Cellular and Molecular Life Sciences

, Volume 66, Issue 21, pp 3505–3516

δ-Opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation

  • Xuezhi Kang
  • Dongman Chao
  • Quanbao Gu
  • Guanghong Ding
  • Yingwei Wang
  • Gianfranco Balboni
  • Lawrence H. Lazarus
  • Ying Xia
Research Article
  • 125 Downloads

Abstract

Hypoxic/ischemic disruption of ionic homeostasis is a critical trigger of neuronal injury/death in the brain. There is, however, no promising strategy against such pathophysiologic change to protect the brain from hypoxic/ischemic injury. Here, we present a novel finding that activation of δ-opioid receptors (DOR) reduced anoxic Na+ influx in the mouse cortex, which was completely blocked by DOR antagonism with naltrindole. Furthermore, we co-expressed DOR and Na+ channels in Xenopus oocytes and showed that DOR expression and activation indeed play an inhibitory role in Na+ channel regulation by decreasing the amplitude of sodium currents and increasing activation threshold of Na+ channels. Our results suggest that DOR protects from anoxic disruption of Na+ homeostasis via Na+ channel regulation. These data may potentially have significant impacts on understanding the intrinsic mechanism of neuronal responses to stress and provide clues for better solutions of hypoxic/ischemic encephalopathy, and for the exploration of acupuncture mechanism since acupuncture activates opioid system.

