Cellular and Molecular Life Sciences

, Volume 67, Issue 1, pp 89–98 | Cite as

Not just angiotensinases: new roles for the angiotensin-converting enzymes

  • Daniel W. Lambert
  • Nicola E. Clarke
  • Anthony J. TurnerEmail author


The renin-angiotensin system (RAS) is a critical regulator of blood pressure and fluid homeostasis. Angiotensin II, the primary bioactive peptide of the RAS, is generated from angiotensin I by angiotensin-converting enzyme (ACE). A homologue of ACE, ACE2, is able to convert angiotensin II to a peptide with opposing effects, angiotensin-(1-7). It is proposed that disturbance of the balance of ACE and ACE2 expression and/or function is important in pathologies in which angiotensin II plays a role. These include cardiovascular and renal disease, lung injury and liver fibrosis. The critical roles of ACE and ACE2 in regulating angiotensin II levels have traditionally focussed attention on their activities as angiotensinases. Recent discoveries, however, have illuminated the roles of these enzymes and of the ACE2 homologue, collectrin, in intracellular trafficking and signalling. This paper reviews the key literature regarding both the catalytic and non-catalytic roles of the angiotensin-converting enzyme gene family.


ACE ACE2 Angiotensin Signalling Collectrin 



We thank the U.K. Biotechnology and Biological Sciences Research Council, the Medical Research Council and the British Heart Foundation for support.


  1. 1.
    Lever AF, Hole DJ, Gillis CR, McCallum IR, McInnes GT, MacKinnon PL, Meredith PA, Murray LS, Reid JL, Robertson JW (1998) Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet 352:179–184CrossRefPubMedGoogle Scholar
  2. 2.
    Khakoo AY, Sidman RL, Pasqualini R, Arap W (2008) Does the renin-angiotensin system participate in regulation of human vasculogenesis and angiogenesis? Cancer Res 68:9112–9115CrossRefPubMedGoogle Scholar
  3. 3.
    Nguyen G, Danser AH (2008) Prorenin and (pro)renin receptor: a review of available data from in vitro studies and experimental models in rodents. Exp Physiol 93:557–563CrossRefPubMedGoogle Scholar
  4. 4.
    Lambert DW, Hooper NM, Turner AJ (2008) Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system. Biochem Pharmacol 75:781–786CrossRefPubMedGoogle Scholar
  5. 5.
    Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263CrossRefPubMedGoogle Scholar
  6. 6.
    Riviere G, Michaud A, Corradi HR, Sturrock ED, Ravi Acharya K, Cogez V, Bohin JP, Vieau D, Corvol P (2007) Characterization of the first angiotensin-converting like enzyme in bacteria: ancestor ACE is already active. Gene 399:81–90CrossRefPubMedGoogle Scholar
  7. 7.
    Macours N, Poels J, Hens K, Francis C, Huybrechts R (2004) Structure, evolutionary conservation, and functions of angiotensin- and endothelin-converting enzymes. Int Rev Cytol 239:47–97CrossRefPubMedGoogle Scholar
  8. 8.
    Kondoh G, Tojo H, Nakatani Y, Komazawa N, Murata C, Yamagata K, Maeda Y, Kinoshita T, Okabe M, Taguchi R, Takeda J (2005) Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat Med 11:160–166CrossRefPubMedGoogle Scholar
  9. 9.
    Kondoh G, Watanabe H, Tashima Y, Maeda Y, Kinoshita T (2009) Testicular angiotensin-converting enzyme with different glycan modification: characterization on glycosylphosphatidylinositol-anchored protein releasing and dipeptidase activities. J Biochem 145:115–121CrossRefPubMedGoogle Scholar
  10. 10.
    Leisle L, Parkin ET, Turner AJ, Hooper NM (2005) Angiotensin-converting enzyme as a GPIase: a critical reevaluation. Nat Med 11:1139–1140CrossRefPubMedGoogle Scholar
  11. 11.
    Fuchs S, Frenzel K, Hubert C, Lyng R, Muller L, Michaud A, Xiao HD, Adams JW, Capecchi MR, Corvol P, Shur BD, Bernstein KE (2005) Male fertility is dependent on dipeptidase activity of testis ACE. Nat Med 11:1140–1142CrossRefPubMedGoogle Scholar
  12. 12.
    Skidgel RA, Engelbrecht S, Johnson AR, Erdos EG (1984) Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5:769–776CrossRefPubMedGoogle Scholar
  13. 13.
    Skidgel RA, Erdos EG (1985) Novel activity of human angiotensin I converting enzyme: release of the NH2- and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA 82:1025–1029CrossRefPubMedGoogle Scholar
  14. 14.
    Rieger KJ, Saez-Servent N, Papet MP, Wdzieczak-Bakala J, Morgat JL, Thierry J, Voelter W, Lenfant M (1993) Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline. Biochem J 296:373–378PubMedGoogle Scholar
  15. 15.
    Georgiadis D, Beau F, Czarny B, Cotton J, Yiotakis A, Dive V (2003) Roles of the two active sites of somatic angiotensin-converting enzyme in the cleavage of angiotensin I and bradykinin: insights from selective inhibitors. Circ Res 93:148–154CrossRefPubMedGoogle Scholar
  16. 16.
    Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–E9PubMedGoogle Scholar
  17. 17.
    Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243CrossRefPubMedGoogle Scholar
  18. 18.
    Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51CrossRefPubMedGoogle Scholar
  19. 19.
    Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M, Reibitz F, Schultheiss HP, Siems WE, Walther T (2005) Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides 26:1270–1277CrossRefPubMedGoogle Scholar
  20. 20.
    Pals DT, Masucci FD, Denning GS Jr, Sipos F, Fessler DC (1971) Role of the pressor action of angiotensin II in experimental hypertension. Circ Res 29:673–681PubMedGoogle Scholar
  21. 21.
    Carini DJ, Christ DD, Duncia JV, Pierce ME (1998) The discovery and development of angiotensin II antagonists. Pharm Biotechnol 11:29–56CrossRefPubMedGoogle Scholar
  22. 22.
    Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828CrossRefPubMedGoogle Scholar
  23. 23.
    Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, Timens W, Turner AJ, Navis G, van Goor H (2007) The emerging role of ACE2 in physiology and disease. J Pathol 212:1–11CrossRefPubMedGoogle Scholar
  24. 24.
    Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, Haystead TA, Donoghue M, Breitbart RE, Acton SL, Rockman HA, Coffman TM (2006) Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 116:2218–2225CrossRefPubMedGoogle Scholar
  25. 25.
    Donoghue M, Wakimoto H, Maguire CT, Acton S, Hales P, Stagliano N, Fairchild-Huntress V, Xu J, Lorenz JN, Kadambi V, Berul CI, Breitbart RE (2003) Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol 35:1043–1053CrossRefPubMedGoogle Scholar
  26. 26.
    Der Sarkissian S, Grobe JL, Yuan L, Narielwala DR, Walter GA, Katovich MJ, Raizada MK (2008) Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension 51:712–718CrossRefPubMedGoogle Scholar
  27. 27.
    Rentzsch B, Todiras M, Iliescu R, Popova E, Campos LA, Oliveira ML, Baltatu OC, Santos RA, Bader M (2008) Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52:967–973CrossRefPubMedGoogle Scholar
  28. 28.
    Masson R, Nicklin SA, Craig MA, McBride M, Gilday K, Gregorevic P, Allen JM, Chamberlain JS, Smith G, Graham D, Dominiczak AF, Napoli C, Baker AH (2009) Onset of experimental severe cardiac fibrosis is mediated by overexpression of Angiotensin-converting enzyme 2. Hypertension 53:694–700CrossRefPubMedGoogle Scholar
  29. 29.
    Mezzano SA, Ruiz-Ortega M, Egido J (2001) Angiotensin II and renal fibrosis. Hypertension 38:635–638CrossRefPubMedGoogle Scholar
  30. 30.
    Warner FJ, Lew RA, Smith AI, Lambert DW, Hooper NM, Turner AJ (2005) Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells. J Biol Chem 280:39353–39362CrossRefPubMedGoogle Scholar
  31. 31.
    Tikellis C, Bialkowski K, Pete J, Sheehy K, Su Q, Johnston C, Cooper ME, Thomas MC (2008) ACE2 deficiency modifies renoprotection afforded by ACE inhibition in experimental diabetes. Diabetes 57:1018–1025CrossRefPubMedGoogle Scholar
  32. 32.
    Tikellis C, Cooper ME, Bialkowski K, Johnston CI, Burns WC, Lew RA, Smith AI, Thomas MC (2006) Developmental expression of ACE2 in the SHR kidney: a role in hypertension? Kidney Int 70:34–41CrossRefPubMedGoogle Scholar
  33. 33.
    Wakahara S, Konoshita T, Mizuno S, Motomura M, Aoyama C, Makino Y, Kato N, Koni I, Miyamori I (2007) Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio. Endocrinology 148:2453–2457CrossRefPubMedGoogle Scholar
  34. 34.
    Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD, Bernstein KE, Coffman TM, Chen S, Batlle D (2006) ACE and ACE2 activity in diabetic mice. Diabetes 55:2132–2139CrossRefPubMedGoogle Scholar
  35. 35.
    Li N, Zimpelmann J, Cheng K, Wilkins JA, Burns KD (2005) The role of angiotensin converting enzyme 2 in the generation of angiotensin 1–7 by rat proximal tubules. Am J Physiol 288:F353–F362Google Scholar
  36. 36.
    Oudit GY, Herzenberg AM, Kassiri Z, Wong D, Reich H, Khokha R, Crackower MA, Backx PH, Penninger JM, Scholey JW (2006) Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol 168:1808–1820CrossRefPubMedGoogle Scholar
  37. 37.
    Morrell NW, Morris KG, Stenmark KR (1995) Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol 269:H1186–H1194PubMedGoogle Scholar
  38. 38.
    Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210CrossRefPubMedGoogle Scholar
  39. 39.
    Chassagne C, Eddahibi S, Adamy C, Rideau D, Marotte F, Dubois-Rande JL, Adnot S, Samuel JL, Teiger E (2000) Modulation of angiotensin II receptor expression during development and regression of hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 22:323–332PubMedGoogle Scholar
  40. 40.
    Kanazawa H, Okamoto T, Hirata K, Yoshikawa J (2000) Deletion polymorphisms in the angiotensin converting enzyme gene are associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162:1235–1238PubMedGoogle Scholar
  41. 41.
    Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA, Oh SP, Katovich MJ, Raizada MK (2009) Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med 179:1048–1054CrossRefPubMedGoogle Scholar
  42. 42.
    Yamazato Y, Ferreira AJ, Hong KH, Sriramula S, Francis J, Yamazato M, Yuan L, Bradford CN, Shenoy V, Oh SP, Katovich MJ, Raizada MK (2009) Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. Hypertension 54:365–371CrossRefPubMedGoogle Scholar
  43. 43.
    Marshall RP, Gohlke P, Chambers RC, Howell DC, Bottoms SE, Unger T, McAnulty RJ, Laurent GJ (2004) Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol 286:L156–L164Google Scholar
  44. 44.
    Otsuka M, Takahashi H, Shiratori M, Chiba H, Abe S (2004) Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax 59:31–38CrossRefPubMedGoogle Scholar
  45. 45.
    Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD (2000) Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol 279:L143–L151Google Scholar
  46. 46.
    Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, McAnulty RJ, Humphries SE, Hill MR, Laurent GJ (2002) Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med 166:646–650CrossRefPubMedGoogle Scholar
  47. 47.
    Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112–116CrossRefPubMedGoogle Scholar
  48. 48.
