Cellular and Molecular Life Sciences

, Volume 67, Issue 3, pp 369–385 | Cite as

Laccases: a never-ending story

  • Paola GiardinaEmail author
  • Vincenza Faraco
  • Cinzia Pezzella
  • Alessandra Piscitelli
  • Sophie Vanhulle
  • Giovanni Sannia


Laccases (benzenediol:oxygen oxidoreductases, EC are blue multicopper oxidases that catalyze the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. In fungi, laccases carry out a variety of physiological roles during their life cycle. These enzymes are being increasingly evaluated for a variety of biotechnological applications due to their broad substrate range. In this review, the most recent studies on laccase structural features and catalytic mechanisms along with analyses of their expression are reported and examined with the aim of contributing to the discussion on their structure–function relationships. Attention has also been paid to the properties of enzymes endowed with unique characteristics and to fungal laccase multigene families and their organization.


Multicopper oxidases Laccase structures Unusual laccases Laccase gene family Laccase regulation 



This work is supported by grants from the Ministero dell’Università e della Ricerca Scientifica (Progetti di Rilevante Interesse Nazionale, PRIN) and from COST Action FP0602 “Biotechnology for lignocellulose biorefineries” (BIOBIO).


  1. 1.
    Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605PubMedCrossRefGoogle Scholar
  2. 2.
    Messerschmidt A (1997) Multi-copper oxidases. World Scientific, SingaporeCrossRefGoogle Scholar
  3. 3.
    Yoshida H (1883) Chemistry of lacquer (urushi). Part I. J Chem Soc 43:472–486Google Scholar
  4. 4.
    Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26CrossRefGoogle Scholar
  5. 5.
    Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3:1–26CrossRefGoogle Scholar
  6. 6.
    Heinzkill M, Messner K (1997) The ligninolytic system of fungi. In: Anke T (ed) Fungal biotechnology. Chapman & Hall, Weinheim, pp 213–226Google Scholar
  7. 7.
    Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674PubMedCrossRefGoogle Scholar
  8. 8.
    Sato Y, Bao W, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res 114:147–155CrossRefGoogle Scholar
  9. 9.
    Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832CrossRefGoogle Scholar
  10. 10.
    Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771PubMedCrossRefGoogle Scholar
  11. 11.
    Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425PubMedCrossRefGoogle Scholar
  12. 12.
    Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34:29–41PubMedCrossRefGoogle Scholar
  13. 13.
    Parkinson NM, Conyers CM, Keen JN, MacNicoll AD, Smith I, Weaver RJ (2003) cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp Biochem Physiol C Toxicol Pharmacol 134:513–520PubMedCrossRefGoogle Scholar
  14. 14.
    Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeev SD (1994) Laccase: properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280CrossRefGoogle Scholar
  15. 15.
    Sakurai T (1992) Anaerobic reactions of Rhus vernicifera laccase and its type-2 copper-depleted derivatives with hexacyanoferrate(II). Biochem J 284:681–685PubMedGoogle Scholar
  16. 16.
    Hofer C, Schlosser D (1999) Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase. FEBS Lett 451:186–190PubMedCrossRefGoogle Scholar
  17. 17.
    Schlosser D, Hofer C (2002) Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol 68:3514–3521PubMedCrossRefGoogle Scholar
  18. 18.
    De Souza CGM, Peralta RM (2003) Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. J Basic Microbiol 43:278–286CrossRefGoogle Scholar
  19. 19.
    Shleev SV, Morozova O, Nikitina O, Gorshina ES, Rusinova T, Serezhenkov VA, Burbaev DS, Gazaryan IG, Yaropolov AI (2004) Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie 86:693–703PubMedCrossRefGoogle Scholar
  20. 20.
    Kumar SVS, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394PubMedCrossRefGoogle Scholar
  21. 21.
    Larrondo LF, Salas L, Melo F, Vicuna R, Cullen D (2003) A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl Environ Microbiol 69:6257–6263PubMedCrossRefGoogle Scholar
  22. 22.
    Ducros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5:310–316PubMedCrossRefGoogle Scholar
  23. 23.
    Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669PubMedCrossRefGoogle Scholar
  24. 24.
    Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333PubMedCrossRefGoogle Scholar
  25. 25.
    Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531PubMedCrossRefGoogle Scholar
  26. 26.
    Ferraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol 7:60–72PubMedCrossRefGoogle Scholar
  27. 27.