Keywords

δ-Opioid receptor Na+ channels Na+ influx Hypoxia Cortex 

References

  1. 1.
    Breder J, Sabelhaus CF, Opitz T, Reymann KG, Schrőder UH (2000) Inhibition of different pathways influencing Na+ homeostasis protects organotypic hippocampal slice cultures from hypoxic/hypoglycemic injury. Neuropharmacology 39:1779–1787CrossRefPubMedGoogle Scholar
  2. 2.
    Koike T, Tanaka S, Oda T, Ninomiya T (2000) Sodium overload through voltage-dependent Na+ channels induces necrosis and apoptosis of rat superior cervical ganglion cells in vitro. Brain Res Bull 51:345–355CrossRefPubMedGoogle Scholar
  3. 3.
    Huang H, Gao TM, Gong LW, Zhuang ZY, Li X (2001) Potassium channel blocker TEA prevents CA1 hippocampal injury following transient forebrain ischemia in adult rats. Neurosci Lett 305:83–86CrossRefPubMedGoogle Scholar
  4. 4.
    Wei L, Yu SP, Gottron F, Snider BJ, Zipfei GJ, Choi DW (2003) Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke 34:1281–1286CrossRefPubMedGoogle Scholar
  5. 5.
    Liu D, Slevin JR, Lu C, Chan SL, Hansson M, Elmer E, Mattson MP (2003) Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J Neurochem 86:966–979CrossRefPubMedGoogle Scholar
  6. 6.
    Banasiak KJ, Burenkova O, Haddad GG (2004) Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death. Neuroscience 126:31–44CrossRefPubMedGoogle Scholar
  7. 7.
    Cui J, Yang H, Lee US (2009) Molecular mechanisms of BK channel activation. Cell Mol Life Sci 66:852–875CrossRefPubMedGoogle Scholar
  8. 8.
    Locatelli F, Bersano A, Ballabio E, Lanfranconi S, Papadimitriou D, Strazzer S, Bresolin N, Comi GP, Corti S (2009) Stem cell therapy in stroke. Cell Mol Life Sci 66:757–772CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang JH, Gibney GT, Zhao P, Xia Y (2002) Neuroprotective role of δ-opioid receptors in the cortical neurons. Am J Physiol Cell Physiol 282:C1225–C1234PubMedGoogle Scholar
  10. 10.
    Zhang J, Qian H, Zhao P, Hong SS, Xia Y (2006) Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through δ-opioid receptor. Stroke 37:1094–1099CrossRefPubMedGoogle Scholar
  11. 11.
    Ma MC, Qian H, Ghassemi F, Zhao P, Xia Y (2005) Oxygen sensitive δ-opioid receptor-regulated survival and death signals: novel insights into neuronal preconditioning and protection. J Biol Chem 280:16208–16218CrossRefPubMedGoogle Scholar
  12. 12.
    Yang YL, Xia XW, Zhang Y, Wang Q, Li L, Luo GH, Xia Y (2009) δ-opioid receptor activation attenuates oxidative injury in the ischemic rat brain. BMC Biol 7:55CrossRefPubMedGoogle Scholar
  13. 13.
    Borlongan CV, Hayashi T, Oeltgen PR, Su TP, Wang Y (2009) Hibernation-like state induced by an opioid peptide protects against experimental stroke. BMC Biol 7:31CrossRefPubMedGoogle Scholar
  14. 14.
    Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology 100:562–568CrossRefPubMedGoogle Scholar
  15. 15.
    Su DS, Wang ZH, Zheng YJ, Zhao YH, Wang XR (2007) Dose-dependent neuroprotection of delta opioid peptide [D-Ala2, D-Leu5]enkephalin in neuronal death and retarded behavior induced by forebrain ischemia in rats. Neurosci Lett 423:113–117CrossRefPubMedGoogle Scholar
  16. 16.
    Xiong LZ, Yang J, Wang Q, Lu ZH (2007) Involvement of delta- and mu-opioid receptors in the delayed cerebral ischemic tolerance induced by repeated electroacupuncture preconditioning in rats. Chin Med J 120:394–399PubMedGoogle Scholar
  17. 17.
    Iwata M, Inoue S, Kawaguchi M, Nakamura M, Konishi N, Furuya H (2007) Effects of delta-opioid receptor stimulation and inhibition on hippocampal survival in a rat model of forebrain ischaemia. Br J Anaesth 99:538–546CrossRefPubMedGoogle Scholar
  18. 18.
    Charron C, Messier C, Plamondon H (2008) Neuroprotection and functional recovery conferred by administration of kappa- and delta- opioid agonists in a rat model of global ischemia. Physiol Behav 93:502–511CrossRefPubMedGoogle Scholar
  19. 19.
    Pamenter ME, Buck LT (2008) δ-opioid receptor antagonism induces NMDA receptor-dependent excitotoxicity in anoxic turtle cortex. J Exp Biol 211:3512–3517CrossRefPubMedGoogle Scholar
  20. 20.
    Kao TK, Ou YC, Liao SL, Chen WY, Wang CC, Chen SY, Chiang AN, Chen CJ (2008) Opioids modulate post-ischemic progression in a rat model of stroke. Neurochem Int 52:1256–1265CrossRefPubMedGoogle Scholar
  21. 21.
    Chao D, Donnelly DF, Feng Y, Bazzy-Asaad A, Xia Y (2007) Cortical δ-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation. J Cereb Blood Flow Metab 27:356–368CrossRefPubMedGoogle Scholar
  22. 22.
    Chao D, Bazzy-Asaad A, Balboni G, Xia Y (2007) δ-, but not μ-, opioid receptor stabilizes K+ homeostasis by reducing Ca2+ influx in the cortex during acute hypoxia. J Cell Physiol 212:60–67CrossRefPubMedGoogle Scholar
  23. 23.
    Chao D, Bazzy-Asaad A, Balboni G, Salvadori S, Xia Y (2008) Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex. Cereb Cortex 18:2217–2227CrossRefPubMedGoogle Scholar
  24. 24.
    Chao D, Balboni G, Lazarus LH, Salvadori S, Xia Y (2009) Na+ mechanism of δ-opioid receptor induced protection from anoxic K+ leakage in the cortex. Cell Mol Life Sci 66:1105–1115CrossRefPubMedGoogle Scholar
  25. 25.
    Xia Y, Fung ML, O’Reilly JP, Haddad GG (2000) Increased neuronal excitability after long-term O2 deprivation is mediated mainly by sodium channels. Brain Res Mol Brain Res 76:211–219CrossRefPubMedGoogle Scholar
  26. 26.
    Xia Y, Cao H, Zhang JH, Chen NY, Siegel K, Agulnik M, Haddad GG (2001) Effect of δ-opioid receptor activation on Na+ channel expression in cortical neurons subjected to prolonged hypoxia in culture. Soc Neurosci Abstract, Program No. 740.6Google Scholar
  27. 27.
    Xia Y, Zhao P, Xue J, Gu XQ, Sun X, Yao H, Haddad GG (2003) Na+ channel expression and neuronal function in the Na+/H+ exchanger 1 null mutant mouse. J Neurophysiol 89:229–236CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao P, Ma MC, Qian H, Xia Y (2005) Down-regulation of delta-opioid receptors in Na+/H+ exchanger 1 null mutant mouse brain with epilepsy. Neurosci Res 53:442–446CrossRefPubMedGoogle Scholar
  29. 29.
    Agrawal N, Alonso A, Ragsdale DS (2003) Increased persistent sodium currents in rat entorhinal cortex layer V neurons in a post-status epilepticus model of temporal lobe epilepsy. Epilepsia 44:1601–1604CrossRefPubMedGoogle Scholar
  30. 30.
    Jarnot M, Corbett AM (2006) Immunolocalization of NaV1.2 channel subtypes in rat and cat brain and spinal cord with high affinity antibodies. Brain Res 1107:1–12CrossRefPubMedGoogle Scholar
  31. 31.
    Balboni G, Salvadori S, Guerrini R, Negri L, Giannini E, Jinsmaa Y, Bryant SD, Lazarus LH (2002) Potent δ-opioid receptor agonists containing the Dmt-Tic pharmacophore. J Med Chem 45:5556–5563CrossRefPubMedGoogle Scholar
  32. 32.
    Műller M, Somjen GG (2000) Na+ and K+ concentrations, extra- and intracellular voltage, and the effect of TTX in hypoxic rat hippocampal slices. J Neurophysiol 83:735–745PubMedGoogle Scholar
  33. 33.
    Shah BS, Stevens EB, Gonzalez MI, Bramwell S, Pinnock RD, Lee K, Dixon AK (2000) β3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain. Eur J Neurosci 12:3985–3990CrossRefPubMedGoogle Scholar
  34. 34.
    Guille M (1999) Microinjection into Xenopus oocytes and embryos. Methods Mol Biol 127:111–123CrossRefPubMedGoogle Scholar
  35. 35.
    Bartolomei F, Gastaldi M, Massacrier A, Planells R, Nicolas S, Cau P (1997) Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain. J Neurocytol 26:667–678CrossRefPubMedGoogle Scholar
  36. 36.
    Trimmer JS, Cooperman SS, Tomiko SA, Zhou JY, Crean SM, Boyle MB, Kallen RG, Sheng ZH, Barchi RL, Sigworth FJ (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49CrossRefPubMedGoogle Scholar
  37. 37.
    Remy C, Remy S, Beck H, Swandulla D, Hans M (2004) Modulation of voltage-dependent sodium channels by the δ-agonist SNC80 in acutely isolated rat hippocampal neurons. Neuropharmacology 47:1102–1112CrossRefPubMedGoogle Scholar
  38. 38.
    Xia Y, Haddad GG (1991) Ontogeny and distribution of opioid receptors in the rat brainstem. Brain Res 549:181–193CrossRefPubMedGoogle Scholar
  39. 39.
    Xia Y, Haddad GG (2001) Major difference in the expression of μ- and δ-opioid receptors between turtle and rat brain. J Comp Neurol 436:202–210CrossRefPubMedGoogle Scholar
  40. 40.
    Dunn JF, Zaim WY, Meyerand E (1999) Regional heterogeneity in the brain’s response to hypoxia measured using BOLD MR imaging. Magn Reson Med 41:850–854CrossRefPubMedGoogle Scholar
  41. 41.
    Buresh Y, Koroleva VI, Korolev OS, Maresh V (1999) Changes in the constant potential in brain structures in rats during focal ischemia and systemic hypoxia. Neurosci Behav Physiol 29:569–579CrossRefPubMedGoogle Scholar
  42. 42.
    Chen Y, Yu FH, Surmeier DJ, Scheuer T, Catterall WA (2006) Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C. Neuron 49:409–420CrossRefPubMedGoogle Scholar
  43. 43.
    Hudmon A, Choi JS, Tyrrell L, Black JA, Rush AM, Waxman SG, Dib-Hajj SD (2008) Phosphorylation of sodium channel Na(v)1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons. J Neurosci 28:3190–3201CrossRefPubMedGoogle Scholar
  44. 44.
    Fung ML, Croning MDR, Haddad GG (1999) Sodium homeostasis in rat hippocampal slices during oxygen and glucose deprivation: role of voltage-sensitive sodium channels. Neurosci Lett 275:41–44CrossRefPubMedGoogle Scholar
  45. 45.
    Raley-Susman KM, Kass IS, Cottrell JE, Newman RB, Chambers G, Wang J (2001) Sodium influx blockade and hypoxic damage to CA1 pyramidal neurons in rat hippocampal slices. J Neurophysiol 86:2715–2726PubMedGoogle Scholar
  46. 46.
    Mantegazza M, Gambardella A, Rusconi R, Schiavon E, Annesi F, Cassulini RR, Labate A, Carrideo S, Chifari R, Canevini MP, Canger R, Franceschetti S, Annesi G, Wanke E, Quattrone A (2005) Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc Natl Acad Sci USA 102:18177–18182CrossRefPubMedGoogle Scholar
  47. 47.
    Xu R, Thomas EA, Jenkins M, Gazina EV, Chiu C, Heron SE, Mulley JC, Scheffer IE, Berkovic SF, Petrou S (2007) A childhood epilepsy mutation reveals a role for developmentally regulated splicing of a sodium channel. Mol Cell Neurosci 35:292–301CrossRefPubMedGoogle Scholar
  48. 48.
    Armijo JA, Shushtarian M, Valdizan EM, Cuadrado A, de las Cuevas I, Adín J (2005) Ion channels and epilepsy. Curr Pharm Des 11:1975–2003CrossRefPubMedGoogle Scholar
  49. 49.
    Ma MC, Donnelly DF, Xia Y (2004) Neuronal preconditioning inhibits hypoxiainduced sodium channel up-regulation via d-opioid receptor. Soc Neurosci Abstract, 457.10, onlineGoogle Scholar
  50. 50.
    Cummins TR, Sheets PL, Waxman SG (2007) The roles of sodium channels in nociception: implications for mechanisms of pain. Pain 131:243–257CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Xuezhi Kang
    • 1
  • Dongman Chao
    • 2
  • Quanbao Gu
    • 1
  • Guanghong Ding
    • 1
  • Yingwei Wang
    • 3
  • Gianfranco Balboni
    • 4
  • Lawrence H. Lazarus
    • 5
  • Ying Xia
    • 2
  1. 1.Shanghai Research Center for Acupuncture and MeridiansShanghaiChina
  2. 2.Yale University School of MedicineNew HavenUSA
  3. 3.Shanghai Jiaotong University College of MedicineShanghaiChina
  4. 4.University of CagliariCagliariItaly
  5. 5.National Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations