Cellular and Molecular Life Sciences

, Volume 67, Issue 1, pp 99–111

Melanopsin and inner retinal photoreception

Review

Abstract

Over the last ten years there has been growing acceptance that retinal photoreception among mammals extends beyond rods and cones to include a small number of intrinsically photosensitive retinal ganglion cells (ipRGCs). These ipRGCs are capable of responding to light in the absence of rod/cone input thanks to expression of an opsin photopigment called melanopsin. They are specialised for measuring ambient levels of light (irradiance) for a wide variety of so-called non-image-forming light responses. These include synchronisation of circadian clocks to light:dark cycles and the regulation of pupil size, sleep propensity and pineal melatonin production. Here, we provide a review of some of the landmark discoveries in this fast developing field, paying particular emphasis to recent findings and key areas for future investigation.

Keywords

Retina Ganglion cells Photoreception Circadian rhythms Opsin Photosensitivity 

References

  1. 1.
    Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308:186–188PubMedGoogle Scholar
  2. 2.
    Foster RG, Helfrich-Forster C (2001) The regulation of circadian clocks by light in fruitflies and mice. Philos Trans R Soc Lond B 356:1779–1789Google Scholar
  3. 3.
    Nelson DE, Takahashi JS (1991) Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J Physiol 439:115–145PubMedGoogle Scholar
  4. 4.
    von Frisch K (1911) Beiträge zur Physiologie der Pigmentellen in der Fischhaut. Pflügers Arch 138:319–387Google Scholar
  5. 5.
    Tamotsu S, Morita Y (1986) Photoreception in pineal organs of larval and adult lampreys, Lampetra japonica. J Comp Physiol A 159:1–5PubMedGoogle Scholar
  6. 6.
    Taylor DH (1972) Extra-optic photoreception and compass orientation in larval and adult salamanders (Ambystoma tigrinum). Anim Behav 20:233–236PubMedGoogle Scholar
  7. 7.
    Underwood H (1975) Extraretinal light receptors can mediate photoperiodic photoreception in male lizard Anolis carolinensis. J Comp Physiol 99:71–78Google Scholar
  8. 8.
    Menaker M, Roberts R, Elliott J, Underwood H (1970) Extraretinal light perception in sparrow, III: eyes do not participate in photoperiodic photoreception. Proc Natl Acad Sci USA 67:320–325PubMedGoogle Scholar
  9. 9.
    Nelson RJ, Zucker I (1981) Photoperiodic control of reproduction in olfactory-bulbectomized rats. Neuroendocrinology 32:266–271PubMedGoogle Scholar
  10. 10.
    Yamazaki S, Goto M, Menaker M (1999) No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J Biol Rhythms 14:197–201PubMedGoogle Scholar
  11. 11.
    Ebihara S, Tsuji K (1980) Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav 24:523–527PubMedGoogle Scholar
  12. 12.
    Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169:39–50PubMedGoogle Scholar
  13. 13.
    Anderson KV, O’Steen WK (1972) Black-white and pattern discrimination in rats without photoreceptors. Exp Neurol 34:446–454PubMedGoogle Scholar
  14. 14.
    Yoshimura T, Ebihara S (1998) Decline of circadian photosensitivity associated with retinal degeneration in CBA/J-rd/rd mice. Brain Res 779:188–193PubMedGoogle Scholar
  15. 15.
    Argamaso SM, Froehlich AC, McCall MA, Nevo E, Provencio I, Foster RG (1995) Photopigments and circadian systems of vertebrates. Biophys Chem 56:3–11PubMedGoogle Scholar
  16. 16.
    Garcia-Fernandez JM, Jimenez AJ, Foster RG (1995) The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization. Neurosci Lett 187:33–36PubMedGoogle Scholar
  17. 17.
    Provencio I, Wong S, Lederman AB, Argamaso SM, Foster RG (1994) Visual and circadian responses to light in aged retinally degenerate mice. Vision Res 34:1799–1806PubMedGoogle Scholar
  18. 18.
    Foster RG, Argamaso S, Coleman S, Colwell CS, Lederman A, Provencio I (1993) Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms 8(Suppl):S17–S23PubMedGoogle Scholar
  19. 19.
    Provencio I, Cooper HM, Foster RG (1998) Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 395:417–439PubMedGoogle Scholar
  20. 20.
    Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo JF 3rd (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med 332:6–11PubMedGoogle Scholar
  21. 21.
    Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–507PubMedGoogle Scholar
  22. 22.
    Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504PubMedGoogle Scholar
  23. 23.
    Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4:621–626PubMedGoogle Scholar
  24. 24.
    Yoshimura T, Ebihara S (1996) Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+)mice. J Comp Physiol A 178:797–802PubMedGoogle Scholar
  25. 25.
    Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535:261–267PubMedGoogle Scholar
  26. 26.
    Brainard GC, Hanifin JP, Rollag MD, Greeson J, Byrne B, Glickman G, Gerner E, Sanford B (2001) Human melatonin regulation is not mediated by the three cone photopic visual system. J Clin Endocrinol Metab 86:433–436PubMedGoogle Scholar
  27. 27.
    Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070PubMedGoogle Scholar
  28. 28.
    Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073PubMedGoogle Scholar
  29. 29.
    Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95:340–345PubMedGoogle Scholar
  30. 30.
    Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247PubMedGoogle Scholar
  31. 31.
    Newman LA, Walker MT, Brown RL, Cronin TW, Robinson PR (2003) Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42:12734–12738PubMedGoogle Scholar
  32. 32.
    Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433:741–745PubMedGoogle Scholar
  33. 33.
    Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I, Berson DM (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433:745–749PubMedGoogle Scholar
  34. 34.
    Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T (2005) Illumination of the melanopsin signaling pathway. Science 307:600–604PubMedGoogle Scholar
  35. 35.
    Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF (2002) Role of melanopsin in circadian responses to light. Science 298:2211–2213PubMedGoogle Scholar
  36. 36.
    Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216PubMedGoogle Scholar
  37. 37.
    Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81PubMedGoogle Scholar
  38. 38.
    Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527PubMedGoogle Scholar
  39. 39.
    Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415:493PubMedGoogle Scholar
  40. 40.
    Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605PubMedGoogle Scholar
  41. 41.
    Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J (2002) The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22:RC191PubMedGoogle Scholar
  42. 42.
    Hannibal J, Hindersson P, Ostergaard J, Georg B, Heegaard S, Larsen PJ, Fahrenkrug J (2004) Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest Ophthalmol Vis Sci 45:4202–4209PubMedGoogle Scholar
  43. 43.
    Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:749–754PubMedGoogle Scholar
  44. 44.
    Dkhissi-Benyahya O, Rieux C, Hut RA, Cooper HM (2006) Immunohistochemical evidence of a melanopsin cone in human retina. Invest Ophthalmol Vis Sci 47:1636–1641PubMedGoogle Scholar
  45. 45.
    Peirson SN, Bovee-Geurts PH, Lupi D, Jeffery G, DeGrip WJ, Foster RG (2004) Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium. Brain Res Mol Brain Res 123:132–135PubMedGoogle Scholar
  46. 46.
    Vugler AA, Redgrave P, Semo M, Lawrence J, Greenwood J, Coffey PJ (2007) Dopamine neurones form a discrete plexus with melanopsin cells in normal and degenerating retina. Exp Neurol 205:26–35PubMedGoogle Scholar
  47. 47.
    Ostergaard J, Hannibal J, Fahrenkrug J (2007) Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 48:3812–3820PubMedGoogle Scholar
  48. 48.
    Pickard GE, Baver SB, Ogilvie MD, Sollars PJ (2009) Light-induced fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (opn4) mice. PLoS ONE 4:e4984PubMedGoogle Scholar
  49. 49.
    Dumitrescu ON, Pucci FG, Wong F, Berson DM (2009) Ectopic ON bipolar cell synapses in the OFF inner plexiform layer. Contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 517:226–244PubMedGoogle Scholar
  50. 50.
    Hoshi H, Liu WL, Massey SC, Mills SL (2009) ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J Neurosci 29:8875–8883PubMedGoogle Scholar
  51. 51.
    Wong KY, Dunn FA, Graham DM, Berson DM (2007) Synaptic influences on rat ganglion-cell photoreceptors. J Physiol 582:279–296PubMedGoogle Scholar
  52. 52.
    Perez-Leon JA, Warren EJ, Allen CN, Robinson DW, Lane Brown R (2006) Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci 24:1117–1123PubMedGoogle Scholar
  53. 53.
    Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, Roska B (2007) Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol 17:981–988PubMedGoogle Scholar
  54. 54.
    Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG (2008) Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci USA 105:14181–14186PubMedGoogle Scholar
  55. 55.
    Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349PubMedGoogle Scholar
  56. 56.
    Baver SB, Pickard GE, Sollars PJ, Pickard GE (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27:1763–1770PubMedGoogle Scholar
  57. 57.
    Schmidt TM, Taniguchi K, Kofuji P (2008) Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol 100:371–384PubMedGoogle Scholar
  58. 58.
    Schmidt TM, Kofuji P (2009) Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 29:476–482PubMedGoogle Scholar
  59. 59.
    Jusuf PR, Lee SC, Hannibal J, Grunert U (2007) Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina. Eur J Neurosci 26:2906–2921PubMedGoogle Scholar
  60. 60.
    Semo M, Munoz Llamosas M, Foster RG, Jeffery G (2005) Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer. Vis Neurosci 22:111–116PubMedGoogle Scholar
  61. 61.
    Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393PubMedGoogle Scholar
  62. 62.
    Barnard AR, Hattar S, Hankins MW, Lucas RJ (2006) Melanopsin regulates visual processing in the mouse retina. Curr Biol 16:389–395PubMedGoogle Scholar
  63. 63.
    Hankins MW, Lucas RJ (2002) The primary visual pathway in humans is regulated according to long-term light exposure through the action of a nonclassical photopigment. Curr Biol 12:191–198PubMedGoogle Scholar
  64. 64.
    Sekaran S, Foster RG, Lucas RJ, Hankins MW (2003) Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol 13:1290–1298PubMedGoogle Scholar
  65. 65.
    Iuvone PM, Galli CL, Garrison-Gund CK, Neff NH (1978) Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202:901–902PubMedGoogle Scholar
  66. 66.
    Bjelke B, Goldstein M, Tinner B, Andersson C, Sesack SR, Steinbusch HW, Lew JY, He X, Watson S, Tengroth B, Fuxe K (1996) Dopaminergic transmission in the rat retina: evidence for volume transmission. J Chem Neuroanat 12:37–50PubMedGoogle Scholar
  67. 67.
    Lasater EM, Dowling JE (1985) Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc Natl Acad Sci USA 82:3025–3029PubMedGoogle Scholar
  68. 68.
    Hayashida Y, Ishida AT (2004) Dopamine receptor activation can reduce voltage-gated Na+ current by modulating both entry into and recovery from inactivation. J Neurophysiol 92:3134–3141PubMedGoogle Scholar
  69. 69.
    Ichinose T, Lukasiewicz PD (2007) Ambient light regulates sodium channel activity to dynamically control retinal signaling. J Neurosci 27:4756–4764PubMedGoogle Scholar
  70. 70.
    Nir I, Harrison JM, Haque R, Low MJ, Grandy DK, Rubinstein M, Iuvone PM (2002) Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J Neurosci 22:2063–2073PubMedGoogle Scholar
  71. 71.
    Cameron MA, Pozdeyev N, Vugler AA, Cooper H, Iuvone PM, Lucas RJ (2009) Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29:761–767PubMedGoogle Scholar
  72. 72.
    Tsai JW, Hannibal J, Hagiwara G, Colas D, Ruppert E, Ruby NF, Heller HC, Franken P, Bourgin P (2009) Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(−/−) mice. PLoS Biol 7:e1000125PubMedGoogle Scholar
  73. 73.
    Lupi D, Oster H, Thompson S, Foster RG (2008) The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 11:1068–1073PubMedGoogle Scholar
  74. 74.
    Altimus CM, Guler AD, Villa KL, McNeill DS, Legates TA, Hattar S (2008) Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci USA 105:19998–20003PubMedGoogle Scholar
  75. 75.
    Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21:705–727PubMedGoogle Scholar
  76. 76.
    Baver SB, Pickard GE, Sollars PJ (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27:1763–1770PubMedGoogle Scholar
  77. 77.
    Vandewalle G, Schmidt C, Albouy G, Sterpenich V, Darsaud A, Rauchs G, Berken PY, Balteau E, Degueldre C, Luxen A, Maquet P, Dijk DJ (2007) Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem. PLoS ONE 2:e1247PubMedGoogle Scholar
  78. 78.
    Sollars PJ, Smeraski CA, Kaufman JD, Ogilvie MD, Provencio I, Pickard GE (2003) Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis Neurosci 20:601–610PubMedGoogle Scholar
  79. 79.
    Pickard GE (1982) The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J Comp Neurol 211:65–83PubMedGoogle Scholar
  80. 80.
    Balkema GW, Drager UC (1990) Origins of uncrossed retinofugal projections in normal and hypopigmented mice. Vis Neurosci 4:595–604PubMedGoogle Scholar
  81. 81.
    Murakami DM, Miller JD, Fuller CA (1989) The retinohypothalamic tract in the cat: retinal ganglion cell morphology and pattern of projection. Brain Res 482:283–296PubMedGoogle Scholar
  82. 82.
    Pickard GE (1980) Morphological characteristics of retinal ganglion cells projecting to the suprachiasmatic nucleus: a horseradish peroxidase study. Brain Res 183:458–465PubMedGoogle Scholar
  83. 83.
    Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4:1165PubMedGoogle Scholar
  84. 84.
    Semo M, Lupi D, Peirson SN, Butler JN, Foster RG (2003) Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 18:3007–3017PubMedGoogle Scholar
  85. 85.
    Tu DC, Zhang D, Demas J, Slutsky EB, Provencio I, Holy TE, Van Gelder RN (2005) Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48:987–999PubMedGoogle Scholar
  86. 86.
    Brideau AD, Eldridge MG, Enquist LW (2000) Directional transneuronal infection by pseudorabies virus is dependent on an acidic internalization motif in the Us9 cytoplasmic tail. J Virol 74:4549–4561PubMedGoogle Scholar
  87. 87.
    Husak PJ, Kuo T, Enquist LW (2000) Pseudorabies virus membrane proteins gI and gE facilitate anterograde spread of infection in projection-specific neurons in the rat. J Virol 74:10975–10983PubMedGoogle Scholar
  88. 88.
    Tomishima MJ, Enquist LW (2001) A conserved alpha-herpesvirus protein necessary for axonal localization of viral membrane proteins. J Cell Biol 154:741–752PubMedGoogle Scholar
  89. 89.
    Pickard GE, Smeraski CA, Tomlinson CC, Banfield BW, Kaufman J, Wilcox CL, Enquist LW, Sollars PJ (2002) Intravitreal injection of the attenuated pseudorabies virus PRV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci 22:2701–2710PubMedGoogle Scholar
  90. 90.
    Smeraski CA, Sollars PJ, Ogilvie MD, Enquist LW, Pickard GE (2004) Suprachiasmatic nucleus input to autonomic circuits identified by retrograde transsynaptic transport of pseudorabies virus from the eye. J Comp Neurol 471:298–313PubMedGoogle Scholar
  91. 91.
    Smith BN, Banfield BW, Smeraski CA, Wilcox CL, Dudek FE, Enquist LW, Pickard GE (2000) Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc Natl Acad Sci USA 97:9264–9269PubMedGoogle Scholar
  92. 92.
    Glatzer NR, Derbenev AV, Banfield BW, Smith BN (2007) Endomorphin-1 modulates intrinsic inhibition in the dorsal vagal complex. J Neurophysiol 98:1591–1599PubMedGoogle Scholar
  93. 93.
    Hartwick AT, Bramley JR, Yu J, Stevens KT, Allen CN, Baldridge WH, Sollars PJ, Pickard GE (2007) Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci 27:13468–13480PubMedGoogle Scholar
  94. 94.
    Walker MT, Brown RL, Cronin TW, Robinson PR (2008) Photochemistry of retinal chromophore in mouse melanopsin. Proc Natl Acad Sci USA 105:8861–8865PubMedGoogle Scholar
  95. 95.
    Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T, Waisman A, Schmedt C, Jegla T, Panda S (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3:e2451PubMedGoogle Scholar
  96. 96.
    Do MT, Kang SH, Xue T, Zhong H, Liao HW, Bergles DE, Yau KW (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457:281–287PubMedGoogle Scholar
  97. 97.
    Rossant J, McMahon A (1999) “Cre”-ating mouse mutants-a meeting review on conditional mouse genetics. Genes Dev 13:142–145PubMedGoogle Scholar
  98. 98.
    Warren EJ, Allen CN, Brown RL, Robinson DW (2003) Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci 17:1727–1735PubMedGoogle Scholar
  99. 99.
    Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM (2008) Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol 99:2522–2532PubMedGoogle Scholar
  100. 100.
    Brown TM, Lucas RJ (2009) Melanopsin phototransduction: great excitement over a poor catch. Curr Biol 19:R256–R257PubMedGoogle Scholar
  101. 101.
    Nikonov SS, Kholodenko R, Lem J, Pugh EN Jr (2006) Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J Gen Physiol 127:359–374PubMedGoogle Scholar
  102. 102.
    Raport CJ, Lem J, Makino C, Chen CK, Fitch CL, Hobson A, Baylor D, Simon MI, Hurley JB (1994) Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors. Invest Ophthalmol Vis Sci 35:2932–2947PubMedGoogle Scholar
  103. 103.
    Neumann T, Ziegler C, Blau A (2008) Multielectrode array recordings reveal physiological diversity of intrinsically photosensitive retinal ganglion cells in the chick embryo. Brain Res 1207:120–127PubMedGoogle Scholar
  104. 104.
    O’Brien BJ, Isayama T, Richardson R, Berson DM (2002) Intrinsic physiological properties of cat retinal ganglion cells. J Physiol 538:787–802PubMedGoogle Scholar
  105. 105.
    Terakita A (2005) The opsins. Genome Biol 6:213PubMedGoogle Scholar
  106. 106.
    Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A (2008) Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proc Natl Acad Sci USA 105:15576–15580PubMedGoogle Scholar
  107. 107.
    Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15:1065–1069PubMedGoogle Scholar
  108. 108.
    Fu Y, Zhong H, Wang MH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ, Yau KW (2005) Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci USA 102:10339–10344PubMedGoogle Scholar
  109. 109.
    Isoldi MC, Rollag MD, Castrucci AM, Provencio I (2005) Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci USA 102:1217–1221PubMedGoogle Scholar
  110. 110.
    Sekaran S, Lall GS, Ralphs KL, Wolstenholme AJ, Lucas RJ, Foster RG, Hankins MW (2007) 2-Aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci 27:3981–3986PubMedGoogle Scholar
  111. 111.
    Warren EJ, Allen CN, Brown RL, Robinson DW (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23:2477–2487PubMedGoogle Scholar
  112. 112.
    Contin MA, Verra DM, Salvador GA, Ilincheta MG, Giusto NM, Guido ME (2009) Intrinsically photoreceptive retinal ganglion cells: involvement of a phosphoinositide cycle in the phototransduction cascade. IOVS Abstract, 5033/D709Google Scholar
  113. 113.
    Contin MA, Verra DM, Guido ME (2006) An invertebrate-like phototransduction cascade mediates light detection in the chicken retinal ganglion cells. FASEB J 20:2648–2650PubMedGoogle Scholar
  114. 114.
    Berson DM (2007) Phototransduction in ganglion-cell photoreceptors. Pflügers Arch 454:849–855Google Scholar
  115. 115.
    Sekaran S, Lupi D, Jones SL, Sheely CJ, Hattar S, Yau KW, Lucas RJ, Foster RG, Hankins MW (2005) Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol 15:1099–1107PubMedGoogle Scholar
  116. 116.
    Kumbalasiri T, Rollag MD, Isoldi MC, Castrucci AM, Provencio I (2007) Melanopsin triggers the release of internal calcium stores in response to light. Photochem Photobiol 83:273–279PubMedGoogle Scholar
  117. 117.
    Hermans E (2003) Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 99:25–44PubMedGoogle Scholar
  118. 118.
    Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105PubMedGoogle Scholar
  119. 119.
    Goz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP (2008) Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE 3:e3153PubMedGoogle Scholar
  120. 120.
    Tarttelin EE, Bellingham J, Bibb LC, Foster RG, Hankins MW, Gregory-Evans K, Gregory-Evans CY, Wells DJ, Lucas RJ (2003) Expression of opsin genes early in ocular development of humans and mice. Exp Eye Res 76:393–396PubMedGoogle Scholar
  121. 121.
    Hannibal J, Fahrenkrug J (2004) Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 15:2317–2320PubMedGoogle Scholar
  122. 122.
    Speh JC, Moore RY (1993) Retinohypothalamic tract development in the hamster and rat. Brain Res Dev Brain Res 76:171–181PubMedGoogle Scholar
  123. 123.
    Lupi D, Sekaran S, Jones SL, Hankins MW, Foster RG (2006) Light-evoked FOS induction within the suprachiasmatic nuclei (SCN) of melanopsin knockout (Opn4−/−) mice: a developmental study. Chronobiol Int 23:167–179PubMedGoogle Scholar
  124. 124.
    Bibb LC, Holt JK, Tarttelin EE, Hodges MD, Gregory-Evans K, Rutherford A, Lucas RJ, Sowden JC, Gregory-Evans CY (2001) Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets. Critical differences during human and mouse eye development. Hum Mol Genet 10:1571–1579PubMedGoogle Scholar
  125. 125.
    Dowling JE, Sidman RL (1962) Inherited retinal dystrophy in the rat. J Cell Biol 14:73–109PubMedGoogle Scholar
  126. 126.
    Fulton AB, Graves AL (1980) Background adaptation in developing rat retina: an electroretinographic study. Vision Res 20:819–826PubMedGoogle Scholar
  127. 127.
    Bakall B, Marmorstein LY, Hoppe G, Peachey NS, Wadelius C, Marmorstein AD (2003) Expression and localization of bestrophin during normal mouse development. Invest Ophthalmol Vis Sci 44:3622–3628PubMedGoogle Scholar
  128. 128.
    Omura Y, Oguri M (1993) Early development of the pineal photoreceptors prior to the retinal differentiation in the embryonic rainbow-trout, Oncorhynchus mykiss (Teleostei). Arch Histol Cytol 56:283–291PubMedGoogle Scholar
  129. 129.
    Roberts A (1978) Pineal eye and behavior in Xenopus tadpoles. Nature 273:774–775PubMedGoogle Scholar
  130. 130.
    Young RW (1984) Cell death during differentiation of the retina in the mouse. J Comp Neurol 229:362–373PubMedGoogle Scholar
  131. 131.
    Ruggiero L, Allen CN, Lane Brown R, Robinson DW (2009) The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration. Eur J Neurosci 29:359–367PubMedGoogle Scholar
  132. 132.
    Badea TC, Cahill H, Ecker J, Hattar S, Nathans J (2009) Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61:852–864PubMedGoogle Scholar
  133. 133.
    Lythgoe JN (1979) The ecology of vision. Clarendon, OxfordGoogle Scholar
  134. 134.
    Provencio I, Foster RG (1995) Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694:183–190PubMedGoogle Scholar
  135. 135.
    Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 47:946–954PubMedGoogle Scholar
  136. 136.
    Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21:6405–6412PubMedGoogle Scholar
  137. 137.
    Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, Cooper HM (2009) Melanopsin bistability: a fly’s eye technology in the human retina. PLoS One 4:e5991PubMedGoogle Scholar
  138. 138.
    Lem J, Krasnoperova NV, Calvert PD, Kosaras B, Cameron DA, Nicolo M, Makino CL, Sidman RL (1999) Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc Natl Acad Sci USA 96:736–741PubMedGoogle Scholar
  139. 139.
    Johnson RL, Grant KB, Zankel TC, Boehm MF, Merbs SL, Nathans J, Nakanishi K (1993) Cloning and expression of goldfish opsin sequences. Biochemistry 32:208–214PubMedGoogle Scholar
  140. 140.
    Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385–419PubMedGoogle Scholar
  141. 141.
    Reeves PJ, Thurmond RL, Khorana HG (1996) Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc Natl Acad Sci USA 93:11487–11492PubMedGoogle Scholar
  142. 142.
    Torii M, Kojima D, Okano T, Nakamura A, Terakita A, Shichida Y, Wada A, Fukada Y (2007) Two isoforms of chicken melanopsins show blue light sensitivity. FEBS Lett 581:5327–5331PubMedGoogle Scholar
  143. 143.
    Lucas RJ (2006) Chromophore regeneration: melanopsin does its own thing. Proc Natl Acad Sci USA 103:10153–10154PubMedGoogle Scholar
  144. 144.
    Mure LS, Rieux C, Hattar S, Cooper HM (2007) Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo. J Biol Rhythms 22:411–424PubMedGoogle Scholar
  145. 145.
    Mawad K, Van Gelder RN (2008) Absence of long-wavelength photic potentiation of murine intrinsically photosensitive retinal ganglion cell firing in vitro. J Biol Rhythms 23:387–391PubMedGoogle Scholar
  146. 146.
    Bellingham J, Whitmore D, Philp AR, Wells DJ, Foster RG (2002) Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position. Brain Res Mol Brain Res 107:128–136PubMedGoogle Scholar
  147. 147.
    Frigato E, Vallone D, Bertolucci C, Foulkes NS (2006) Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles. Naturwissenschaften 93:379–385PubMedGoogle Scholar
  148. 148.
    Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 92:158–170PubMedGoogle Scholar
  149. 149.
    Drivenes O, Soviknes AM, Ebbesson LO, Fjose A, Seo HC, Helvik JV (2003) Isolation and characterization of two teleost melanopsin genes and their differential expression within the inner retina and brain. J Comp Neurol 456:84–93PubMedGoogle Scholar
  150. 150.
    Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ (2006) Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol 4:e254PubMedGoogle Scholar
  151. 151.
    Pires SS, Shand J, Bellingham J, Arrese C, Turton M, Peirson S, Foster RG, Halford S (2007) Isolation and characterization of melanopsin (Opn4) from the Australian marsupial Sminthopsis crassicaudata (fat-tailed dunnart). Proc Biol Sci 274:2791–2799PubMedGoogle Scholar
  152. 152.
    Menaker M, Tosini G (1996) The evolution of vertebrate circadian systems. In: Honma K, Honma S (eds) Sixth Sapporo symposium on biological rhythms: circadian organization and oscillatory coupling. Hokkaido University Press, Sapporo, pp 39–52Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Faculty of Life SciencesThe University of ManchesterManchesterUK

Personalised recommendations