    Matera I, Gullotto A, Tilli S, Ferraroni M, Scozzafava A, Briganti F (2008) Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorg Chim Acta 361:4129–4137CrossRefGoogle Scholar
  28. 28.
    Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605PubMedGoogle Scholar
  29. 29.
    Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J (2008) A near atomic resolution structure of a Melanocarpus albomyces laccase. J Struc Biol 162:29–39CrossRefGoogle Scholar
  30. 30.
    Murphy MEP, Lindley PF, Adman ET (1997) Structural comparison of cupredoxin domains: domain recycling to construct proteins with novel functions. Protein Sci 6:761–770PubMedCrossRefGoogle Scholar
  31. 31.
    Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazzi Agrò A (1992) Refined crystal structure of ascorbate oxidase at 1.9 Å resolution. J Mol Biol 224:179–205PubMedCrossRefGoogle Scholar
  32. 32.
    Zaitsev I, Zaitsev V, Card G, Moshkov K, Bax B, Ralph A, Lindley P (1996) The nature of the copper centres in human ceruloplasmin. J Biol Inorg Chem 1:15–23CrossRefGoogle Scholar
  33. 33.
    Lee SK, George SD, Antholine WE, Hedman B, Hodgson KO, Solomon EI (2002) Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J Am Chem Soc 124:6180–6193PubMedCrossRefGoogle Scholar
  34. 34.
    Solomon EI, Augustine AJ, Yoon J (2008) O2 reduction to H2O by the multicopper oxidases. Dalton Trans 30:3921–3932PubMedCrossRefGoogle Scholar
  35. 35.
    Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322Google Scholar
  36. 36.
    Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and birilubin oxidase that exhibit significant differences in redox potential, substrate specificity and stability. Biochim Biophys Acta 1292:303–311PubMedGoogle Scholar
  37. 37.
    Xu F, Palmer AE, Yaver DS, Berka RM, Gambetta GA, Brown SH, Solomon EI (1999) Targeted mutations in a Trametes villosa laccase, axial perturbations of the T1 copper. J Biol Chem 274:12372–12375PubMedCrossRefGoogle Scholar
  38. 38.
    Klonowska A, Gaudin C, Fournel A, Asso M, Le Petit J, Giorgi M, Tron T (2002) Characterization of a low redox potential laccase from the basidiomycete C30. Eur J Biochem 269:6119–6125PubMedCrossRefGoogle Scholar
  39. 39.
    Gray HB, Malmstrom BG, Williams RJ (2000) Copper coordination in blue proteins. J Biol Inorg Chem 5:551–559PubMedCrossRefGoogle Scholar
  40. 40.
    Durao P, Bento I, Fernandes AT, Melo EP, Lindley PF, Martins LO (2006) Perturbation of the T1 copper site in CotA-laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. J Biol Inorg Chem 11:514–526PubMedCrossRefGoogle Scholar
  41. 41.
    Enguita FJ, Marcal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. J Biol Chem 279:23472–23476PubMedCrossRefGoogle Scholar
  42. 42.
    Xu F (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272:924–928PubMedGoogle Scholar
  43. 43.
    Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334:63–70PubMedGoogle Scholar
  44. 44.
    Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C (2006) Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel 19:77–84PubMedCrossRefGoogle Scholar
  45. 45.
    Bonomo RP, Boudet AM, Cozzolino R, Rizzarelli E, Santoro AM, Sterjiades R, Zappala R (1998) A comparative study of two isoforms of laccase secreted by the “white-rot” fungus Rigidoporus lignosus, exhibiting significant structural and functional differences. J Inorg Biochem 71:205–211PubMedCrossRefGoogle Scholar
  46. 46.
    Tadesse MA, D’Annibale A, Galli C, Gentilia P, Sergia F (2008) An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Org Biomol Chem 6:868–878PubMedCrossRefGoogle Scholar
  47. 47.
    Torres J, Svistunenko D, Karlsson B, Cooper CE, Wilson MT (2002) Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide intermediate. J Am Chem Soc 124:963–967PubMedCrossRefGoogle Scholar
  48. 48.
    Yoon J, Solomon EI (2007) Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the O–O bond. J Am Chem Soc 129:13127–13136PubMedCrossRefGoogle Scholar
  49. 49.
    Yoon J, Liboiron BD, Sarangi R, Hodgson KO, Hedman B, Solomon EI (2007) The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Proc Natl Acad Sci USA 104:13609–13614PubMedCrossRefGoogle Scholar
  50. 50.
    Palmer AE, Lee SK, Solomon EI (2001) Decay of the peroxide intermediate in laccase: reductive cleavage of the O–O bond. J Am Chem Soc 123:6591–6599PubMedCrossRefGoogle Scholar
  51. 51.
    Zoppellaro G, Sakurai T, Huang H (2001) A novel mixed valence form of Rhus vernicifera laccase and its reaction with dioxygen to give a peroxide intermediate bound to the trinuclear center. J Biochem 129:949–953PubMedGoogle Scholar
  52. 52.
    Augustine AJ, Quintanar L, Stoj CS, Kosman DJ, Solomon EI (2007) Spectroscopic and kinetic studies of perturbed trinuclear copper clusters: the role of protons in reductive cleavage of the O–O bond in the multicopper oxidase Fet3p. J Am Chem Soc 129:13118–13126PubMedCrossRefGoogle Scholar
  53. 53.
    Augustine AJ, Kragh ME, Sarangi R, Fujii S, Liboiron BD, Stoj CS, Kosman DJ, Hodgson KO, Hedman B, Solomon EI (2008) Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites. Biochemistry 47:2036–2045PubMedCrossRefGoogle Scholar
  54. 54.
    Quintanar L, Yoon J, Aznar CP, Palmer AE, Andersson KK, Britt RD, Solomon EI (2005) Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation. J Am Chem Soc 127:13832–13845PubMedCrossRefGoogle Scholar
  55. 55.
    Bento I, Martins LO, Lopes GG, Carrondo MA, Lindley PF (2005) Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Trans 21:3507–3513PubMedCrossRefGoogle Scholar
  56. 56.
    Kyritsis P, Messerschmidt A, Huber R, Salmon GA, Sykes AG (1993) Pulse-radiolysis studies on the oxidized form of the multicopper enzyme ascorbate oxidase—evidence for 2 intramolecular electron-transfer steps. Dalton Trans 5:731–735Google Scholar
  57. 57.
    Fernandez Larrea J, Stahl U (1996) Isolation and characterization of a laccase gene from Podospora anserina. Mol Gen Genet 252:539–551PubMedGoogle Scholar
  58. 58.
    Germann UA, Muller G, Hunziker PE, Lerch K (1988) Characterization of 2 allelic forms of Neurospora crassa laccase amino-terminal and carboxyl-terminal processing of a precursor. J Biol Chem 263:885–896PubMedGoogle Scholar
  59. 59.
    Kiiskinen LL, Saloheimo M (2004) Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the ascomycete Melanocarpus albomyces. Appl Environ Microb 70:137–144CrossRefGoogle Scholar
  60. 60.
    Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microb 69:987–995CrossRefGoogle Scholar
  61. 61.
    Zumárraga M, Camarero S, Shleev S, Martínez-Arias A, Ballesteros A, Plou FJ, Alcalde M (2008) Altering the laccase functionality by in vivo assembly of mutant libraries with different mutational spectra. Proteins 71:250–260PubMedCrossRefGoogle Scholar
  62. 62.
    Gelo-Pujic M, Kim HH, Butlin NG, Palmore GT (1999) Electrochemical studies of a truncated laccase produced in Pichia pastoris. Appl Environ Microbiol 65:5515–5521PubMedGoogle Scholar
  63. 63.
    Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G, Sannia G (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J 341:655–663PubMedCrossRefGoogle Scholar
  64. 64.
    Piscitelli A, Giardina P, Mazzoni C, Sannia G (2005) Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:428–439PubMedCrossRefGoogle Scholar
  65. 65.
    Festa G, Autore F, Fraternali F, Giardina P, Sannia G (2007) Development of new laccases by directed evolution: functional and computational analyses. Proteins 72:25–34CrossRefGoogle Scholar
  66. 66.
    Kawai S, Umezawa T, Higuchi T (1988) Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262:99–110PubMedCrossRefGoogle Scholar
  67. 67.
    Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochem 35:7608–7614CrossRefGoogle Scholar
  68. 68.
    Garzillo AM, Colao MC, Caruso C, Caporale C, Celletti D, Buonocore V (1998) Laccase from the white-rot fungus Trametes trogii. Appl Microbiol Biotechnol 49:545–551PubMedCrossRefGoogle Scholar
  69. 69.
    Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157PubMedCrossRefGoogle Scholar
  70. 70.
    Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99CrossRefGoogle Scholar
  71. 71.
    Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362PubMedCrossRefGoogle Scholar
  72. 72.
    Minussi R, Pastore GM, Duran N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216CrossRefGoogle Scholar
  73. 73.
    Amir L, Tam TK, Pita M, Meijler MM, Alfonta L, Katz E (2009) Biofuel cell controlled by enzyme logic systems. J Am Chem Soc 131:826–832PubMedCrossRefGoogle Scholar
  74. 74.
    Pereira L, Coelho AV, Viegas CA, Santos MM, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139:68–77PubMedCrossRefGoogle Scholar
  75. 75.
    Couto SR (2007) Decolouration of industrial azo dyes by crude laccase from Trametes hirsuta. J Hazard Mater 148:768–770PubMedCrossRefGoogle Scholar
  76. 76.
    Palmieri G, Cennamo G, Sannia G (2005) Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb Technol 36:17–24CrossRefGoogle Scholar
  77. 77.
    Palmieri G, Giardina P, Sannia G (2005) Laccase-mediated Remazol Brilliant Blue R decolorization in a fixed-bed bioreactor. Biotechnol Prog 21:1436–1441PubMedCrossRefGoogle Scholar
  78. 78.
    Vanhulle S, Trovaslet M, Enaud E, Lucas M, Sonveaux M, Decock C, Onderwater R, Schneider YJ, Corbisier AM (2008) Cytotoxicity and genotoxicity evolution during decolourisation of dyes by white rot fungi. World J Microbiol Biotechnol 24:337–344CrossRefGoogle Scholar
  79. 79.
    Vanhulle S, Trovaslet M, Enaud E, Lucas M, Taghavi S, Van Der Lelie D, Van Aken B, Foret M, Onderwater R, Wesenberg D, Agathos S, Schneider YJ, Corbisier AM (2008) Decolourisation, cytotoxicity and genotoxicity reduction during a combined ozonation/fungal treatment of dye contaminated wastewater. Environ Sci Technol 42:584–589PubMedCrossRefGoogle Scholar
  80. 80.
    Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact 7:32–49PubMedCrossRefGoogle Scholar
  81. 81.
    Aktaş N, Tanyolaç A (2003) Reaction conditions for laccase catalyzed polymerization of catechol. Bioresour Technol 87:209–214PubMedCrossRefGoogle Scholar
  82. 82.
    Ceylan H, Kubilay S, Aktas N, Sahiner N (2008) An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM). Bioresour Technol 99:2025–2031PubMedCrossRefGoogle Scholar
  83. 83.
    Ikeda R, Tanaka H, Oyabu H, Uyama H, Kobayashi S (2001) Preparation of artificial urushi via an environmentally benign process. Bull Chem Soc Jpn 74:1067–1073CrossRefGoogle Scholar
  84. 84.
    Bruyneel F, Enaud E, Billottet L, Vanhulle S, Marchand-Brynaert J (2008) Regioselective synthesis of 3-hydroxyorthanilic acid and its biotransformation with laccase into a novel phenoxazinone dye. Eur J Org Chem 1:72–79CrossRefGoogle Scholar
  85. 85.
    Ossiadacz J, Al-Adhami AJH, Bajraszewska D, Fischer P, Peczynska-Czoch W (1999) On the use of Trametes versicolor laccase for the conversion of 4-methyl-3-hydroxyanthranilic acid to actinocin chromophore. J Biotechnol 72:141–149CrossRefGoogle Scholar
  86. 86.
    Nicotra S, Cramarossa MR, Mucci A, Pagnoni UM, Riva S, Forti L (2004) Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahedron 60:595–600CrossRefGoogle Scholar
  87. 87.
    Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632PubMedGoogle Scholar
  88. 88.
    Bourbonnais R, Paice MG (1990) Oxidation of nonphenolic substrates—an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102PubMedCrossRefGoogle Scholar
  89. 89.
    Barreca AM, Fabbrini M, Galli C, Gentili P, Ljunggren S (2003) Laccase-mediated oxidation of lignin model for improved delignification procedures. J Mol Cat B Enzym 26:105–110CrossRefGoogle Scholar
  90. 90.
    Li K, Xu F, Eriksson KE (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65:2654–2660PubMedGoogle Scholar
  91. 91.
    Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deussen HJW, Abbate E, Galinyte V, Schneider P (2000) Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl Environ Microbiol 66:2052–2056PubMedCrossRefGoogle Scholar
  92. 92.
    Fabbrini M, Galli C, Gentili P (2002) Comparing the catalytic efficiency of some mediators of laccase. J Mol Cat B Enzym 16:231–240CrossRefGoogle Scholar
  93. 93.
    Brogioni B, Biglino D, Sinicropi A, Reijerse EJ, Giardina P, Sannia G, Lubitz W, Basosi R, Pogni R (2008) Characterization of radical intermediates in laccase-mediator systems. A multifrequency EPR, ENDOR and DFT/PCM investigation. Phys Chem Chem Phys 10:7284–7292PubMedCrossRefGoogle Scholar
  94. 94.
    Collins PJ, Kotterman MJJ, Field JA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563–4567PubMedGoogle Scholar
  95. 95.
    Camarero S, García O, Vidal T, Colom J, del Río JC, Gutiérrez A, Gras JM, Monje R, Martínez MJ, Martínez T (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microbiol Technol 35:113–120CrossRefGoogle Scholar
  96. 96.
    Gutiérrez A, del Río JC, Ibarra D, Rencoret J, Romero J, Speranza M, Camarero S, Martínez MJ, Martínez AT (2006) Enzymatic removal of free and conjugated sterols forming pitch deposits in environmentally sound bleaching of eucalypt paper pulp. Environ Sci Technol 40:3416–3422PubMedCrossRefGoogle Scholar
  97. 97.
    Hu MR, Chao YP, Zhang GQ, Xue ZQ, Qian S (2009) Laccase-mediator system in the decolorization of different types of recalcitrant dyes. J Ind Microbiol Biotechnol 36:45–51PubMedCrossRefGoogle Scholar
  98. 98.
    Galante YM, Formantici C (2003) Enzyme applications in detergency and in manufacturing industries. Curr Org Chem 7:1399–1422CrossRefGoogle Scholar
  99. 99.
    Camarero S, Cañas AI, Nousiainen P, Record E, Lomascolo A, Martínez MJ, Martínez AT (2008) P-hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ Sci Technol 42:6703–6709PubMedCrossRefGoogle Scholar
  100. 100.
    Camarero S, Ibarra D, Martínez AT, Romero J, Gutiérrez A, del Río JC (2007) Paper pulp delignification using laccase and natural mediators. Enzyme Microb Technol 40:1264–1271CrossRefGoogle Scholar
  101. 101.
    Cañas A, Alcalde M, Plou FJ, Martínez MJ, Martínez AT, Camarero S (2007) Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ Sci Technol 41:2964–2971PubMedCrossRefGoogle Scholar
  102. 102.
    Jeon JR, Murugesan K, Kim YM, Kim EJ, Chang YS (2008) Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl Microbiol Biotechnol 81:783–790PubMedCrossRefGoogle Scholar
  103. 103.
    Nakamura K, Go N (2005) Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 62:2050–2066PubMedCrossRefGoogle Scholar
  104. 104.
    Pezet R (1998) Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers.:Fr. FEMS Microbiol Lett 167:203–208CrossRefGoogle Scholar
  105. 105.
    Wang HX, Ng TB (2004) Purification of a novel low molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochem Biophys Res Commun 315:450–454PubMedCrossRefGoogle Scholar
  106. 106.
    Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H (1996) Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841PubMedGoogle Scholar
  107. 107.
    Min KL, Kim YH, Kim YW, Jung HS, Hah YC (2001) Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Arch Biochem Biophys 392:279–286PubMedCrossRefGoogle Scholar
  108. 108.
    Wahleithner JA, Xu F, Brown KM, Brown SH, Golightly EJ, Halkier T, Kauppinen S, Pederson A, Schneider P (1996) The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403PubMedCrossRefGoogle Scholar
  109. 109.
    Edens WA, Goins TQ, Dooley D, Henson JM (1999) Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici. Appl Environ Microbiol 65:3071–3074PubMedGoogle Scholar
  110. 110.
    Junghanns C, Pecyna MJ, Böhm D, Jehmlich N, Martin C, von Bergen M, Schauer F, Hofrichter M, Schlosser D (2009) Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic ascomycete Phoma sp. UHH 5-1-03. Appl Microbiol Biotechnol. doi: 10.1007/s00253-009-2028-2
  111. 111.
    Wang HX, Ng TB (2006) Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 69:521–525PubMedCrossRefGoogle Scholar
  112. 112.
    Ng TB, Wang HX (2004) A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius. Biochem Biophys Res Commun 313:37–41PubMedCrossRefGoogle Scholar
  113. 113.
    Lawton TJ, Sayavedra-Soto LA, Arp DJ, Rosenzweig AC (2009) Crystal structure of a two-domain multicopper oxidase: implications for the evolution of multicopper blue proteins. J Biol Chem 284:10174–10180PubMedCrossRefGoogle Scholar
  114. 114.
    Skálová T, Dohnálek J, Østergaard LH, Østergaard PR, Kolenko P, Dušková J, Štepánková A, Hašek J (2009) The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. J Mol Biol 385:1165–1178PubMedCrossRefGoogle Scholar
  115. 115.
    Komori H, Miyazaki K, Higuchi Y (2009) X-ray structure of a two-domain type laccase: a missing link in the evolution of multi-copper proteins. FEBS Lett 583:1189–1195PubMedCrossRefGoogle Scholar
  116. 116.
    Wood DA (1980) Production, purification and properties of extracellular laccase of Agaricus bisporus. J Gen Microbiol 117:327–338Google Scholar
  117. 117.
    Curir P, Thurston CF, Daquila F, Pasini C, Marchesini A (1997) Characterization of a laccase secreted by Armillaria mellea pathogenic for Genista. Plant Physiol Biochem 35:147–153Google Scholar
  118. 118.
    Minuth W, Klischies M, Esser K (1978) The phenoloxidases of the ascomycete Podospora anserina. Structural differences between laccases of high and low molecular weight. Eur J Biochem 90:73–82PubMedCrossRefGoogle Scholar
  119. 119.
    Kurtz MB, Champe SP (1982) Purification and characterization of the conidial laccase of Aspergillus nidulans. J Bacteriol 151:1338–1345PubMedGoogle Scholar
  120. 120.
    Thakker GD, Evans CS, Rao KK (1992) Purification and characterization of laccase from Monocillium indicum Saxena. Appl Microbiol Biotechnol 37:321–323CrossRefGoogle Scholar
  121. 121.
    Perry CR, Matcham SE, Wood DA, Thurston CF (1993) The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol 139:171–178PubMedGoogle Scholar
  122. 122.
    Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P (2003) Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Technol 33:220–230CrossRefGoogle Scholar
  123. 123.
    Giardina P, Autore F, Faraco V, Festa G, Palmieri G, Piscitelli A, Sannia G (2007) Structural characterization of heterodimeric laccases from Pleurotus ostreatus. Appl Microbiol Biotechnol 75:1293–1300PubMedCrossRefGoogle Scholar
  124. 124.
    Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326PubMedCrossRefGoogle Scholar
  125. 125.
    Pezzella C, Autore F, Giardina P, Piscitelli A, Sannia G, Faraco V (2009) The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Curr Genet 55:45–57PubMedCrossRefGoogle Scholar
  126. 126.
    Faraco V, Ercole C, Festa G, Giardina P, Piscitelli A, Sannia G (2008) Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis. Appl Microbiol Biotechnol 77:1329–1335PubMedCrossRefGoogle Scholar
  127. 127.
    Mei G, Di Venere A, Buganza M, Vecchini P, Rosato N, Finazzi-Agrò A (1997) Role of quaternary structure in the stability of dimeric proteins: the case of ascorbate oxidase. Biochemistry 36:10917–10922PubMedCrossRefGoogle Scholar
  128. 128.
    Nicolai E, Di Venere A, Rosato N, Rossi A, Finazzi Agrò A, Mei G (2006) Physico-chemical properties of molten dimer ascorbate oxidase. FEBS J 273:5194–5204PubMedCrossRefGoogle Scholar
  129. 129.
    Vries OMH, Kooistra WHCF, Wessels GH (1986) Formation of an extracellular laccase by Schizophyllum commune dikaryon. J Gen Microbiol 132:2817–2826Google Scholar
  130. 130.
    Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L (1997) “Yellow” laccase of Panus tigrinus oxidizes nonphenolic substrates without electron-transfer mediators. FEBS Lett 413:446–448PubMedCrossRefGoogle Scholar
  131. 131.
    Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CF, Hatakka A (1997) Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett 156:9–14PubMedCrossRefGoogle Scholar
  132. 132.
    Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B 30:19–24CrossRefGoogle Scholar
  133. 133.
    Pozdnyakova NN, Turkovskaya OV, Yudina EN, Rodakiewicz-Nowak Ya (2006) Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Appl Biochem Microbiol 42:56–61CrossRefGoogle Scholar
  134. 134.
    Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307PubMedCrossRefGoogle Scholar
  135. 135.
    Litthauer D, Jansen van Vuuren M, van Tonder A, Wolfaardt FW (2007) Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme MicrobTechnol 40:563–568CrossRefGoogle Scholar
  136. 136.
    Haibo Z, Yinglong Z, Feng H, Peiji G, Jiachuan C (2009) Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta. Biotechnol Lett 31:837–843PubMedCrossRefGoogle Scholar
  137. 137.
    Kaneko S, Cheng M, Murai H, Takenaka S, Murakami S, Aoki K (2009) Purification and characterization of an extracellular laccase from Phlebia radiata strain BP-11-2 that decolorizes fungal melanin. Biosci Biotechnol Biochem 73:939–942PubMedCrossRefGoogle Scholar
  138. 138.
    Chernykh A, Myasoedova N, Kolomytseva M, Ferraroni M, Briganti F, Scozzafava A, Golovleva L (2008) Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833. J Appl Microbiol 105:2065–2075PubMedCrossRefGoogle Scholar
  139. 139.
    Hoshida H, Nakao M, Kanazawa H, Kubo K, Hakukawa T, Morimasa K, Akada R, Nishizawa Y (2001) Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J Biosci Bioeng 92:372–380PubMedCrossRefGoogle Scholar
  140. 140.
    Mansur M, Suárez T, Fernández-Larrea JB, Brizuela MA, González AE (1997) Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197. Appl Environ Microbiol 63:2637–2646PubMedGoogle Scholar
  141. 141.
    Xiao YZ, Hong YZ, Li JF, Hang J, Tong PG, Fang W, Zhou CZ (2006) Cloning of novel laccase isozyme genes from Trametes sp. AH28–2 and analyses of their differential expression. Appl Microbiol Biotechnol 71:493–501PubMedCrossRefGoogle Scholar
  142. 142.
    Litvintseva AP, Henson JM (2002) Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Appl Environ Microbiol 68:1305–1311PubMedCrossRefGoogle Scholar
  143. 143.
    Soden DM, Dobson AD (2001) Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147:1755–1763PubMedGoogle Scholar
  144. 144.
    Rodríguez E, Ruiz-Dueñas FJ, Kooistra R, Ram A, Martínez AT, Martínez MJ (2008) Isolation of two laccase genes from the white-rot fungus Pleurotus eryngii and heterologous expression of the pel3 encoded protein. J Biotechnol 134:9–19PubMedCrossRefGoogle Scholar
  145. 145.
    Kilaru S, Hoegger PJ, Kües U (2006) The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Curr Genet 50:45–60PubMedCrossRefGoogle Scholar
  146. 146.
    Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959PubMedCrossRefGoogle Scholar
  147. 147.
    Courty PE, Hoegger PJ, Kilaru S, Kohler A, Buée M, Garbaye J, Martin F, Kües U (2009) Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol 182:736–750PubMedCrossRefGoogle Scholar
  148. 148.
    Chen S, Ge W, Buswell JA (2004) Molecular cloning of a new laccase from the edible straw mushroom Volvariella volvacea: possible involvement in fruit body development. FEMS Microbiol Lett 30:171–176CrossRefGoogle Scholar
  149. 149.
    Tsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ (1999) A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 181:6469–6477PubMedGoogle Scholar
  150. 150.
    Missal TA, Moran JM, Corbett JA, Lodge JK (2005) Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot Cell 4:202–208CrossRefGoogle Scholar
  151. 151.
    Iakovlev A, Stenlid J (2000) Spatiotemporal patterns of laccase activity in interacting mycelia of wood-decaying basidiomycete fungi. Microb Ecol 39:236–245PubMedGoogle Scholar
  152. 152.
    Luis P, Kellner H, Zimdars B, Langer U, Martin F, Buscot F (2005) Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic, and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microb Ecol 50:570–579PubMedCrossRefGoogle Scholar
  153. 153.
    Terrón MC, González T, Carbajo JM, Yagüe S, Arana-Cuenca A, Téllez A, Dobson AD, González AE (2004) Structural close-related aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp. I-62. Fungal Genet Biol 41:954–962PubMedCrossRefGoogle Scholar
  154. 154.
    Solé M, Kellner H, Brock S, Buscot F, Schlosser D (2008) Extracellular laccase activity and transcript levels of putative laccase genes during removal of the xenoestrogen technical nonylphenol by the aquatic hyphomycete Clavariopsis aquatica. FEMS Microbiol Lett 288:47–54PubMedCrossRefGoogle Scholar
  155. 155.
    Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169PubMedGoogle Scholar
  156. 156.
    Collins PJ, Dobson A (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63:3444–3450PubMedGoogle Scholar
  157. 157.
    Karahanian E, Corsini G, Lobos S, Vicuña R (1998) Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta 26:65–74Google Scholar
  158. 158.
    Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924PubMedCrossRefGoogle Scholar
  159. 159.
    Baldrian P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74PubMedCrossRefGoogle Scholar
  160. 160.
    Manubens A, Canessa P, Folch C, Avila M, Salas L, Vicuña R (2007) Manganese affects the production of laccase in the basidiomycete Ceriporiopsis subvermispora. FEMS Microbiol Lett 275:139–145PubMedCrossRefGoogle Scholar
  161. 161.
    Faraco V, Giardina P, Sannia G (2003) Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology 149:2155–2162PubMedCrossRefGoogle Scholar
  162. 162.
    Buchman C, Scroch P, Welch J, Fogel S, Karin M (1989) The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol 9:4091–4095PubMedGoogle Scholar
  163. 163.
    Alvarez JM, Canessa P, Mancilla RA, Polanco R, Santibáñez PA, Vicuña R (2009) Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal Genet Biol 46:104–111PubMedCrossRefGoogle Scholar
  164. 164.
    Giatti Marques De Souza C, Tychanowicz GK, Farani De Souza D, Peralta RM (2004) Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. J Basic Microbiol 44:129–136CrossRefGoogle Scholar
  165. 165.
    Vanhulle S, Enaud E, Trovaslet M, Nouaimeh N, Bols CM, Keshavarz T, Tron T, Sannia G, Corbisier AM (2007) Overlap of laccases/cellobiose dehydrogenase activities during the decolourisation of anthraquinonic dyes with close chemical structures by Pycnoporus strains. Enzyme Microb Technol 40:1723–1731CrossRefGoogle Scholar
  166. 166.
    Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158PubMedGoogle Scholar
  167. 167.
    Mansur M, Suárez T, González AE (1998) Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Appl Environ Microbiol 64:771–774PubMedGoogle Scholar
  168. 168.
    Colao MC, Garzillo AM, Buonocore V, Schiesser A, Ruzzi M (2003) Primary structure and transcription analysis of a laccase-encoding gene from the basidiomycete Trametes trogii. Appl Microbiol Biotechnol 63:153–158PubMedCrossRefGoogle Scholar
  169. 169.
    Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP (1999) The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol 32:169–178PubMedCrossRefGoogle Scholar
  170. 170.
    Ohga S, Smith M, Thurston CF, Wood DA (1999) Transcriptional regulation of laccase and cellulase genes in the mycelium of Agaricus bisporus during fruit body development on a solid substrate. Mycol Res 103:1557–1560CrossRefGoogle Scholar
  171. 171.
    Ohga S, Royse DJ (2001) Transcriptional regulation of laccase and cellulose genes during growth and fruiting of Lentinula edodes on supplemented sawdust. FEMS Microbiol Lett 201:111–115PubMedCrossRefGoogle Scholar
  172. 172.
    Zhang S, Hacham M, Panepinto J, Hu G, Shin S, Zhu X, Williamson PR (2006) The Hsp70 member, Ssa1, acts as a DNA-binding transcriptional co-activator of laccase in Cryptococcus neoformans. Mol Microbiol 62:1090–1101PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Paola Giardina
    • 1
    Email author
  • Vincenza Faraco
    • 1
  • Cinzia Pezzella
    • 1
  • Alessandra Piscitelli
    • 1
  • Sophie Vanhulle
    • 2
  • Giovanni Sannia
    • 1
  1. 1.Dipartimento di Chimica Organica e BiochimicaComplesso Universitario Monte S. AngeloNaplesItaly
  2. 2.Microbiology UnitUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations