Advertisement

The exercising heart at altitude

  • José A. L. CalbetEmail author
  • Paul Robach
  • Carsten Lundby
Multi-author Review

Abstract

Maximal cardiac output is reduced in severe acute hypoxia but also in chronic hypoxia by mechanisms that remain poorly understood. In theory, the reduction of maximal cardiac output could result from: (1) a regulatory response from the central nervous system, (2) reduction of maximal pumping capacity of the heart due to insufficient coronary oxygen delivery prior to the achievement of the normoxic maximal cardiac output, or (3) reduced central command. In this review, we focus on the effects that acute and chronic hypoxia have on the pumping capacity of the heart, particularly on myocardial contractility and the molecular responses elicited by acute and chronic hypoxia in the cardiac myocytes. Special emphasis is put on the cardioprotective effects of chronic hypoxia. (Part of a multi-author review.)

Keywords

Hypoxia Contractility Cardiac output Nitric oxide Cardioprotection Infarct Oxygen Adenosine 

Notes

Acknowledgment

The authors express their gratitude to James P. Fisher for his careful revision of the manuscript.

References

  1. 1.
    Calbet JA (2000) Oxygen tension and content in the regulation of limb blood flow. Acta Physiol Scand 168:465–472PubMedCrossRefGoogle Scholar
  2. 2.
    Calbet JA, Lundby C, Koskolou M, Boushel R (2006) Importance of hemoglobin concentration to exercise: acute manipulations. Respir Physiol Neurobiol 151:132–140PubMedCrossRefGoogle Scholar
  3. 3.
    Koskolou MD, Roach RC, Calbet JA, Radegran G, Saltin B (1997) Cardiovascular responses to dynamic exercise with acute anemia in humans. Am J Physiol 273:H1787–H1793PubMedGoogle Scholar
  4. 4.
    Ekblom B, Goldbarg AN, Gullbring B (1972) Response to exercise after blood loss and reinfusion. J Appl Physiol 33:175–180PubMedGoogle Scholar
  5. 5.
    Ekblom B, Huot R, Stein EM, Thorstensson AT (1975) Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol 39:71–75PubMedGoogle Scholar
  6. 6.
    Ekblom B, Huot R (1972) Response to submaximal and maximal exercise at different levels of carboxyhemoglobin. Acta Physiol Scand 86:474–482PubMedCrossRefGoogle Scholar
  7. 7.
    Ekblom B, Wilson G, Astrand PO (1976) Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol 40:379–383PubMedGoogle Scholar
  8. 8.
    Turner DL, Hoppeler H, Noti C, Gurtner HP, Gerber H, Schena F, Kayser B, Ferretti G (1993) Limitations to VO2max in humans after blood retransfusion. Respir Physiol 92:329–341PubMedCrossRefGoogle Scholar
  9. 9.
    Lundby C, Robach P, Boushel R, Thomsen JJ, Rasmussen P, Koskolou M, Calbet JA (2008) Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport? J Appl Physiol 105:581–587PubMedCrossRefGoogle Scholar
  10. 10.
    Neubauer B, Tetzlaff K, Staschen CM, Bettinghausen E (2001) Cardiac output changes during hyperbaric hyperoxia. Int Arch Occup Environ Health 74:119–122PubMedCrossRefGoogle Scholar
  11. 11.
    Saltin B, Calbet JA (2006) Point: in health and in a normoxic environment, VO2max is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:744–745PubMedCrossRefGoogle Scholar
  12. 12.
    Calbet JA, Jensen-Urstad M, Van Hall G, Holmberg HC, Rosdahl H, Saltin B (2004) Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol 558:319–331PubMedCrossRefGoogle Scholar
  13. 13.
    Calbet JA, Gonzalez-Alonso J, Helge JW, Sondergaard H, Munch-Andersen T, Boushel R, Saltin B (2007) Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer. J Appl Physiol 103:969–978PubMedCrossRefGoogle Scholar
  14. 14.
    Gonzalez-Alonso J, Calbet JA (2003) Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation 107:824–830PubMedCrossRefGoogle Scholar
  15. 15.
    Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B (2003) Determinants of maximal oxygen uptake in severe acute hypoxia. Am J Physiol Regul Integr Comp Physiol 284:R291–R303PubMedGoogle Scholar
  16. 16.
    Calbet JA, Robach P, Lundby C, Boushel R (2008) Is pulmonary gas exchange during exercise in hypoxia impaired with the increase of cardiac output? Appl Physiol Nutr Metab 33:593–600PubMedCrossRefGoogle Scholar
  17. 17.
    Lundby C, Calbet JA, van Hall G, Saltin B, Sander M (2004) Pulmonary gas exchange at maximal exercise in Danish lowlanders during eight weeks of acclimatization to 4,100 m and in high-altitude Aymara natives. Am J Physiol Regul Integr Comp Physiol 287:R1202–R1208PubMedGoogle Scholar
  18. 18.
    Wagner PD, Araoz M, Boushel R, Calbet JA, Jessen B, Radegran G, Spielvogel H, Sondegaard H, Wagner H, Saltin B (2002) Pulmonary gas exchange and acid–base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. J Appl Physiol 92:1393–1400PubMedGoogle Scholar
  19. 19.
    Beall CM, Brittenham GM, Strohl KP, Blangero J, Williams-Blangero S, Goldstein MC, Decker MJ, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C (1998) Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. Am J Phys Anthropol 106:385–400PubMedCrossRefGoogle Scholar
  20. 20.
    Calbet JA (2003) Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol 551:379–386PubMedCrossRefGoogle Scholar
  21. 21.
    Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B (2003) Why is VO2max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am J Physiol Regul Integr Comp Physiol 284:R304–R316PubMedGoogle Scholar
  22. 22.
    Hansen J, Sander M (2003) Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol 546:921–929PubMedCrossRefGoogle Scholar
  23. 23.
    Lundby C, Boushel R, Robach P, Moller K, Saltin B, Calbet JA (2008) During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory level. J Physiol 586:123–130PubMedCrossRefGoogle Scholar
  24. 24.
    Calbet JA, Radegran G, Boushel R, Sondergaard H, Saltin B, Wagner PD (2002) Effect of blood haemoglobin concentration on VO2max and cardiovascular function in lowlanders acclimatised to 5,260 m. J Physiol 545:715–728PubMedCrossRefGoogle Scholar
  25. 25.
    Calbet JA, Radegran G, Boushel R, Saltin B (2009) On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol 587:477–490PubMedCrossRefGoogle Scholar
  26. 26.
    Stenberg J, Ekblom B, Messin R (1966) Hemodynamic response to work at simulated altitude, 4,000 m. J Appl Physiol 21:1589–1594PubMedGoogle Scholar
  27. 27.
    Pugh LGCE (1964) Cardiac output in muscular exercise at 5,800 m (19,000 ft). J Appl Physiol 19:441–447Google Scholar
  28. 28.
    Sproule BJ, Mitchell JH, Miller WF (1960) Cardiopulmonary physiological responses to heavy exercise in patients with anemia. J Clin Invest 39:378–388PubMedCrossRefGoogle Scholar
  29. 29.
    Reis DJ, Golanov EV, Ruggiero DA, Sun MK (1994) Sympatho-excitatory neurons of the rostral ventrolateral medulla are oxygen sensors and essential elements in the tonic and reflex control of the systemic and cerebral circulations. J Hypertens Suppl 12:S159–S180PubMedGoogle Scholar
  30. 30.
    Calbet JA, Lundby C (2009) Air to muscle O2 delivery during exercise at altitude. High Alt Med Biol 10:123–134PubMedCrossRefGoogle Scholar
  31. 31.
    Piiper J, Scheid P (1981) Model for capillary-alveolar equilibration with special reference to O2 uptake in hypoxia. Respir Physiol 46:193–208PubMedCrossRefGoogle Scholar
  32. 32.
    Dempsey JA, Wagner PD (1999) Exercise-induced arterial hypoxemia. J Appl Physiol 87:1997–2006PubMedGoogle Scholar
  33. 33.
    Johnson RLJ (1977) Oxygen transport. In: Willerson JT, Sanders CA (eds) Clinical cardiology. Grune & Stratton, New York, pp 74–84Google Scholar
  34. 34.
    Hopkins SR (2006) Exercise induced arterial hypoxemia: the role of ventilation-perfusion inequality and pulmonary diffusion limitation. Adv Exp Med Biol 588:17–30PubMedCrossRefGoogle Scholar
  35. 35.
    Zanzinger J, Czachurski J, Seller H (1998) Nitric oxide in the ventrolateral medulla regulates sympathetic responses to systemic hypoxia in pigs. Am J Physiol 275:R33–R39PubMedGoogle Scholar
  36. 36.
    Sun MK, Reis DJ (1994) Central neural mechanisms mediating excitation of sympathetic neurons by hypoxia. Prog Neurobiol 44:197–219PubMedCrossRefGoogle Scholar
  37. 37.
    Alexander JK, Hartley LH, Modelski M, Grover RF (1967) Reduction of stroke volume during exercise in man following ascent to 3,100 m altitude. J Appl Physiol 23:849–858PubMedGoogle Scholar
  38. 38.
    Janicki JS, Sheriff DD, Robotham JL, Wise RA (1996) Cardiac output during exercise: contributions of the cardiac, circulatory, and respiratory systems. In: Rowell LB, Shepherd JT (eds) Handbook of physiology. Exercise: regulation and integration of multiple systems. American Physiological Society, Bethesda, MD, pp 649–704Google Scholar
  39. 39.
    Barendsen GJ, van den Berg JW (1984) Venous capacity, venous refill time and the effectiveness of the calf muscle pump in normal subjects. Angiology 35:163–172PubMedCrossRefGoogle Scholar
  40. 40.
    Disler DG, Cohen MS, Krebs DE, Roy SH, Rosenthal DI (1995) Dynamic evaluation of exercising leg muscle in healthy subjects with echo planar MR imaging: work rate and total work determine rate of T2 change. J Magn Reson Imaging 5:588–593PubMedCrossRefGoogle Scholar
  41. 41.
    Sheriff DD, Van Bibber R (1998) Flow-generating capability of the isolated skeletal muscle pump. Am J Physiol 274:H1502–H1508PubMedGoogle Scholar
  42. 42.
    Sheriff D (2005) Point: the muscle pump raises muscle blood flow during locomotion. J Appl Physiol 99:371–372 (discussion 374–375)PubMedCrossRefGoogle Scholar
  43. 43.
    Essop MF (2007) Cardiac metabolic adaptations in response to chronic hypoxia. J Physiol 584:715–726PubMedCrossRefGoogle Scholar
  44. 44.
    Williams RS, Benjamin IJ (2000) Protective responses in the ischemic myocardium. J Clin Invest 106:813–818PubMedCrossRefGoogle Scholar
  45. 45.
    McClintock DS, Santore MT, Lee VY, Brunelle J, Budinger GR, Zong WX, Thompson CB, Hay N, Chandel NS (2002) Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol Cell Biol 22:94–104PubMedCrossRefGoogle Scholar
  46. 46.
    Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250:C663–C675PubMedGoogle Scholar
  47. 47.
    Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 263:2712–2718PubMedGoogle Scholar
  48. 48.
    Schroedl C, McClintock DS, Budinger GR, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283:L922–L931PubMedGoogle Scholar
  49. 49.
    Chandel NS, Vander Heiden MG, Thompson CB, Schumacker PT (2000) Redox regulation of p53 during hypoxia. Oncogene 19:3840–3848PubMedCrossRefGoogle Scholar
  50. 50.
    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88:5680–5684PubMedCrossRefGoogle Scholar
  51. 51.
    Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763PubMedGoogle Scholar
  52. 52.
    Semenza GL, Shimoda LA, Prabhakar NR (2006) Regulation of gene expression by HIF-1. Novartis Found Symp 272:2–8 (discussion 8–14, 33–36)PubMedCrossRefGoogle Scholar
  53. 53.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185PubMedCrossRefGoogle Scholar
  54. 54.
    Semenza GL (2007) Regulation of tissue perfusion in mammals by hypoxia-inducible factor 1. Exp Physiol 92:988–991PubMedCrossRefGoogle Scholar
  55. 55.
    Opie LH, Lopaschuk GD (2004) Fuels: aerobic and anaerobic metabolism. In: Weinberg RW, Bersin J, Aversa F (eds) Heart physiology. From cell to circulation. Lippincot Williams & Wilkins, Philadelphia, pp 306–354Google Scholar
  56. 56.
    Takaoka H, Takeuchi M, Odake M, Yokoyama M (1992) Assessment of myocardial oxygen consumption (VO2) and systolic pressure–volume area (PVA) in human hearts. Eur Heart J 13(Suppl E):85–90PubMedGoogle Scholar
  57. 57.
    Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086PubMedCrossRefGoogle Scholar
  58. 58.
    Messer JV, Wagman RJ, Levine HJ, Neill WA, Krasnow N, Gorlin R (1962) Patterns of human myocardial oxygen extraction during rest and exercise. J Clin Invest 41:725–742PubMedCrossRefGoogle Scholar
  59. 59.
    Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol 32:516–522PubMedGoogle Scholar
  60. 60.
    Ross J Jr (1991) Myocardial perfusion–contraction matching. Implications for coronary heart disease and hibernation. Circulation 83:1076–1083PubMedGoogle Scholar
  61. 61.
    Braga VA, Zoccal DB, Soriano RN, Antunes VR, Paton JF, Machado BH, Nalivaiko E (2007) Activation of peripheral chemoreceptors causes positive inotropic effects in a working heart–brainstem preparation of the rat. Clin Exp Pharmacol Physiol 34:1156–1159PubMedGoogle Scholar
  62. 62.
    Braga VA, Soriano RN, Braccialli AL, de Paula PM, Bonagamba LG, Paton JF, Machado BH (2007) Involvement of l-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J Physiol 581:1129–1145PubMedCrossRefGoogle Scholar
  63. 63.
    Layland J, Grieve DJ, Cave AC, Sparks E, Solaro RJ, Shah AM (2004) Essential role of troponin I in the positive inotropic response to isoprenaline in mouse hearts contracting auxotonically. J Physiol 556:835–847PubMedCrossRefGoogle Scholar
  64. 64.
    Hoh JF, Rossmanith GH, Kwan LJ, Hamilton AM (1988) Adrenaline increases the rate of cycling of crossbridges in rat cardiac muscle as measured by pseudo-random binary noise-modulated perturbation analysis. Circ Res 62:452–461PubMedGoogle Scholar
  65. 65.
    Kentish JC, McCloskey DT, Layland J, Palmer S, Leiden JM, Martin AF, Solaro RJ (2001) Phosphorylation of troponin I by protein kinase a accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res 88:1059–1065PubMedCrossRefGoogle Scholar
  66. 66.
    Herron TJ, Korte FS, McDonald KS (2001) Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes. Circ Res 89:1184–1190PubMedCrossRefGoogle Scholar
  67. 67.
    Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118:119–125PubMedCrossRefGoogle Scholar
  68. 68.
    Chen MM, Ashley EA, Deng DX, Tsalenko A, Deng A, Tabibiazar R, Ben-Dor A, Fenster B, Yang E, King JY, Fowler M, Robbins R, Johnson FL, Bruhn L, McDonagh T, Dargie H, Yakhini Z, Tsao PS, Quertermous T (2003) Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 108:1432–1439PubMedCrossRefGoogle Scholar
  69. 69.
    Kleinz MJ, Skepper JN, Davenport AP (2005) Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul Pept 126:233–240PubMedCrossRefGoogle Scholar
  70. 70.
    Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74:34–41PubMedCrossRefGoogle Scholar
  71. 71.
    Sheikh AY, Chun HJ, Glassford AJ, Kundu RK, Kutschka I, Ardigo D, Hendry SL, Wagner RA, Chen MM, Ali ZA, Yue P, Huynh DT, Connolly AJ, Pelletier MP, Tsao PS, Robbins RC, Quertermous T (2008) In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am J Physiol Heart Circ Physiol 294:H88–H98PubMedCrossRefGoogle Scholar
  72. 72.
    Ronkainen VP, Ronkainen JJ, Hanninen SL, Leskinen H, Ruas JL, Pereira T, Poellinger L, Vuolteenaho O, Tavi P (2007) Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J 21:1821–1830PubMedCrossRefGoogle Scholar
  73. 73.
    Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysa J, Toth M, Ruskoaho H (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91:434–440PubMedCrossRefGoogle Scholar
  74. 74.
    Farkasfalvi K, Stagg MA, Coppen SR, Siedlecka U, Lee J, Soppa GK, Marczin N, Szokodi I, Yacoub MH, Terracciano CM (2007) Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun 357:889–895PubMedCrossRefGoogle Scholar
  75. 75.
    Dai T, Ramirez-Correa G, Gao WD (2006) Apelin increases contractility in failing cardiac muscle. Eur J Pharmacol 553:222–228PubMedCrossRefGoogle Scholar
  76. 76.
    Cox CM, D’Agostino SL, Miller MK, Heimark RL, Krieg PA (2006) Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296:177–189PubMedCrossRefGoogle Scholar
  77. 77.
    Eyries M, Siegfried G, Ciumas M, Montagne K, Agrapart M, Lebrin F, Soubrier F (2008) Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res 103:432–440PubMedCrossRefGoogle Scholar
  78. 78.
    Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, Deng A, Eichhorn J, Mahajan R, Agrawal R, Greve J, Robbins R, Patterson AJ, Bernstein D, Quertermous T (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res 65:73–82PubMedCrossRefGoogle Scholar
  79. 79.
    Cheng X, Cheng XS, Pang CC (2003) Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470:171–175PubMedCrossRefGoogle Scholar
  80. 80.
    Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99:87–92PubMedCrossRefGoogle Scholar
  81. 81.
    Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO 3rd, Gladwin MT (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9:1498–1505PubMedCrossRefGoogle Scholar
  82. 82.
    Rassaf T, Flogel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J (2007) Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res 100:1749–1754PubMedCrossRefGoogle Scholar
  83. 83.
    Gladwin MT, Kim-Shapiro DB (2008) The functional nitrite reductase activity of the heme-globins. Blood 112:2636–2647PubMedCrossRefGoogle Scholar
  84. 84.
    Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, Xu X, Murphy E, Darley-Usmar VM, Gladwin MT (2007) Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 100:654–661PubMedCrossRefGoogle Scholar
  85. 85.
    Brune B, Zhou J (2003) The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Curr Med Chem 10:845–855PubMedCrossRefGoogle Scholar
  86. 86.
    Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302:1975–1978PubMedCrossRefGoogle Scholar
  87. 87.
    Brookes PS, Kraus DW, Shiva S, Doeller JE, Barone MC, Patel RP, Lancaster JR Jr, Darley-Usmar V (2003) Control of mitochondrial respiration by NO*, effects of low oxygen and respiratory state. J Biol Chem 278:31603–31609PubMedCrossRefGoogle Scholar
  88. 88.
    Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92PubMedCrossRefGoogle Scholar
  89. 89.
    Shiva S, Brookes PS, Patel RP, Anderson PG, Darley-Usmar VM (2001) Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc Natl Acad Sci USA 98:7212–7217PubMedCrossRefGoogle Scholar
  90. 90.
    Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci USA 98:355–360PubMedCrossRefGoogle Scholar
  91. 91.
    Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899PubMedCrossRefGoogle Scholar
  92. 92.
    Kuwabara M, Kakinuma Y, Ando M, Katare RG, Yamasaki F, Doi Y, Sato T (2006) Nitric oxide stimulates vascular endothelial growth factor production in cardiomyocytes involved in angiogenesis. J Physiol Sci 56:95–101PubMedCrossRefGoogle Scholar
  93. 93.
    Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA (2005) Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA 102:13147–13152PubMedCrossRefGoogle Scholar
  94. 94.
    Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398PubMedCrossRefGoogle Scholar
  95. 95.
    Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signaling. Cardiovasc Res 75:315–326PubMedCrossRefGoogle Scholar
  96. 96.
    Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814PubMedCrossRefGoogle Scholar
  97. 97.
    Xu KY, Kuppusamy SP, Wang JQ, Li H, Cui H, Dawson TM, Huang PL, Burnett AL, Kuppusamy P, Becker LC (2003) Nitric oxide protects cardiac sarcolemmal membrane enzyme function and ion active transport against ischemia-induced inactivation. J Biol Chem 278:41798–41803PubMedCrossRefGoogle Scholar
  98. 98.
    Balligand JL, Kobzik L, Han X, Kaye DM, Belhassen L, O’Hara DS, Kelly RA, Smith TW, Michel T (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 270:14582–14586PubMedCrossRefGoogle Scholar
  99. 99.
    Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662PubMedCrossRefGoogle Scholar
  100. 100.
    Williams JC, Armesilla AL, Mohamed TM, Hagarty CL, McIntyre FH, Schomburg S, Zaki AO, Oceandy D, Cartwright EJ, Buch MH, Emerson M, Neyses L (2006) The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281:23341–23348PubMedCrossRefGoogle Scholar
  101. 101.
    Gyurko R, Kuhlencordt P, Fishman MC, Huang PL (2000) Modulation of mouse cardiac function in vivo by eNOS and ANP. Am J Physiol Heart Circ Physiol 278:H971–H981PubMedGoogle Scholar
  102. 102.
    Godecke A, Heinicke T, Kamkin A, Kiseleva I, Strasser RH, Decking UK, Stumpe T, Isenberg G, Schrader J (2001) Inotropic response to beta-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol 532:195–204PubMedCrossRefGoogle Scholar
  103. 103.
    Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339PubMedGoogle Scholar
  104. 104.
    Han X, Kubota I, Feron O, Opel DJ, Arstall MA, Zhao YY, Huang P, Fishman MC, Michel T, Kelly RA (1998) Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:6510–6515PubMedCrossRefGoogle Scholar
  105. 105.
    Vandecasteele G, Eschenhagen T, Scholz H, Stein B, Verde I, Fischmeister R (1999) Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med 5:331–334PubMedCrossRefGoogle Scholar
  106. 106.
    Martin SR, Emanuel K, Sears CE, Zhang YH, Casadei B (2006) Are myocardial eNOS and nNOS involved in the beta-adrenergic and muscarinic regulation of inotropy? A systematic investigation. Cardiovasc Res 70:97–106PubMedCrossRefGoogle Scholar
  107. 107.
    Sears CE, Ashley EA, Casadei B (2004) Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond B Biol Sci 359:1021–1044PubMedCrossRefGoogle Scholar
  108. 108.
    Ashley EA, Sears CE, Bryant SM, Watkins HC, Casadei B (2002) Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes. Circulation 105:3011–3016PubMedCrossRefGoogle Scholar
  109. 109.
    Brunner F, Andrew P, Wolkart G, Zechner R, Mayer B (2001) Myocardial contractile function and heart rate in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Circulation 104:3097–3102PubMedCrossRefGoogle Scholar
  110. 110.
    Champion HC, Georgakopoulos D, Takimoto E, Isoda T, Wang Y, Kass DA (2004) Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3. Circ Res 94:657–663PubMedCrossRefGoogle Scholar
  111. 111.
    Danson EJ, Zhang YH, Sears CE, Edwards AR, Casadei B, Paterson DJ (2005) Disruption of inhibitory G-proteins mediates a reduction in atrial beta-adrenergic signaling by enhancing eNOS expression. Cardiovasc Res 67:613–623PubMedCrossRefGoogle Scholar
  112. 112.
    Massion PB, Dessy C, Desjardins F, Pelat M, Havaux X, Belge C, Moulin P, Guiot Y, Feron O, Janssens S, Balligand JL (2004) Cardiomyocyte-restricted overexpression of endothelial nitric oxide synthase (NOS3) attenuates beta-adrenergic stimulation and reinforces vagal inhibition of cardiac contraction. Circulation 110:2666–2672PubMedCrossRefGoogle Scholar
  113. 113.
    Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, Steinhoff HJ, Goedecke A, Schrader J, Gladwin MT, Kelm M, Rassaf T (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia–reperfusion injury. Proc Natl Acad Sci USA 105:10256–10261PubMedCrossRefGoogle Scholar
  114. 114.
    Layland J, Li JM, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540:457–467PubMedCrossRefGoogle Scholar
  115. 115.
    Solaro RJ (2001) Modulation of cardiac myofilament activity by protein phosphorylation. In: Page E, Fozzard H, Solaro RJ (eds) Handbook of physiology, section 2: the cardiovascular system, vol 1: the heart. Oxford University Press, New York, pp 264–300Google Scholar
  116. 116.
    Bardenheuer H, Schrader J (1986) Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Physiol 250:H173–H180PubMedGoogle Scholar
  117. 117.
    Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflugers Arch 372:29–35PubMedCrossRefGoogle Scholar
  118. 118.
    Sparks HV Jr, Bardenheuer H (1986) Regulation of adenosine formation by the heart. Circ Res 58:193–201PubMedGoogle Scholar
  119. 119.
    Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322PubMedGoogle Scholar
  120. 120.
    Marshall JM (2007) The roles of adenosine and related substances in exercise hyperaemia. J Physiol 583:835–845PubMedCrossRefGoogle Scholar
  121. 121.
    el-Ani D, Jacobson KA, Shainberg A (1994) Characterization of adenosine receptors in intact cultured heart cells. Biochem Pharmacol 48:727–735PubMedCrossRefGoogle Scholar
  122. 122.
    Tikh EI, Fenton RA, Dobson JG Jr (2006) Contractile effects of adenosine A1 and A2A receptors in isolated murine hearts. Am J Physiol Heart Circ Physiol 290:H348–H356PubMedCrossRefGoogle Scholar
  123. 123.
    Teng B, Ledent C, Mustafa SJ (2008) Up-regulation of A 2B adenosine receptor in A 2A adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol 44:905–914PubMedCrossRefGoogle Scholar
  124. 124.
    Fenton RA, Moore ED, Fay FS, Dobson JG Jr (1991) Adenosine reduces the Ca2+ transients of isoproterenol-stimulated rat ventricular myocytes. Am J Physiol 261:C1107–C1114PubMedGoogle Scholar
  125. 125.
    Monahan TS, Sawmiller DR, Fenton RA, Dobson JG Jr (2000) Adenosine A(2a)-receptor activation increases contractility in isolated perfused hearts. Am J Physiol Heart Circ Physiol 279:H1472–H1481PubMedGoogle Scholar
  126. 126.
    Woodiwiss AJ, Honeyman TW, Fenton RA, Dobson JG Jr (1999) Adenosine A2a-receptor activation enhances cardiomyocyte shortening via Ca2+-independent and -dependent mechanisms. Am J Physiol 276:H1434–H1441PubMedGoogle Scholar
  127. 127.
    Norton GR, Woodiwiss AJ, McGinn RJ, Lorbar M, Chung ES, Honeyman TW, Fenton RA, Dobson JG Jr, Meyer TE (1999) Adenosine A1 receptor-mediated antiadrenergic effects are modulated by A2a receptor activation in rat heart. Am J Physiol 276:H341–H349PubMedGoogle Scholar
  128. 128.
    LaMonica DA, Frohloff N, Dobson JG Jr (1985) Adenosine inhibition of catecholamine-stimulated cardiac membrane adenylate cyclase. Am J Physiol 248:H737–H744PubMedGoogle Scholar
  129. 129.
    Miyazaki K, Komatsu S, Ikebe M, Fenton RA, Dobson JG Jr (2004) Protein kinase cepsilon and the antiadrenergic action of adenosine in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 287:H1721–H1729PubMedCrossRefGoogle Scholar
  130. 130.
    Kjaer M, Hanel B, Worm L, Perko G, Lewis SF, Sahlin K, Galbo H, Secher NH (1999) Cardiovascular and neuroendocrine responses to exercise in hypoxia during impaired neural feedback from muscle. Am J Physiol 277:R76–R85PubMedGoogle Scholar
  131. 131.
    Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM, Houston CS (1987) Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol 63:531–539PubMedGoogle Scholar
  132. 132.
    Kaijser L, Roach RC (1999) Myocardial blood flow and oxygen extraction in man after adaptation to high altitude. FASEB J 13:LB57Google Scholar
  133. 133.
    Roach RC, Koskolou MD, Calbet JA, Saltin B (1999) Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am J Physiol 276:H438–H445PubMedGoogle Scholar
  134. 134.
    Amann M, Calbet JA (2008) Convective oxygen transport and fatigue. J Appl Physiol 104:861–870PubMedCrossRefGoogle Scholar
  135. 135.
    Hurtado A. (1960). Some clinical aspects of life at high altitudes Ann Intern Med 53Google Scholar
  136. 136.
    Mortimer E A Jr, Monson RR, MacMahon B (1977) Reduction in mortality from coronary heart disease in men residing at high altitude. N Engl J Med 296:581–585PubMedGoogle Scholar
  137. 137.
    Poupa O, Krofta K, Prochazka J, Turek Z (1966) Acclimation to simulated high altitude and acute cardiac necrosis. Fed Proc 25:1243–1246PubMedGoogle Scholar
  138. 138.
    Meerson FZ, Gomzakov OA, Shimkovich MV (1973) Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis. Am J Cardiol 31:30–34PubMedCrossRefGoogle Scholar
  139. 139.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136PubMedGoogle Scholar
  140. 140.
    Tissier R, Berdeaux A, Ghaleh B, Couvreur N, Krieg T, Cohen MV, Downey JM (2008) Making the heart resistant to infarction: how can we further decrease infarct size? Front Biosci 13:284–301PubMedCrossRefGoogle Scholar
  141. 141.
    Das M, Das DK (2008) Molecular mechanism of preconditioning. IUBMB Life 60:199–203PubMedCrossRefGoogle Scholar
  142. 142.
    Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiol Rev 88:581–609PubMedCrossRefGoogle Scholar
  143. 143.
    Speechly-Dick ME, Mocanu MM, Yellon DM (1994) Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res 75:586–590PubMedGoogle Scholar
  144. 144.
    Gopalakrishna R, Anderson WB (1989) Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci USA 86:6758–6762PubMedCrossRefGoogle Scholar
  145. 145.
    Seko Y, Tobe K, Takahashi N, Kaburagi Y, Kadowaki T, Yazaki Y (1996) Hypoxia and hypoxia/reoxygenation activate Src family tyrosine kinases and p21ras in cultured rat cardiac myocytes. Biochem Biophys Res Commun 226:530–535PubMedCrossRefGoogle Scholar
  146. 146.
    Song C, Vondriska TM, Wang GW, Klein JB, Cao X, Zhang J, Kang YJ, D’Souza S, Ping P (2002) Molecular conformation dictates signaling module formation: example of PKCepsilon and Src tyrosine kinase. Am J Physiol Heart Circ Physiol 282:H1166–H1171PubMedGoogle Scholar
  147. 147.
    Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL (2008) Complete loss of ischemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1alpha. Cardiovasc Res 77:463–470PubMedCrossRefGoogle Scholar
  148. 148.
    Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GD, Crapo JD, Entman ML, Taegtmeyer H (2005) Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation 112:407–415PubMedCrossRefGoogle Scholar
  149. 149.
    Neckar J, Szarszoi O, Herget J, Ostadal B, Kolar F (2003) Cardioprotective effect of chronic hypoxia is blunted by concomitant hypercapnia. Physiol Res 52:171–175PubMedGoogle Scholar
  150. 150.
    Rakusan K, Cicutti N, Kolar F (2001) Cardiac function, microvascular structure, and capillary hematocrit in hearts of polycythemic rats. Am J Physiol Heart Circ Physiol 281:H2425–H2431PubMedGoogle Scholar
  151. 151.
    Zungu M, Young ME, Stanley WC, Essop MF (2008) Expression of mitochondrial regulatory genes parallels respiratory capacity and contractile function in a rat model of hypoxia-induced right ventricular hypertrophy. Mol Cell Biochem 318:175–181PubMedCrossRefGoogle Scholar
  152. 152.
    Opie LH (1969) Metabolism of the heart in health and disease. II. Am Heart J 77:100–122PubMedCrossRefGoogle Scholar
  153. 153.
    Manchester J, Kong X, Nerbonne J, Lowry OH, Lawrence J C Jr (1994) Glucose transport and phosphorylation in single cardiac myocytes: rate-limiting steps in glucose metabolism. Am J Physiol 266:E326–E333PubMedGoogle Scholar
  154. 154.
    Feldhaus LM, Liedtke AJ (1998) mRNA expression of glycolytic enzymes and glucose transporter proteins in ischemic myocardium with and without reperfusion. J Mol Cell Cardiol 30:2475–2485PubMedCrossRefGoogle Scholar
  155. 155.
    Ye G, Donthi RV, Metreveli NS, Epstein PN (2005) Overexpression of hexokinase protects hypoxic and diabetic cardiomyocytes by increasing ATP generation. Cardiovasc Toxicol 5:293–300PubMedCrossRefGoogle Scholar
  156. 156.
    Holden JE, Stone CK, Clark CM, Brown WD, Nickles RJ, Stanley C, Hochachka PW (1995) Enhanced cardiac metabolism of plasma glucose in high-altitude natives: adaptation against chronic hypoxia. J Appl Physiol 79:222–228PubMedGoogle Scholar
  157. 157.
    Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281:9030–9037PubMedCrossRefGoogle Scholar
  158. 158.
    McClelland GB, Brooks GA (2002) Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia. J Appl Physiol 92:1573–1584PubMedGoogle Scholar
  159. 159.
    van Hall G, Calbet JA, Sondergaard H, Saltin B (2001) The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude. J Physiol 536:963–975PubMedCrossRefGoogle Scholar
  160. 160.
    Issekutz B Jr, Shaw WA, Issekutz TB (1975) Effect of lactate on FFA and glycerol turnover in resting and exercising dogs. J Appl Physiol 39:349–353PubMedGoogle Scholar
  161. 161.
    Boehm EA, Jones BE, Radda GK, Veech RL, Clarke K (2001) Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol 280:H977–H983PubMedGoogle Scholar
  162. 162.
    Daneshrad Z, Garcia-Riera MP, Verdys M, Rossi A (2000) Differential responses to chronic hypoxia and dietary restriction of aerobic capacity and enzyme levels in the rat myocardium. Mol Cell Biochem 210:159–166PubMedCrossRefGoogle Scholar
  163. 163.
    Kennedy SL, Stanley WC, Panchal AR, Mazzeo RS (2001) Alterations in enzymes involved in fat metabolism after acute and chronic altitude exposure. J Appl Physiol 90:17–22PubMedGoogle Scholar
  164. 164.
    Ngumbela KC, Sack MN, Essop MF (2003) Counter-regulatory effects of incremental hypoxia on the transcription of a cardiac fatty acid oxidation enzyme-encoding gene. Mol Cell Biochem 250:151–158PubMedCrossRefGoogle Scholar
  165. 165.
    Huss JM, Levy FH, Kelly DP (2001) Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: a mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem 276:27605–27612PubMedCrossRefGoogle Scholar
  166. 166.
    Razeghi P, Young ME, Abbasi S, Taegtmeyer H (2001) Hypoxia in vivo decreases peroxisome proliferator-activated receptor alpha-regulated gene expression in rat heart. Biochem Biophys Res Commun 287:5–10PubMedCrossRefGoogle Scholar
  167. 167.
    Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9PubMedGoogle Scholar
  168. 168.
    Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122PubMedCrossRefGoogle Scholar
  169. 169.
    Cervos Navarro J, Kunas RC, Sampaolo S, Mansmann U (1999) Heart mitochondria in rats submitted to chronic hypoxia. Histol Histopathol 14:1045–1052PubMedGoogle Scholar
  170. 170.
    Ostadal B, Kolar F (2007) Cardiac adaptation to chronic high-altitude hypoxia: beneficial and adverse effects. Respir Physiol Neurobiol 158:224–236PubMedCrossRefGoogle Scholar
  171. 171.
    Kolar F, Neckar J, Ostadal B (2005) MCC-134, a blocker of mitochondrial and opener of sarcolemmal ATP-sensitive K+ channels, abrogates cardioprotective effects of chronic hypoxia. Physiol Res 54:467–471PubMedGoogle Scholar
  172. 172.
    Hrbasova M, Novotny J, Hejnova L, Kolar F, Neckar J, Svoboda P (2003) Altered myocardial Gs protein and adenylyl cyclase signaling in rats exposed to chronic hypoxia and normoxic recovery. J Appl Physiol 94:2423–2432PubMedCrossRefGoogle Scholar
  173. 173.
    Asemu G, Papousek F, Ostadal B, Kolar F (1999) Adaptation to high altitude hypoxia protects the rat heart against ischemia-induced arrhythmias. Involvement of mitochondrial K(ATP) channel. J Mol Cell Cardiol 31:1821–1831PubMedCrossRefGoogle Scholar
  174. 174.
    Meerson FZ, Ustinova EE, Orlova EH (1987) Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin Cardiol 10:783–789PubMedCrossRefGoogle Scholar
  175. 175.
    Neckar J, Ostadal B, Kolar F (2004) Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol Res 53:621–628PubMedGoogle Scholar
  176. 176.
    Tajima M, Katayose D, Bessho M, Isoyama S (1994) Acute ischemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischaemia. Cardiovasc Res 28:312–319PubMedCrossRefGoogle Scholar
  177. 177.
    Neckar J, Papousek F, Novakova O, Ost’adal B, Kolar F (2002) Cardioprotective effects of chronic hypoxia and ischemic preconditioning are not additive. Basic Res Cardiol 97:161–167PubMedCrossRefGoogle Scholar
  178. 178.
    Asemu G, Neckar J, Szarszoi O, Papousek F, Ostadal B, Kolar F (2000) Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol Res 49:597–606PubMedGoogle Scholar
  179. 179.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448PubMedCrossRefGoogle Scholar
  180. 180.
    Pei JM, Yu XC, Fung ML, Zhou JJ, Cheung CS, Wong NS, Leung MP, Wong TM (2000) Impaired 8G(s)alpha and adenylyl cyclase cause beta-adrenoceptor desensitization in chronically hypoxic rat hearts. Am J Physiol Cell Physiol 279:C1455–C1463PubMedGoogle Scholar
  181. 181.
    Pei JM, Zhou JJ, Bian JS, Yu XC, Fung ML, Wong TM (2000) Impaired [Ca(2 +)](i) and pH(i) responses to kappa-opioid receptor stimulation in the heart of chronically hypoxic rats. Am J Physiol Cell Physiol 279:C1483–C1494PubMedGoogle Scholar
  182. 182.
    Shan J, Yu XC, Fung ML, Wong TM (2002) Attenuated “cross talk” between kappa-opioid receptors and beta-adrenoceptors in the heart of chronically hypoxic rats. Pflugers Arch 444:126–132PubMedCrossRefGoogle Scholar
  183. 183.
    Pei JM, Kravtsov GM, Wu S, Das R, Fung ML, Wong TM (2003) Calcium homeostasis in rat cardiomyocytes during chronic hypoxia: a time course study. Am J Physiol Cell Physiol 285:C1420–C1428PubMedGoogle Scholar
  184. 184.
    Gregg DE, Khouri EM, Donald DE, Lowensohn HS, Pasyk S (1972) Coronary circulation in the conscious dog with cardiac neural ablation. Circ Res 31:129–144PubMedGoogle Scholar
  185. 185.
    DiCarlo SE, Blair RW, Bishop VS, Stone HL (1988) Role of beta 2-adrenergic receptors on coronary resistance during exercise. J Appl Physiol 64:2287–2293PubMedGoogle Scholar
  186. 186.
    Gwirtz PA, Mass HJ, Strader JR, Jones CE (1988) Coronary and cardiac responses to exercise after chronic ventricular sympathectomy. Med Sci Sports Exerc 20:126–135PubMedCrossRefGoogle Scholar
  187. 187.
    Chilian WM, Harrison DG, Haws CW, Snyder WD, Marcus ML (1986) Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ Res 58:68–82PubMedGoogle Scholar
  188. 188.
    Semenza GL, Prabhakar NR (2007) HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal 9:1391–1396PubMedCrossRefGoogle Scholar
  189. 189.
    Calbet JA, Radegran G, Boushel R, Sondergaard H, Saltin B, Wagner PD (2004) Plasma volume expansion does not increase maximal cardiac output or VO2max in lowlanders acclimatized to altitude. Am J Physiol Heart Circ Physiol 287:H1214–H1224PubMedCrossRefGoogle Scholar
  190. 190.
    Boushel R, Calbet JA, Radegran G, Sondergaard H, Wagner PD, Saltin B (2001) Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation 104:1785–1791PubMedCrossRefGoogle Scholar
  191. 191.
    Suarez J, Alexander JK, Houston CS (1987) Enhanced left ventricular systolic performance at high altitude during Operation Everest II. Am J Cardiol 60:137–142PubMedCrossRefGoogle Scholar
  192. 192.
    Robach P, Calbet JA, Thomsen JJ, Boushel R, Mollard P, Rasmussen P, Lundby C (2008) The ergogenic effect of recombinant human erythropoietin on VO2max depends on the severity of arterial hypoxemia. PLoS ONE 3:e2996PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • José A. L. Calbet
    • 1
    • 2
    Email author
  • Paul Robach
    • 3
    • 4
  • Carsten Lundby
    • 2
    • 5
  1. 1.Department of Physical EducationUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.The Copenhagen Muscle Research CentreCopenhagen NDenmark
  3. 3.Ecole Nationale de Ski et d’AlpinismeChamonixFrance
  4. 4.Laboratoire “Réponses cellulaires et fonctionnelles à l’hypoxie”EA 2363, ARPEBobignyFrance
  5. 5.Department of Sport ScienceÅrhus UniversitetÅrhus NDenmark

Personalised recommendations