Cellular and Molecular Life Sciences

, Volume 67, Issue 2, pp 217–237 | Cite as

An overview of RNAs with regulatory functions in gram-positive bacteria

  • Pascale Romby
  • Emmanuelle CharpentierEmail author


During the last decade, RNA molecules with regulatory functions on gene expression have benefited from a renewed interest. In bacteria, recent high throughput computational and experimental approaches have led to the discovery that 10–20% of all genes code for RNAs with critical regulatory roles in metabolic, physiological and pathogenic processes. The trans-acting RNAs comprise the noncoding RNAs, RNAs with a short open reading frame and antisense RNAs. Many of these RNAs act through binding to their target mRNAs while others modulate protein activity or target DNA. The cis-acting RNAs include regulatory regions of mRNAs that can respond to various signals. These RNAs often provide the missing link between sensing changing conditions in the environment and fine-tuning the subsequent biological responses. Information on their various functions and modes of action has been well documented for gram-negative bacteria. Here, we summarize the current knowledge of regulatory RNAs in gram-positive bacteria.


Regulatory RNAs Small RNAs Noncoding RNAs Riboswitches CRISPR Gene expression regulation Virulence Gram-positive bacteria 



We are grateful to Brian Jester for critical reading of the manuscript and helpful comments, and we thank members of our teams for stimulating discussions. This work was supported by the European Community FP6 project no. BacRNA-018618 (E.C. and P.R.), the Austrian Science Fund (FWF, project nos. P17238-B09 and W1207-B09) (E.C.), the Austrian Research Promotion Agency (FFG, project no. 812138-SCK/KUG) (E.C.), the Theodor Körner Fonds (E.C.), Umeå University (E.C.), the Swedish Research Council (VR) (E.C.), the CNRS “Centre National de la Recherche Scientifique” (P.R.) and the ANR “Agence Nationale pour la Recherche” (ANR05-MIIM-034-01, ANR09-Blan-436938).


  1. 1.
    Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628PubMedGoogle Scholar
  2. 2.
    Vogel J, Wagner EG (2007) Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 10:262–270PubMedGoogle Scholar
  3. 3.
    Gottesman S (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21:399–404PubMedGoogle Scholar
  4. 4.
    Tomizawa J, Itoh T, Selzer G, Som T (1981) Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci USA 78:1421–1425PubMedGoogle Scholar
  5. 5.
    Stougaard P, Molin S, Nordstrom K (1981) RNAs involved in copy-number control and incompatibility of plasmid R1. Proc Natl Acad Sci USA 78:6008–6012PubMedGoogle Scholar
  6. 6.
    Andersen J, Forst SA, Zhao K, Inouye M, Delihas N (1989) The function of micF RNA micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem 264:17961–17970PubMedGoogle Scholar
  7. 7.
    Delihas N (1997) Antisense micF RNA and 5′-UTR of the target ompF RNA: phylogenetic conservation of primary and secondary structures. Nucleic Acids Symp Ser 36:33–35PubMedGoogle Scholar
  8. 8.
    Livny J, Teonadi H, Livny M, Waldor MK (2008) High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PLoS ONE 3:e3197PubMedGoogle Scholar
  9. 9.
    Marchais A, Naville M, Bohn C, Bouloc P, Gautheret D (2009) Single-pass classification of all noncoding sequences in a bacterial genome using phylogenetic profiles. Genome Res 19:1084–1092PubMedGoogle Scholar
  10. 10.
    Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4:e1000163PubMedGoogle Scholar
  11. 11.
    Landt SG, Abeliuk E, McGrath PT, Lesley JA, McAdams HH, Shapiro L (2008) Small non-coding RNAs in Caulobacter crescentus. Mol Microbiol 68:600–614PubMedGoogle Scholar
  12. 12.
    Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Regnault B, Coppee JY, Lecuit M, Johansson J, Cossart P (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956PubMedGoogle Scholar
  13. 13.
    Fozo EM, Hemm MR, Storz G (2008) Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 72:579–589PubMedGoogle Scholar
  14. 14.
    Romby P, Vandenesch F, Wagner EG (2006) The role of RNAs in the regulation of virulence-gene expression. Curr Opin Microbiol 9:229–236PubMedGoogle Scholar
  15. 15.
    Toledo-Arana A, Repoila F, Cossart P (2007) Small noncoding RNAs controlling pathogenesis. Curr Opin Microbiol 10:182–188PubMedGoogle Scholar
  16. 16.
    Bejerano-Sagie M, Xavier KB (2007) The role of small RNAs in quorum sensing. Curr Opin Microbiol 10:189–198PubMedGoogle Scholar
  17. 17.
    Vogel J (2009) A rough guide to the non-coding RNA world of Salmonella. Mol Microbiol 71:1–11PubMedGoogle Scholar
  18. 18.
    Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845PubMedGoogle Scholar
  19. 19.
    Marraffini LA, Sontheimer EJ (2009) Invasive DNA, Chopped and in the CRISPR. Structure 17:786–788PubMedGoogle Scholar
  20. 20.
    Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10:156–163PubMedGoogle Scholar
  21. 21.
    Gorke B, Vogel J (2008) Noncoding RNA control of the making and breaking of sugars. Genes Dev 22:2914–2925PubMedGoogle Scholar
  22. 22.
    Wassarman KM (2007) 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol 10:164–168PubMedGoogle Scholar
  23. 23.
    Coppins RL, Hall KB, Groisman EA (2007) The intricate world of riboswitches. Curr Opin Microbiol 10:176–181PubMedGoogle Scholar
  24. 24.
    Henkin TM (2009) RNA-dependent RNA switches in bacteria. Methods Mol Biol 540:207–214PubMedGoogle Scholar
  25. 25.
    Pichon C, Felden B (2005) Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci USA 102:14249–14254PubMedGoogle Scholar
  26. 26.
    Valverde C, Haas D (2008) Small RNAs controlled by two-component systems. Adv Exp Med Biol 631:54–79PubMedGoogle Scholar
  27. 27.
    Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P (2007) Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21:1353–1366PubMedGoogle Scholar
  28. 28.
    Heidrich N, Chinali A, Gerth U, Brantl S (2006) The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. Mol Microbiol 62:520–536PubMedGoogle Scholar
  29. 29.
    Heidrich N, Moll I, Brantl S (2007) In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res 35:4331–4346PubMedGoogle Scholar
  30. 30.
    Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A, Lina G, Etienne J, Ehresmann B, Ehresmann C, Jacquier A, Vandenesch F, Romby P (2005) Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24:824–835PubMedGoogle Scholar
  31. 31.
    Licht A, Preis S, Brantl S (2005) Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis. Mol Microbiol 58:189–206PubMedGoogle Scholar
  32. 32.
    Morfeldt E, Taylor D, von Gabain A, Arvidson S (1995) Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14:4569–4577PubMedGoogle Scholar
  33. 33.
    Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975PubMedGoogle Scholar
  34. 34.
    Wagner EG, Altuvia S, Romby P (2002) Antisense RNAs in bacteria and their genetic elements. Adv Genet 46:361–398PubMedGoogle Scholar
  35. 35.
    Weaver KE (2007) Emerging plasmid-encoded antisense RNA regulated systems. Curr Opin Microbiol 10:110–116PubMedGoogle Scholar
  36. 36.
    Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10:102–109PubMedGoogle Scholar
  37. 37.
    Novick RP, Iordanescu S, Projan SJ, Kornblum J, Edelman I (1989) pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59:395–404PubMedGoogle Scholar
  38. 38.
    Brantl S, Birch-Hirschfeld E, Behnke D (1993) RepR protein expression on plasmid pIP501 is controlled by an antisense RNA-mediated transcription attenuation mechanism. J Bacteriol 175:4052–4061PubMedGoogle Scholar
  39. 39.
    Brantl S, Wagner EG (1994) Antisense RNA-mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing: an in vitro study of plasmid pIP501. EMBO J 13:3599–3607PubMedGoogle Scholar
  40. 40.
    Kwong SM, Skurray RA, Firth N (2006) Replication control of staphylococcal multiresistance plasmid pSK41: an antisense RNA mediates dual-level regulation of Rep expression. J Bacteriol 188:4404–4412PubMedGoogle Scholar
  41. 41.
    Greenfield TJ, Ehli E, Kirshenmann T, Franch T, Gerdes K, Weaver KE (2000) The antisense RNA of the par locus of pAD1 regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Mol Microbiol 37:652–660PubMedGoogle Scholar
  42. 42.
    Greenfield TJ, Weaver KE (2000) Antisense RNA regulation of the pAD1 par post-segregational killing system requires interaction at the 5’ and 3’ ends of the RNAs. Mol Microbiol 37:661–670PubMedGoogle Scholar
  43. 43.
    Silvaggi JM, Perkins JB, Losick R (2005) Small untranslated RNA antitoxin in Bacillus subtilis. J Bacteriol 187:6641–6650PubMedGoogle Scholar
  44. 44.
    Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P (2007) Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res 35:962–974PubMedGoogle Scholar
  45. 45.
    Silvaggi JM, Perkins JB, Losick R (2006) Genes for small, noncoding RNAs under sporulation control in Bacillus subtilis. J Bacteriol 188:532–541PubMedGoogle Scholar
  46. 46.
    Saito S, Kakeshita H, Nakamura K (2009) Novel small RNA-encoding genes in the intergenic regions of Bacillus subtilis. Gene 428:2–8PubMedGoogle Scholar
  47. 47.
    Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449PubMedGoogle Scholar
  48. 48.
    Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564PubMedGoogle Scholar
  49. 49.
    Cheung AL, Eberhardt KJ, Chung E, Yeaman MR, Sullam PM, Ramos M, Bayer AS (1994) Diminished virulence of a sar−/agr− mutant of Staphylococcus aureus in the rabbit model of endocarditis. J Clin Invest 94:1815–1822PubMedGoogle Scholar
  50. 50.
    Gillaspy AF, Hickmon SG, Skinner RA, Thomas JR, Nelson CL, Smeltzer MS (1995) Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun 63:3373–3380PubMedGoogle Scholar
  51. 51.
    Novick RP, Muir TW (1999) Virulence gene regulation by peptides in staphylococci and other Gram-positive bacteria. Curr Opin Microbiol 2:40–45PubMedGoogle Scholar
  52. 52.
    Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandenesch F (2000) Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA 6:668–679PubMedGoogle Scholar
  53. 53.
    Geisinger E, Adhikari RP, Jin R, Ross HF, Novick RP (2006) Inhibition of rot translation by RNAIII, a key feature of agr function. Mol Microbiol 61:1038–1048PubMedGoogle Scholar
  54. 54.
    Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ, Dunman PM (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188:6739–6756PubMedGoogle Scholar
  55. 55.
    Roberts C, Anderson KL, Murphy E, Projan SJ, Mounts W, Hurlburt B, Smeltzer M, Overbeek R, Disz T, Dunman PM (2006) Characterizing the effect of the Staphylococcus aureus virulence factor regulator, SarA, on log-phase mRNA half-lives. J Bacteriol 188:2593–2603PubMedGoogle Scholar
  56. 56.
    Livny J, Brencic A, Lory S, Waldor MK (2006) Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 34:3484–3493PubMedGoogle Scholar
  57. 57.
    Geissmann T, Chevalier C, Cross MJ, Boisset S, Fechter P, Noirot C, Schrenzel J, Francois P, Vandenesch F, Gaspin C, Romby P (2009) A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved motif for regulation. Nucleic Acids Res (in press)Google Scholar
  58. 58.
    Aiba H (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10:134–139PubMedGoogle Scholar
  59. 59.
    Brennan RG, Link TM (2007) Hfq structure, function and ligand binding. Curr Opin Microbiol 10:125–133PubMedGoogle Scholar
  60. 60.
    Valentin-Hansen P, Eriksen M, Udesen C (2004) The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 51:1525–1533PubMedGoogle Scholar
  61. 61.
    Bohn C, Rigoulay C, Bouloc P (2007) No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol 7:10PubMedGoogle Scholar
  62. 62.
    Vecerek B, Rajkowitsch L, Sonnleitner E, Schroeder R, Blasi U (2008) The C-terminal domain of Escherichia coli Hfq is required for regulation. Nucleic Acids Res 36:133–143PubMedGoogle Scholar
  63. 63.
    Christiansen JK, Nielsen JS, Ebersbach T, Valentin-Hansen P, Sogaard-Andersen L, Kallipolitis BH (2006) Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA 12:1383–1396PubMedGoogle Scholar
  64. 64.
    Christiansen JK, Larsen MH, Ingmer H, Sogaard-Andersen L, Kallipolitis BH (2004) The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 186:3355–3362PubMedGoogle Scholar
  65. 65.
    Nielsen JS, Olsen AS, Bonde M, Valentin-Hansen P, Kallipolitis BH (2008) Identification of a sigma B-dependent small noncoding RNA in Listeria monocytogenes. J Bacteriol 190:6264–6270PubMedGoogle Scholar
  66. 66.
    Trotochaud AE, Wassarman KM (2005) A highly conserved 6S RNA structure is required for regulation of transcription. Nat Struct Mol Biol 12:313–319PubMedGoogle Scholar
  67. 67.
    Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL, Breaker RR (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11:774–784PubMedGoogle Scholar
  68. 68.
    Hartmann RK, Gossringer M, Spath B, Fischer S, Marchfelder A (2009) The making of tRNAs and more—RNase P and tRNase Z. Prog Mol Biol Transl Sci 85:319–368PubMedGoogle Scholar
  69. 69.
    Altman S (2007) A view of RNase P. Mol Biosyst 3:604–607PubMedGoogle Scholar
  70. 70.
    Marvin MC, Engelke DR (2009) RNase P: increased versatility through protein complexity? RNA Biol 6:40–42PubMedCrossRefGoogle Scholar
  71. 71.
    Wegscheid B, Hartmann RK (2007) In vivo and in vitro investigation of bacterial type B RNase P interaction with tRNA 3′-CCA. Nucleic Acids Res 35:2060–2073PubMedGoogle Scholar
  72. 72.
    Roselli DM, Marsh TL (1990) Purification and characterization of RNase P from Clostridium sporogenes. Mol Microbiol 4:1393–1400PubMedGoogle Scholar
  73. 73.
    Spitzfaden C, Nicholson N, Jones JJ, Guth S, Lehr R, Prescott CD, Hegg LA, Eggleston DS (2000) The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol 295:105–115PubMedGoogle Scholar
  74. 74.
    Altman S, Wesolowski D, Guerrier-Takada C, Li Y (2005) RNase P cleaves transient structures in some riboswitches. Proc Natl Acad Sci USA 102:11284–11289PubMedGoogle Scholar
  75. 75.
    Seif E, Altman S (2008) RNase P cleaves the adenine riboswitch and stabilizes pbuE mRNA in Bacillus subtilis. RNA 14:1237–1243PubMedGoogle Scholar
  76. 76.
    Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775PubMedGoogle Scholar
  77. 77.
    Crowley PJ, Svensater G, Snoep JL, Bleiweis AS, Brady LJ (2004) An ffh mutant of Streptococcus mutans is viable and able to physiologically adapt to low pH in continuous culture. FEMS Microbiol Lett 234:315–324PubMedGoogle Scholar
  78. 78.
    Hasona A, Zuobi-Hasona K, Crowley PJ, Abranches J, Ruelf MA, Bleiweis AS, Brady LJ (2007) Membrane composition changes and physiological adaptation by Streptococcus mutans signal recognition particle pathway mutants. J Bacteriol 189:1219–1230PubMedGoogle Scholar
  79. 79.
    Hasona A, Crowley PJ, Levesque CM, Mair RW, Cvitkovitch DG, Bleiweis AS, Brady LJ (2005) Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci USA 102:17466–17471PubMedGoogle Scholar
  80. 80.
    Rosch JW, Vega LA, Beyer JM, Lin A, Caparon MG (2008) The signal recognition particle pathway is required for virulence in Streptococcus pyogenes. Infect Immun 76:2612–2619PubMedGoogle Scholar
  81. 81.
    Kremer BH, van der Kraan M, Crowley PJ, Hamilton IR, Brady LJ, Bleiweis AS (2001) Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. J Bacteriol 183:2543–2552PubMedGoogle Scholar
  82. 82.
    Keiler KC (2008) Biology of trans-translation. Annu Rev Microbiol 62:133–151PubMedGoogle Scholar
  83. 83.
    Moore SD, Sauer RT (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 76:101–124PubMedGoogle Scholar
  84. 84.
    Saguy M, Gillet R, Metzinger L, Felden B (2005) tmRNA and associated ligands: a puzzling relationship. Biochimie 87:897–903PubMedGoogle Scholar
  85. 85.
    Abe T, Sakaki K, Fujihara A, Ujiie H, Ushida C, Himeno H, Sato T, Muto A (2008) tmRNA-dependent trans-translation is required for sporulation in Bacillus subtilis. Mol Microbiol 69:1491–1498PubMedGoogle Scholar
  86. 86.
    Wiegert T, Schumann W (2001) SsrA-mediated tagging in Bacillus subtilis. J Bacteriol 183:3885–3889PubMedGoogle Scholar
  87. 87.
    Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186PubMedGoogle Scholar
  88. 88.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712PubMedGoogle Scholar
  89. 89.
    Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964PubMedGoogle Scholar
  90. 90.
    Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22:3489–3496PubMedGoogle Scholar
  91. 91.
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7PubMedGoogle Scholar
  92. 92.
    Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8:R239PubMedGoogle Scholar
  93. 93.
    Dambach MD, Winkler WC (2009) Expanding roles for metabolite-sensing regulatory RNAs. Curr Opin Microbiol 12:161–169PubMedGoogle Scholar
  94. 94.
    Greenleaf WJ, Frieda KL, Foster DA, Woodside MT, Block SM (2008) Direct observation of hierarchical folding in single riboswitch aptamers. Science 319:630–633PubMedGoogle Scholar
  95. 95.
    Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17PubMedGoogle Scholar
  96. 96.
    Nudler E (2006) Flipping riboswitches. Cell 126:19–22PubMedGoogle Scholar
  97. 97.
    Soukup JK, Soukup GA (2004) Riboswitches exert genetic control through metabolite-induced conformational change. Curr Opin Struct Biol 14:344–349PubMedGoogle Scholar
  98. 98.
    Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2004) Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 20:44–50PubMedGoogle Scholar
  99. 99.
    Serganov A, Patel DJ (2008) Towards deciphering the principles underlying an mRNA recognition code. Curr Opin Struct Biol 18:120–129PubMedGoogle Scholar
  100. 100.
    Serganov A (2009) The long and the short of riboswitches. Curr Opin Struct Biol 19:251–259PubMedGoogle Scholar
  101. 101.
    Weinberg Z, Barrick JE, Yao Z, Roth A, Kim JN, Gore J, Wang JX, Lee ER, Block KF, Sudarsan N, Neph S, Tompa M, Ruzzo WL, Breaker RR (2007) Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 35:4809–4819PubMedGoogle Scholar
  102. 102.
    Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517PubMedGoogle Scholar
  103. 103.
    Gutierrez-Preciado A, Henkin TM, Grundy FJ, Yanofsky C, Merino E (2009) Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol Mol Biol Rev 73:36–61PubMedGoogle Scholar
  104. 104.
    Vitreschak AG, Mironov AA, Lyubetsky VA, Gelfand MS (2008) Comparative genomic analysis of T-box regulatory systems in bacteria. RNA 14:717–735PubMedGoogle Scholar
  105. 105.
    Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, Roth A, Breaker RR (2006) Tandem riboswitch architectures exhibit complex gene control functions. Science 314:300–304PubMedGoogle Scholar
  106. 106.
    Roth A, Nahvi A, Lee M, Jona I, Breaker RR (2006) Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA 12:607–619PubMedGoogle Scholar
  107. 107.
    Klein DJ, Ferre-D’Amare AR (2006) Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313:1752–1756PubMedGoogle Scholar
  108. 108.
    Hampel KJ, Tinsley MM (2006) Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry 45:7861–7871PubMedGoogle Scholar
  109. 109.
    Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286PubMedGoogle Scholar
  110. 110.
    Brooks KM, Hampel KJ (2009) A rate-limiting conformational step in the catalytic pathway of the glmS ribozyme. Biochemistry 48:5669–5678PubMedGoogle Scholar
  111. 111.
    Dann CE 3rd, Wakeman CA, Sieling CL, Baker SC, Irnov I, Winkler WC (2007) Structure and mechanism of a metal-sensing regulatory RNA. Cell 130:878–892PubMedGoogle Scholar
  112. 112.
    Buck J, Furtig B, Noeske J, Wohnert J, Schwalbe H (2007) Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Proc Natl Acad Sci USA 104:15699–15704PubMedGoogle Scholar
  113. 113.
    Wickiser JK, Cheah MT, Breaker RR, Crothers DM (2005) The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44:13404–13414PubMedGoogle Scholar
  114. 114.
    Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999) Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665PubMedGoogle Scholar
  115. 115.
    Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551–561PubMedGoogle Scholar
  116. 116.
    Romby P, Springer M (2007) Translational control in biology and medicine. In: Hershey J, Sonenberg N, Matthews M (eds) Cold Spring Harbor Laboratory Press, NY, pp 807–832Google Scholar
  117. 117.
    Grundy FJ, Henkin TM (1992) Characterization of the Bacillus subtilis rpsD regulatory target site. J Bacteriol 174:6763–6770PubMedGoogle Scholar
  118. 118.
    Choonee N, Even S, Zig L, Putzer H (2007) Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Nucleic Acids Res 35:1578–1588PubMedGoogle Scholar
  119. 119.
    Scott LG, Williamson JR (2005) The binding interface between Bacillus stearothermophilus ribosomal protein S15 and its 5′-translational operator mRNA. J Mol Biol 351:280–290PubMedGoogle Scholar
  120. 120.
    Turnbough CL Jr, Switzer RL (2008) Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 72:266–300PubMedGoogle Scholar
  121. 121.
    Merino E, Jensen RA, Yanofsky C (2008) Evolution of bacterial trp operons and their regulation. Curr Opin Microbiol 11:78–86PubMedGoogle Scholar
  122. 122.
    Yakhnin AV, Yakhnin H, Babitzke P (2008) Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. Proc Natl Acad Sci USA 105:16131–16136PubMedGoogle Scholar
  123. 123.
    Valbuzzi A, Gollnick P, Babitzke P, Yanofsky C (2002) The anti-trp RNA-binding attenuation protein (Anti-TRAP), AT, recognizes the tryptophan-activated RNA binding domain of the TRAP regulatory protein. J Biol Chem 277:10608–10613PubMedGoogle Scholar
  124. 124.
    Watanabe M, Heddle JG, Kikuchi K, Unzai S, Akashi S, Park SY, Tame JR (2009) The nature of the TRAP–Anti-TRAP complex. Proc Natl Acad Sci USA 106:2176–2181PubMedGoogle Scholar
  125. 125.
    Cruz-Vera LR, Gong M, Yanofsky C (2008) Physiological effects of anti-TRAP protein activity and tRNA(Trp) charging on trp operon expression in Bacillus subtilis. J Bacteriol 190:1937–1945PubMedGoogle Scholar
  126. 126.
    Fujita Y (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem 73:245–259PubMedGoogle Scholar
  127. 127.
    Crutz AM, Steinmetz M, Aymerich S, Richter R, Le Coq D (1990) Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol 172:1043–1050PubMedGoogle Scholar
  128. 128.
    Debarbouille M, Arnaud M, Fouet A, Klier A, Rapoport G (1990) The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 172:3966–3973PubMedGoogle Scholar
  129. 129.
    Langbein I, Bachem S, Stulke J (1999) Specific interaction of the RNA-binding domain of the Bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT. J Mol Biol 293:795–805PubMedGoogle Scholar
  130. 130.
    Schilling O, Langbein I, Muller M, Schmalisch MH, Stulke J (2004) A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity. Nucleic Acids Res 32:2853–2864PubMedGoogle Scholar
  131. 131.
    Schnetz K, Stulke J, Gertz S, Kruger S, Krieg M, Hecker M, Rak B (1996) LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178:1971–1979PubMedGoogle Scholar
  132. 132.
    Stulke J, Martin-Verstraete I, Zagorec M, Rose M, Klier A, Rapoport G (1997) Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25:65–78PubMedGoogle Scholar
  133. 133.
    Tortosa P, Le Coq D (1995) A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. Microbiology 141(Pt 11):2921–2927PubMedGoogle Scholar
  134. 134.
    Lovett PS, Rogers EJ (1996) Ribosome regulation by the nascent peptide. Microbiol Rev 60:366–385PubMedGoogle Scholar
  135. 135.
    Vazquez-Laslop N, Thum C, Mankin AS (2008) Molecular mechanism of drug-dependent ribosome stalling. Mol Cell 30:190–202PubMedGoogle Scholar
  136. 136.
    Yao S, Blaustein JB, Bechhofer DH (2008) Erythromycin-induced ribosome stalling and RNase J1-mediated mRNA processing in Bacillus subtilis. Mol Microbiol 69:1439–1449PubMedGoogle Scholar
  137. 137.
    Sandler P, Weisblum B (1989) Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5′-to-3′ nucleolytic cleavage of the ermA transcript. J Bacteriol 171:6680–6688PubMedGoogle Scholar
  138. 138.
    Ohtani K, Kawsar HI, Okumura K, Hayashi H, Shimizu T (2003) The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol Lett 222:137–141PubMedGoogle Scholar
  139. 139.
    Shimizu T, Yaguchi H, Ohtani K, Banu S, Hayashi H (2002) Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 43:257–265PubMedGoogle Scholar
  140. 140.
    Kreikemeyer B, Boyle MD, Buttaro BA, Heinemann M, Podbielski A (2001) Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol Microbiol 39:392–406PubMedGoogle Scholar
  141. 141.
    Klenk M, Koczan D, Guthke R, Nakata M, Thiesen HJ, Podbielski A, Kreikemeyer B (2005) Global epithelial cell transcriptional responses reveal Streptococcus pyogenes Fas regulator activity association with bacterial aggressiveness. Cell Microbiol 7:1237–1250PubMedGoogle Scholar
  142. 142.
    Siller M, Janapatla RP, Pirzada ZA, Hassler C, Zinkl D, Charpentier E (2008) Functional analysis of the group A streptococcal luxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells. BMC Microbiol 8:188PubMedGoogle Scholar
  143. 143.
    Steiner K, Malke H (2001) relA—Independent amino acid starvation response network of Streptococcus pyogenes. J Bacteriol 183:7354–7364PubMedGoogle Scholar
  144. 144.
    Mangold M, Siller M, Roppenser B, Vlaminckx BJ, Penfound TA, Klein R, Novak R, Novick RP, Charpentier E (2004) Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol Microbiol 53:1515–1527PubMedGoogle Scholar
  145. 145.
    Roberts SA, Scott JR (2007) RivR and the small RNA RivX: the missing links between the CovR regulatory cascade and the Mga regulon. Mol Microbiol 66(6):1506–1522PubMedGoogle Scholar
  146. 146.
    Halfmann A, Kovacs M, Hakenbeck R, Bruckner R (2007) Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: five out of 15 promoters drive expression of small non-coding RNAs. Mol Microbiol 66:110–126PubMedGoogle Scholar
  147. 147.
    Loh E, Gripenland J, Johansson J (2006) Control of Listeria monocytogenes virulence by 5′-untranslated RNA. Trends Microbiol 14:294–298PubMedGoogle Scholar
  148. 148.
    Daou-Chabo R, Mathy N, Benard L, Condon C (2009) Ribosomes initiating translation of the hbs mRNA protect it from 5′-to-3′ exoribonucleolytic degradation by RNase J1. Mol Microbiol 71:1538–1550PubMedGoogle Scholar
  149. 149.
    Condon C (2007) Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 10:271–278PubMedGoogle Scholar
  150. 150.
    Dreyfus M (2009) Killer and protective ribosomes. Prog Mol Biol Transl Sci 85:423–466PubMedGoogle Scholar
  151. 151.
    Figueroa-Bossi N, Valentini M, Malleret L, Bossi L (2009) Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev 23:000–000Google Scholar
  152. 152.
    Overgaard M, Johansen J, Moller-Jensen J, Valentin-Hansen P (2009) Switching off small RNA regulation with trap-mRNA. Mol Microbiol 73:790–800PubMedGoogle Scholar
  153. 153.
    Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–967PubMedGoogle Scholar
  154. 154.
    Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510PubMedGoogle Scholar
  155. 155.
    Brantl S, Wagner EG (2000) Antisense RNA-mediated transcriptional attenuation: an in vitro study of plasmid pT181. Mol Microbiol 35:1469–1482PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Architecture et Réactivité de l’ARNUniversité de Strasbourg, CNRS, IBMCStrasbourgFrance
  2. 2.Max F. Perutz LaboratoriesUniversity of ViennaViennaAustria
  3. 3.The Laboratory for Molecular Infection Medicine Sweden (MIMS)Umeå UniversityUmeåSweden

Personalised recommendations