 150:2413–2418CrossRefPubMedGoogle Scholar
  50. 50.
    Tsutsui H, Ishihara K, Cooper G (1993) Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 260:682–687CrossRefPubMedGoogle Scholar
  51. 51.
    Howarth FC, Quereshi MA, White E, Calaghan SC (2002) Effect of streptozotocin-induced diabetes on the cardiac microtubular cytoskeleton. Pflug Arch Eur J Physiol 444:432–437CrossRefGoogle Scholar
  52. 52.
    Belmadani S, Pous C, Ventura CR, Fischmeister R, Mery PF (2002) Post-translational modifications of cardiac tubulin during chronic heart failure in the rat. Mol Cell Biochem 237:1141–1149CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Jiong-Yu Hu
    • 1
  • Zhi-Gang Chu
    • 1
  • Jian Han
    • 2
  • Yong-ming Dang
    • 1
  • Hong Yan
    • 1
  • Qiong Zhang
    • 1
  • Guang-ping Liang
    • 1
  • Yue-Sheng Huang
    • 1
  1. 1.State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest HospitalThe Third Military Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of Gynecology and Obstetrics, Daping HospitalThe Third Military Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations