Cellular and Molecular Life Sciences

, Volume 67, Issue 1, pp 9–16 | Cite as

Cyclotides: macrocyclic peptides with applications in drug design and agriculture

  • David J. Craik
  • Joshua S. Mylne
  • Norelle L. Daly
Visions & Reflections (Minireview)

Abstract

Cyclotides are disulfide-rich peptides from plants that are exceptionally stable as a result of their unique cyclic cystine knot structural motif. Their natural role is thought to be as plant defence agents, most notably against insect pests, but they also have potential applications in drug design and agriculture. This article identifies gaps in current knowledge on cyclotides and suggests future directions for research into this fascinating family of ultra-stable mini-proteins.

Keywords

Circular proteins Cyclic cystine knot Cyclisation Kalata B1 

Notes

Acknowledgments

Work in our laboratory on cyclotides is supported by grants from the Australian Research Council and the National Health and Medical Research Council (NHMRC). D.J.C. is a NHMRC Professorial Fellow, N.L.D. is a Queensland Smart State Fellow, J.S.M. is an ARC QEII Fellow. We thank colleagues from our laboratory and collaborators listed in the references for their valuable contributions to cyclotide research.

References

  1. 1.
    Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336CrossRefPubMedGoogle Scholar
  2. 2.
    Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Göransson U, Trabi M, Wang CK, Kinghorn AB, Robbrecht E, Craik DJ (2008) Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20:2471–2483CrossRefPubMedGoogle Scholar
  3. 3.
    Trabi M, Mylne JS, Sando L, Craik DJ (2009) Circular proteins from Melicytus (Violaceae) refine the conserved protein and gene architecture of cyclotides. Org Biomol Chem 7:2378–2388CrossRefPubMedGoogle Scholar
  4. 4.
    Trabi M, Svangard E, Herrmann A, Göransson U, Claeson P, Craik DJ, Bohlin L (2004) Variations in cyclotide expression in Viola species. J Nat Prod 67:806–810CrossRefPubMedGoogle Scholar
  5. 5.
    Gran L (1970) An oxytocic principle found in Oldenlandia affinis DC. Medd Nor Farm Selsk 12:173–180Google Scholar
  6. 6.
    Gustafson KR, Sowder RCI, Henderson LE, Parsons IC, Kashman Y, Cardellina JHI, McMahon JB, Buckheit RWJ, Pannell LK, Boyd MR (1994) Circulins A and B: novel HIV-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc 116:9337–9338CrossRefGoogle Scholar
  7. 7.
    Schöpke T, Hasan Agha MI, Kraft R, Otto A, Hiller K (1993) Hämolytisch aktive komponenten aus Viola tricolor L. und Viola arvensis Murray. Sci Pharm 61:145–153Google Scholar
  8. 8.
    Witherup KM, Bogusky MJ, Anderson PS, Ramjit H, Ransom RW, Wood T, Sardana M (1994) Cyclopsychotride A, a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J Nat Prod 57:1619–1625CrossRefPubMedGoogle Scholar
  9. 9.
    Ireland DC, Wang CK, Wilson JA, Gustafson KR, Craik DJ (2008) Cyclotides as natural anti-HIV agents. Biopolymers Pept Sci 90:51–60CrossRefGoogle Scholar
  10. 10.
    Cemazar M, Gruber CW, Craik DJ (2008) Oxidative folding of cyclic cystine knot proteins. Antioxid Redox Signal 10:103–111CrossRefPubMedGoogle Scholar
  11. 11.
    Craik DJ, Clark RJ, Daly NL (2007) Potential therapeutic applications of the cyclotides and related cystine knot mini-proteins. Expert Opin Investig Drugs 16:595–604CrossRefPubMedGoogle Scholar
  12. 12.
    Craik DJ, Cemazar M, Daly NL (2007) The chemistry and biology of cyclotides. Curr Opin Drug Discovery Dev 10:176–184Google Scholar
  13. 13.
    Gruber CW, Cemazar M, Anderson MA, Craik DJ (2007) Insecticidal plant cyclotides and related cystine knot toxins. Toxicon 49:561–575CrossRefPubMedGoogle Scholar
  14. 14.
    Pelegrini PB, Quirino BF, Franco OL (2007) Plant cyclotides: an unusual class of defense compounds. Peptides 28:1475–1481CrossRefPubMedGoogle Scholar
  15. 15.
    Göransson U, Svangard E, Claeson P, Bohlin L (2004) Novel strategies for isolation and characterization of cyclotides: the discovery of bioactive macrocyclic plant polypeptides in the Violaceae. Curr Protein Pept Sci 5:317–329CrossRefPubMedGoogle Scholar
  16. 16.
    Jennings C, West J, Waine C, Craik D, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci USA 98:10614–10619CrossRefPubMedGoogle Scholar
  17. 17.
    Tan N-H, Zhou J (2006) Plant cyclopeptides. Chem Rev 106:840–895CrossRefPubMedGoogle Scholar
  18. 18.
    Saska I, Gillon AD, Hatsugai N, Dietzgen RG, Hara-Nishimura I, Anderson MA, Craik DJ (2007) An asparaginyl endopeptidase mediates in vivo protein backbone cyclisation. J Biol Chem 282:29721–29728CrossRefPubMedGoogle Scholar
  19. 19.
    Gillon AD, Saska I, Jennings CV, Guarino RF, Craik DJ, Anderson MA (2008) Biosynthesis of circular proteins in plants. Plant J 53:505–515CrossRefPubMedGoogle Scholar
  20. 20.
    Tang Y-Q, Yuan J, Ösapay G, Ösapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286:498–502CrossRefPubMedGoogle Scholar
  21. 21.
    Trabi M, Craik DJ (2002) Circular proteins—no end in sight. Trends Biochem Sci 27:132–138CrossRefPubMedGoogle Scholar
  22. 22.
    Maqueda M, Galvez A, Bueno MM, Sanchez-Barrena MJ, Gonzalez C, Albert A, Rico M, Valdivia E (2004) Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr Protein Pept Sci 5:399–416CrossRefPubMedGoogle Scholar
  23. 23.
    Craik DJ (2006) Seamless proteins tie up their loose ends. Science 311:1563–1564CrossRefPubMedGoogle Scholar
  24. 24.
    Hallen HE, Luo H, Scott-Craig JS, Walton JD (2007) Gene family encoding the major toxins of lethal Amanita mushrooms. Proc Natl Acad Sci USA 104:19097–19101CrossRefPubMedGoogle Scholar
  25. 25.
    Donia MS, Ravel J, Schmidt EW (2008) A global assembly line for cyanobactins. Nat Chem Biol 4:341–343CrossRefPubMedGoogle Scholar
  26. 26.
    Gran L, Sandberg F, Sletten K (2000) Oldenlandia affinis (R&S) DC: a plant containing uteroactive peptides used in African traditional medicine. J Ethnopharmacol 70:197–203CrossRefPubMedGoogle Scholar
  27. 27.
    Claeson P, Göransson U, Johansson S, Luijendijk T, Bohlin L (1998) Fractionation protocol for the isolation of polypeptides from plant biomass. J Nat Prod 61:77–81CrossRefPubMedGoogle Scholar
  28. 28.
    Göransson U, Luijendijk T, Johansson S, Bohlin L, Claeson P (1999) Seven novel macrocyclic polypeptides from Viola arvensis. J Nat Prod 62:283–286CrossRefPubMedGoogle Scholar
  29. 29.
    Craik DJ (2009) Circling the enemy: cyclic proteins in plant defence. Trends Plant Sci 14:328–335CrossRefPubMedGoogle Scholar
  30. 30.
    Barbeta BL, Marshall AT, Gillon AD, Craik DJ, Anderson MA (2008) Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc Natl Acad Sci USA 105:1221–1225CrossRefPubMedGoogle Scholar
  31. 31.
    Jennings CV, Rosengren KJ, Daly NL, Plan M, Stevens J, Scanlon MJ, Waine C, Norman DG, Anderson MA, Craik DJ (2005) Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: do Möbius strips exist in nature? Biochemistry 44:851–860CrossRefPubMedGoogle Scholar
  32. 32.
    Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci USA 96:8913–8918CrossRefPubMedGoogle Scholar
  33. 33.
    Göransson U, Sjogren M, Svangard E, Claeson P, Bohlin L (2004) Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. J Nat Prod 67:1287–1290CrossRefPubMedGoogle Scholar
  34. 34.
    Lindholm P, Göransson U, Johansson S, Claeson P, Gulbo J, Larsson R, Bohlin L, Backlund A (2002) Cyclotides: a novel type of cytotoxic agents. Mol Cancer Ther 1:365–369PubMedGoogle Scholar
  35. 35.
    Plan MR, Saska I, Cagauan AG, Craik DJ (2008) Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). J Agric Food Chem 56:5237–5241CrossRefPubMedGoogle Scholar
  36. 36.
    Colgrave ML, Kotze AC, Huang YH, O’Grady J, Simonsen SM, Craik DJ (2008) Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep. Biochemistry 47:5581–5589CrossRefPubMedGoogle Scholar
  37. 37.
    Colgrave ML, Kotze AC, Ireland DC, Wang CK, Craik DJ (2008) The anthelmintic activity of the cyclotides: natural variants with enhanced activity. ChemBioChem 9:1939–1945CrossRefPubMedGoogle Scholar
  38. 38.
    Colgrave ML, Kotze AC, Kopp S, McCarthy JS, Coleman GT, Craik DJ (2009) Anthelmintic activity of cyclotides: in vitro studies with canine and human hookworms. Acta Trop 109:163–166CrossRefPubMedGoogle Scholar
  39. 39.
    Gran L, Sletten K, Skjeldal L (2008) Cyclic peptides from Oldenlandia affinis DC: molecular and biological properties. Chem Biodivers 5:2014–2022CrossRefPubMedGoogle Scholar
  40. 40.
    Kamimori H, Hall K, Craik DJ, Aguilar MI (2005) Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Anal Biochem 337:149–153CrossRefPubMedGoogle Scholar
  41. 41.
    Shenkarev ZO, Nadezhdin KD, Sobol VA, Sobol AG, Skjeldal L, Arseniev AS (2006) Conformation and mode of membrane interaction in cyclotides: spatial structure of kalata B1 bound to a dodecylphosphocholine micelle. FEBS J. 273:2658–2672CrossRefPubMedGoogle Scholar
  42. 42.
    Shenkarev ZO, Nadezhdin KD, Lyukmanova EN, Sobol VA, Skjeldal L, Arseniev AS (2008) Divalent cation coordination and mode of membrane interaction in cyclotides: NMR spatial structure of ternary complex Kalata B7/Mn2+/DPC micelle. J Inorg Biochem 102:1246–1256CrossRefPubMedGoogle Scholar
  43. 43.
    Wang CK, Colgrave ML, Ireland DC, Kaas Q, Craik DJ (2009) Despite a conserved cystine knot motif, different cyclotides have different membrane binding modes. Biochem J 97:1471–1481Google Scholar
  44. 44.
    Nourse A, Trabi M, Daly NL, Craik DJ (2004) A comparison of the self-association behavior of the plant cyclotides kalata B1 and kalata B2 via analytical ultracentrifugation. J Biol Chem 279:562–570CrossRefPubMedGoogle Scholar
  45. 45.
    Simonsen SM, Sando L, Rosengren KJ, Wang CK, Colgrave ML, Daly NL, Craik DJ (2008) Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. J Biol Chem 283:9805–9813CrossRefPubMedGoogle Scholar
  46. 46.
    Huang YH, Colgrave ML, Daly NL, Keleshian A, Martinac B, Craik DJ (2009) The biological activity of the prototypic cyclotide kalata B1 is modulated by the formation of multimeric pores. J Biol Chem 284:20699–20707CrossRefPubMedGoogle Scholar
  47. 47.
    Svangard E, Burman R, Gunasekera S, Lovborg H, Gullbo J, Göransson U (2007) Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes. J Nat Prod 70:643–647CrossRefPubMedGoogle Scholar
  48. 48.
    Barry DG, Daly NL, Clark RJ, Sando L, Craik DJ (2003) Linearization of a naturally occurring circular protein maintains structure but eliminates hemolytic activity. Biochemistry 42:6688–6695CrossRefPubMedGoogle Scholar
  49. 49.
    Daly NL, Craik DJ (2000) Acyclic permutants of naturally occurring cyclic proteins: characterization of cystine knot and beta-sheet formation in the macrocyclic polypeptide kalata B1. J Biol Chem 275:19068–19075CrossRefPubMedGoogle Scholar
  50. 50.
    Herrmann A, Burman R, Mylne JS, Karlsson G, Gullbo J, Craik DJ, Clark RJ, Göransson U (2008) The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry 69:939–952CrossRefPubMedGoogle Scholar
  51. 51.
    Mulvenna JP, Mylne JS, Bharathi R, Burton RA, Shirley NJ, Fincher GB, Anderson MA, Craik DJ (2006) Discovery of cyclotide-like protein sequences in graminaceous crop plants: ancestral precursors of circular proteins? Plant Cell 18:2134–2144CrossRefPubMedGoogle Scholar
  52. 52.
    Basse CW (2005) Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Plant Physiol 138:1774–1784CrossRefPubMedGoogle Scholar
  53. 53.
    Rosengren KJ, Daly NL, Plan MR, Waine C, Craik DJ (2003) Twists, knots, and rings in proteins. Structural definition of the cyclotide framework. J Biol Chem 278:8606–8616CrossRefPubMedGoogle Scholar
  54. 54.
    Herrmann A, Svangard E, Claeson P, Gullbo J, Bohlin L, Goransson U (2006) Key role of glutamic acid for the cytotoxic activity of the cyclotide cycloviolacin O2. Cell Mol Life Sci 63:235–245CrossRefPubMedGoogle Scholar
  55. 55.
    Saska I, Craik DJ (2008) Protease-catalysed protein splicing: a new post-translational modification? Trends Biochem Sci 33:363–368CrossRefPubMedGoogle Scholar
  56. 56.
    Daly NL, Love S, Alewood PF, Craik DJ (1999) Chemical synthesis and folding of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1. Biochemistry 38:10606–10614CrossRefPubMedGoogle Scholar
  57. 57.
    Kent SB (2009) Total chemical synthesis of proteins. Chem Soc Rev 38:338–351CrossRefPubMedGoogle Scholar
  58. 58.
    Gruber CW, Cemazar M, Clark RJ, Horibe T, Renda RF, Anderson MA, Craik DJ (2007) A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. J Biol Chem 282:20435–20446CrossRefPubMedGoogle Scholar
  59. 59.
    Andeme-Ondzighi C, Christopher DA, Cho EJ, Chang SC, Staehelin LA (2008) Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 20:2205–2220CrossRefPubMedGoogle Scholar
  60. 60.
    Gunasekera S, Daly NL, Anderson MA, Craik DJ (2006) Chemical synthesis and biosynthesis of the cyclotide family of circular proteins. IUBMB Life 58:515–524CrossRefPubMedGoogle Scholar
  61. 61.
    Kimura RH, Tran A-T, Camarero JA (2006) Biosynthesis of the cyclotide kalata B1 by using protein splicing. Angew Chem Int Ed Engl 118:987–990CrossRefGoogle Scholar
  62. 62.
    Camarero JA, Kimura RH, Woo Y-H, Shekhtman A, Cantor J (2007) Biosynthesis of a fully functional cyclotide inside living bacterial cells. ChemBioChem 8:1363–1366CrossRefPubMedGoogle Scholar
  63. 63.
    Thongyoo P, Jaulent AM, Tate EW, Leatherbarrow RJ (2007) Immobilized protease-assisted synthesis of engineered cysteine-knot microproteins. ChemBioChem 8:1107–1109CrossRefPubMedGoogle Scholar
  64. 64.
    Gunasekera S, Foley FM, Clark RJ, Sando L, Fabri LJ, Craik DJ, Daly NL (2008) Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides. J Med Chem 51:7697–7704CrossRefPubMedGoogle Scholar
  65. 65.
    Thongyoo P, Roque-Rosell N, Leatherbarrow RJ, Tate EW (2008) Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides. Org Biomol Chem 6:1462–1470CrossRefPubMedGoogle Scholar
  66. 66.
    Werle M, Kafedjiiski K, Kolmar H, Bernkop-Schnurch A (2007) Evaluation and improvement of the properties of the novel cystine-knot microprotein McoEeTI for oral administration. Int J Pharm 332:72–79CrossRefPubMedGoogle Scholar
  67. 67.
    Reiss S, Sieber M, Oberle V, Wentzel A, Spangenberg P, Claus R, Kolmar H, Losche W (2006) Inhibition of platelet aggregation by grafting RGD and KGD sequences on the structural scaffold of small disulfide-rich proteins. Platelets 17:153–157CrossRefPubMedGoogle Scholar
  68. 68.
    Werle M, Schmitz T, Huang HL, Wentzel A, Kolmar H, Bernkop-Schnurch A (2006) The potential of cystine-knot microproteins as novel pharmacophoric scaffolds in oral peptide drug delivery. J Drug Target 14:137–146CrossRefPubMedGoogle Scholar
  69. 69.
    Seydel P, Dörnenburg H (2006) Establishment of in vitro plants, cell and tissue cultures from Oldenlandia affinis for the production of cyclic peptides. Plant Cell Tissue Organ Cult 85:247–255CrossRefGoogle Scholar
  70. 70.
    Seydel P, Gruber CW, Craik DJ, Dörnenburg H (2007) Formation of cyclotides and variations in cyclotide expression in Oldenlandia affinis suspension cultures. Appl Microbiol Biotechnol 77:275–284CrossRefPubMedGoogle Scholar
  71. 71.
    Dörnenburg H (2008) Plant cell culture technology-harnessing a biological approach for competitive cyclotides production. Biotechnol Lett 30:1311–1321CrossRefPubMedGoogle Scholar
  72. 72.
    Hernandez JF, Gagnon J, Chiche L, Nguyen TM, Andrieu JP, Heitz A, Trinh Hong T, Pham TT, Le Nguyen D (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39:5722–5730CrossRefPubMedGoogle Scholar
  73. 73.
    Dutton JL, Renda RF, Waine C, Clark RJ, Daly NL, Jennings CV, Anderson MA, Craik DJ (2004) Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins. J Biol Chem 279:46858–46867CrossRefPubMedGoogle Scholar
  74. 74.
    Zhang J, Liao B, Craik DJ, Li J-T, Hu M, Shu W-S (2009) Identification of two suites of cyclotide precursor genes from metallophyte Viola baoshanensis: cDNA sequence variation, alternative RNA splicing and potential cyclotide diversity. Gene 431:23–32CrossRefPubMedGoogle Scholar
  75. 75.
    Saska I, Colgrave ML, Jones A, Anderson MA, Craik DJ (2008) Quantitative analysis of backbone-cyclised peptides in plants. J Chromatogr B Analyt Technol Biomed Life Sci 872:107–114CrossRefPubMedGoogle Scholar
  76. 76.
    Mylne JS, Craik DJ (2008) 15N cyclotides by whole plant labeling. Biopolym Pept Sci 90:575–580CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • David J. Craik
    • 1
  • Joshua S. Mylne
    • 1
  • Norelle L. Daly
    • 1
  1. 1.Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia

Personalised recommendations