    Herath CB, Warner FJ, Lubel JS, Dean RG, Jia Z, Lew RA, Smith AI, Burrell LM, Angus PW (2007) Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1–7) levels in experimental biliary fibrosis. J Hepatol 47:387–395CrossRefPubMedGoogle Scholar
  49. 49.
    Herath CB, Lubel JS, Jia Z, Velkoska E, Casley D, Brown L, Tikellis C, Burrell LM, Angus PW (2009) Portal pressure responses and angiotensin peptide production in rat liver are determined by relative activity of angiotensin converting enzyme (ACE) and ACE2. Am J Physiol 297:G98–G106Google Scholar
  50. 50.
    Warner FJ, Smith AI, Hooper NM, Turner AJ (2004) Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci 61:2704–2713CrossRefPubMedGoogle Scholar
  51. 51.
    Gyurko R, Wielbo D, Phillips MI (1993) Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept 49:167–174CrossRefPubMedGoogle Scholar
  52. 52.
    Ambuhl P, Gyurko R, Phillips MI (1995) A decrease in angiotensin receptor binding in rat brain nuclei by antisense oligonucleotides to the angiotensin AT1 receptor. Regul Pept 59:171–182CrossRefPubMedGoogle Scholar
  53. 53.
    Tamura K, Umemura S, Nyui N, Yamakawa T, Yamaguchi S, Ishigami T, Tanaka S, Tanimoto K, Takagi N, Sekihara H, Murakami K, Ishii M (1996) Tissue-specific regulation of angiotensinogen gene expression in spontaneously hypertensive rats. Hypertension 27:1216–1223PubMedGoogle Scholar
  54. 54.
    Bodineau L, Frugiere A, Marc Y, Inguimbert N, Fassot C, Balavoine F, Roques B, Llorens-Cortes C (2008) Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension. Hypertension 51:1318–1325CrossRefPubMedGoogle Scholar
  55. 55.
    de Mota N, Iturrioz X, Claperon C, Bodineau L, Fassot C, Roques BP, Palkovits M, Llorens-Cortes C (2008) Human brain aminopeptidase A: biochemical properties and distribution in brain nuclei. J Neurochem 106:416–428CrossRefPubMedGoogle Scholar
  56. 56.
    Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631–637CrossRefPubMedGoogle Scholar
  57. 57.
    Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E (2007) Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol 292:R373–R381Google Scholar
  58. 58.
    Elased KM, Cunha TS, Marcondes FK, Morris M (2008) Brain angiotensin-converting enzymes: role of angiotensin-converting enzyme 2 in processing angiotensin II in mice. Exp Physiol 93:665–675CrossRefPubMedGoogle Scholar
  59. 59.
    Harmer D, Gilbert M, Borman R, Clark KL (2002) Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 532:107–110CrossRefPubMedGoogle Scholar
  60. 60.
    Feng Y, Yue X, Xia H, Bindom SM, Hickman PJ, Filipeanu CM, Wu G, Lazartigues E (2008) Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation. Circ Res 102:729–736CrossRefPubMedGoogle Scholar
  61. 61.
    Xia H, Feng Y, Obr TD, Hickman PJ, Lazartigues E (2009) Angiotensin II type 1 receptor-mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice. Hypertension 53:210–216CrossRefPubMedGoogle Scholar
  62. 62.
    Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838–14843CrossRefPubMedGoogle Scholar
  63. 63.
    Minshall RD, Tan F, Nakamura F, Rabito SF, Becker RP, Marcic B, Erdos EG (1997) Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells. Circ Res 81:848–856PubMedGoogle Scholar
  64. 64.
    Benzing T, Fleming I, Blaukat A, Muller-Esterl W, Busse R (1999) Angiotensin-converting enzyme inhibitor ramiprilat interferes with the sequestration of the B2 kinin receptor within the plasma membrane of native endothelial cells. Circulation 99:2034–2040PubMedGoogle Scholar
  65. 65.
    Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I (2004) Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ Res 94:60–67CrossRefPubMedGoogle Scholar
  66. 66.
    Kohlstedt K, Busse R, Fleming I (2005) Signaling via the angiotensin-converting enzyme enhances the expression of cyclooxygenase-2 in endothelial cells. Hypertension 45:126–132PubMedGoogle Scholar
  67. 67.
    Kohlstedt K, Gershome C, Trouvain C, Hofmann WK, Fichtlscherer S, Fleming I (2009) Angiotensin-converting enzyme (ACE) inhibitors modulate cellular retinol-binding protein 1 and adiponectin expression in adipocytes via the ACE-dependent signaling cascade. Mol Pharmacol 75:685–692CrossRefPubMedGoogle Scholar
  68. 68.
    Kohlstedt K, Gershome C, Friedrich M, Muller-Esterl W, Alhenc-Gelas F, Busse R, Fleming I (2006) Angiotensin-converting enzyme (ACE) dimerization is the initial step in the ACE inhibitor-induced ACE signaling cascade in endothelial cells. Mol Pharmacol 69:1725–1732CrossRefPubMedGoogle Scholar
  69. 69.
    Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 10:94–100CrossRefPubMedGoogle Scholar
  70. 70.
    Lambert DW, Clarke NE, Hooper NM, Turner AJ (2008) Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett 582:385–390CrossRefPubMedGoogle Scholar
  71. 71.
    Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, Hooper NM, Turner AJ (2005) Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 280:30113–30119CrossRefPubMedGoogle Scholar
  72. 72.
    Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K, Sata T, Sasazuki T, Ishizaka Y (2008) Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc Natl Acad Sci USA 105:7809–7814CrossRefPubMedGoogle Scholar
  73. 73.
    Allinson TM, Parkin ET, Condon TP, Schwager SL, Sturrock ED, Turner AJ, Hooper NM (2004) The role of ADAM10 and ADAM17 in the ectodomain shedding of angiotensin converting enzyme and the amyloid precursor protein. Eur J Biochem 271:2539–2547CrossRefPubMedGoogle Scholar
  74. 74.
    Lin Q, Keller RS, Weaver B, Zisman LS (2004) Interaction of ACE2 and integrin beta1 in failing human heart. Biochim Biophys Acta 1689:175–178PubMedGoogle Scholar
  75. 75.
    Moser M, Legate KR, Zent R, Fassler R (2009) The tail of integrins, talin, and kindlins. Science 324:895–899CrossRefPubMedGoogle Scholar
  76. 76.
    Brooks DR, Hooper NM, Isaac RE (2003) The Caenorhabditis elegans orthologue of mammalian puromycin-sensitive aminopeptidase has roles in embryogenesis and reproduction. J Biol Chem 278:42795–42801CrossRefPubMedGoogle Scholar
  77. 77.
    Coates D, Isaac RE, Cotton J, Siviter R, Williams TA, Shirras A, Corvol P, Dive V (2000) Functional conservation of the active sites of human and Drosophila angiotensin I-converting enzyme. Biochemistry 39:8963–8969CrossRefPubMedGoogle Scholar
  78. 78.
    Rella M, Elliot JL, Revett TJ, Lanfear J, Phelan A, Jackson RM, Turner AJ, Hooper NM (2007) Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a novel mammalian homologue of ACE. BMC Genomics 8:194CrossRefPubMedGoogle Scholar
  79. 79.
    Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454CrossRefPubMedGoogle Scholar
  80. 80.
    Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11:875–879CrossRefPubMedGoogle Scholar
  81. 81.
    Li W, Choe H, Farzan M (2006) Insights from the association of SARS-CoV S-protein with its receptor, ACE2. Adv Exp Med Biol 581:209–218CrossRefPubMedGoogle Scholar
  82. 82.
    Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong SK, Huang IC, Xu K, Vasilieva N, Murakami A, He Y, Marasco WA, Guan Y, Choe H, Farzan M (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24:1634–1643CrossRefPubMedGoogle Scholar
  83. 83.
    Zhang H, Wada J, Hida K, Tsuchiyama Y, Hiragushi K, Shikata K, Wang H, Lin S, Kanwar YS, Makino H (2001) Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem 276:17132–17139CrossRefPubMedGoogle Scholar
  84. 84.
    Akpinar P, Kuwajima S, Krützfeldt J, Stoffel M (2005) Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. Cell Metab 2:385–397CrossRefPubMedGoogle Scholar
  85. 85.
    Malakauskas SM, Kourany WM, Zhang XY, Lu D, Stevens RD, Koves TR, Hohmeier HE, Muoio DM, Newgard CB, Le TH (2009) Increased insulin sensitivity in mice lacking collectrin, a downstream target of HNF-1α. Mol Endocrinol 23:881–892CrossRefPubMedGoogle Scholar
  86. 86.
    Malakauskas SM, Quan H, Fields TA, McCall SJ, Yu MJ, Kourany WM, Frey CW, Le TH (2007) Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. Am J Physiol 292:F533–F544Google Scholar
  87. 87.
    Zhang Y, Wada J, Yasuhara A, Iseda I, Eguchi J, Fukui K, Yang Q, Yamagata K, Hiesberger T, Igarashi P (2007) The role for HNF-1ß-targeted collectrin in maintenance of primary cilia and cell polarity in collecting duct cells. PLoS ONE 2:e414CrossRefPubMedGoogle Scholar
  88. 88.
    Danilczyk U, Sarao R, Remy C, Benabbas C, Stange G, Richter A, Arya S, Pospisilik JA, Singer D, Camargo SM (2006) Essential role for collectrin in renal amino acid transport. Nature 444:1088–1091CrossRefPubMedGoogle Scholar
  89. 89.
    Camargo SM, Singer D, Makrides V, Huggel K, Pos KM, Wagner CA, Kuba K, Danilczyk U, Skovby F, Kleta R, Penninger JM, Verrey F (2009) Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with Hartnup mutations. Gastroenterology 136:872–882CrossRefPubMedGoogle Scholar
  90. 90.
    Singer D, Camargo SM, Huggel K, Romeo E, Danilczyk U, Kuba K, Chesnov S, Caron MG, Penninger JM, Verrey F (2009) Orphan transporter SLC6A18 is renal neutral amino acid transporter B0AT3. J Biol Chem 284:19953–19960CrossRefPubMedGoogle Scholar
  91. 91.
    Seow HF, Broer S, Broer A, Bailey CG, Potter SJ, Cavanaugh JA, Rasko JEJ (2004) Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 36:1003–1007CrossRefPubMedGoogle Scholar
  92. 92.
    Kowalczuk S, Broer A, Tietze N, Vanslambrouck JM, Rasko JEJ, Broer S (2008) A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J 22:2880–2887CrossRefPubMedGoogle Scholar
  93. 93.
    Fukui K, Yang Q, Cao Y, Takahashi N, Hatakeyama H, Wang H, Wada J, Zhang Y, Marselli L, Nammo T (2005) The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab 2:373–384CrossRefPubMedGoogle Scholar
  94. 94.
    Sian E (2000) Hepatocyte nuclear factor 1 alpha (HNF-1α) mutations in maturity-onset diabetes of the young. Hum Mutat 16:377–385CrossRefGoogle Scholar
  95. 95.
    Yasuhara A, Wada J, Malakauskas SM, Zhang Y, Eguchi J, Nakatsuka A, Murakami K, Kanzaki M, Teshigawara S, Yamagata K (2008) Collectrin is involved in the development of salt-sensitive hypertension by facilitating the membrane trafficking of apical membrane proteins via interaction with soluble n-ethylmaleiamide-sensitive factor attachment protein receptor complex. Circulation 118:2146–2155CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Daniel W. Lambert
    • 1
  • Nicola E. Clarke
    • 2
  • Anthony J. Turner
    • 2
    Email author
  1. 1.Oral and Maxillofacial Pathology, Faculty of Medicine, Dentistry and HealthUniversity of SheffieldSheffieldUK
  2. 2.Institute of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK

Personalised recommendations