Cellular and Molecular Life Sciences

, Volume 67, Issue 1, pp 43–62 | Cite as

Non-B DNA structure-induced genetic instability and evolution

  • Junhua Zhao
  • Albino Bacolla
  • Guliang Wang
  • Karen M. VasquezEmail author


Repetitive DNA motifs are abundant in the genomes of various species and have the capacity to adopt non-canonical (i.e., non-B) DNA structures. Several non-B DNA structures, including cruciforms, slipped structures, triplexes, G-quadruplexes, and Z-DNA, have been shown to cause mutations, such as deletions, expansions, and translocations in both prokaryotes and eukaryotes. Their distributions in genomes are not random and often co-localize with sites of chromosomal breakage associated with genetic diseases. Current genome-wide sequence analyses suggest that the genomic instabilities induced by non-B DNA structure-forming sequences not only result in predisposition to disease, but also contribute to rapid evolutionary changes, particularly in genes associated with development and regulatory functions. In this review, we describe the occurrence of non-B DNA-forming sequences in various species, the classes of genes enriched in non-B DNA-forming sequences, and recent mechanistic studies on DNA structure-induced genomic instability to highlight their importance in genomes.


Non-B DNA structures Repetitive sequences Genomic instability Evolutionary change Gene regulation 



We thank Ms. Sarah Henninger for technical assistance. This work was supported by an NIH/NCI grant (CA093729) and an NIH/NIEHS grant (ES015707).

Supplementary material

18_2009_131_MOESM1_ESM.jpg (2.1 mb)
Supplementary material 1 (JPEG 2.13 MB)
18_2009_131_MOESM2_ESM.jpg (1.9 mb)
Supplementary material 2 (JPEG 1.94 MB)
18_2009_131_MOESM3_ESM.doc (48 kb)
Supplementary material 3 (DOC 48.5 KB)


  1. 1.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedGoogle Scholar
  2. 2.
    Mirkin SM (2008) Discovery of alternative DNA structures: a heroic decade (1979–1989). Front Biosci 13:1064–1071PubMedGoogle Scholar
  3. 3.
    Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024Google Scholar
  4. 4.
    Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680–686PubMedGoogle Scholar
  5. 5.
    Lilley DM (1980) The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci USA 77:6468–6472PubMedGoogle Scholar
  6. 6.
    Panayotatos N, Wells RD (1981) Cruciform structures in supercoiled DNA. Nature 289:466–470PubMedGoogle Scholar
  7. 7.
    Lyamichev VI, Panyutin IG, Frank-Kamenetskii MD (1983) Evidence of cruciform structures in superhelical DNA provided by two-dimensional gel electrophoresis. FEBS Lett 153:298–302PubMedGoogle Scholar
  8. 8.
    Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366PubMedGoogle Scholar
  9. 9.
    Bacolla A, Wells RD (2004) Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem 279:47411–47414PubMedGoogle Scholar
  10. 10.
    Bacolla A, Jaworski A, Larson JE, Jakupciak JP, Chuzhanova N, Abeysinghe SS, O’Connell CD, Cooper DN, Wells RD (2004) Breakpoints of gross deletions coincide with non-B DNA conformations. Proc Natl Acad Sci USA 101:14162–14167PubMedGoogle Scholar
  11. 11.
    Wang G, Vasquez KM (2006) Non-B DNA structure-induced genetic instability. Mutat Res 598:103–119PubMedGoogle Scholar
  12. 12.
    Wang G, Vasquez KM (2004) Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc Natl Acad Sci USA 101:13448–13453PubMedGoogle Scholar
  13. 13.
    Glickman BW, Ripley LS (1984) Structural intermediates of deletion mutagenesis: a role for palindromic DNA. Proc Natl Acad Sci USA 81:512–516PubMedGoogle Scholar
  14. 14.
    Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621PubMedGoogle Scholar
  15. 15.
    Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447:932–940PubMedGoogle Scholar
  16. 16.
    Lahue RS, Slater DL (2003) DNA repair and trinucleotide repeat instability. Front Biosci 8:s653–s665PubMedGoogle Scholar
  17. 17.
    Wells RD, Dere R, Hebert ML, Napierala M, Son LS (2005) Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res 33:3785–3798PubMedGoogle Scholar
  18. 18.
    Wang G, Christensen LA, Vasquez KM (2006) Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci USA 103:2677–2682PubMedGoogle Scholar
  19. 19.
    Adachi M, Tsujimoto Y (1990) Potential Z-DNA elements surround the breakpoints of chromosome translocation within the 5′ flanking region of bcl-2 gene. Oncogene 5:1653–1657PubMedGoogle Scholar
  20. 20.
    Raghavan SC, Lieber MR (2004) Chromosomal translocations and non-B DNA structures in the human genome. Cell Cycle 3:762–768PubMedGoogle Scholar
  21. 21.
    Raghavan SC, Chastain P, Lee JS, Hegde BG, Houston S, Langen R, Hsieh CL, Haworth IS, Lieber MR (2005) Evidence for a triplex DNA conformation at the bcl-2 major breakpoint region of the t(14;18) translocation. J Biol Chem 280:22749–22760PubMedGoogle Scholar
  22. 22.
    Raghavan SC, Lieber MR (2006) DNA structures at chromosomal translocation sites. Bioessays 28:480–494PubMedGoogle Scholar
  23. 23.
    Wang G, Carbajal S, Vijg J, DiGiovanni J, Vasquez KM (2008) DNA structure-induced genomic instability in vivo. J Natl Cancer Inst 100:1815–1817PubMedGoogle Scholar
  24. 24.
    Kato T, Inagaki H, Yamada K, Kogo H, Ohye T, Kowa H, Nagaoka K, Taniguchi M, Emanuel BS, Kurahashi H (2006) Genetic variation affects de novo translocation frequency. Science 311:971PubMedGoogle Scholar
  25. 25.
    Inagaki H, Ohye T, Kogo H, Kato T, Bolor H, Taniguchi M, Shaikh TH, Emanuel BS, Kurahashi H (2009) Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res 19:191–198PubMedGoogle Scholar
  26. 26.
    Emanuel BS (2008) Molecular mechanisms and diagnosis of chromosome 22q11.2 rearrangements. Dev Disabil Res Rev 14:11–18PubMedGoogle Scholar
  27. 27.
    Kurahashi H, Inagaki H, Ohye T, Kogo H, Kato T, Emanuel BS (2006) Palindrome-mediated chromosomal translocations in humans. DNA Repair (Amst) 5:1136–1145Google Scholar
  28. 28.
    Gotter AL, Shaikh TH, Budarf ML, Rhodes CH, Emanuel BS (2004) A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2. Hum Mol Genet 13:103–115PubMedGoogle Scholar
  29. 29.
    Bacolla A, Wells RD (2009) Non-B DNA conformations as determinants of mutagenesis and human disease. Mol Carcinog 48:273–285PubMedGoogle Scholar
  30. 30.
    Smith GR (2008) Meeting DNA palindromes head-to-head. Genes Dev 22:2612–2620PubMedGoogle Scholar
  31. 31.
    Watson J, Hays FA, Ho PS (2004) Definitions and analysis of DNA Holliday junction geometry. Nucleic Acids Res 32:3017–3027PubMedGoogle Scholar
  32. 32.
    Sinden RR, Pettijohn DE (1984) Cruciform transitions in DNA. J Biol Chem 259:6593–6600PubMedGoogle Scholar
  33. 33.
    Oussatcheva EA, Pavlicek J, Sankey OF, Sinden RR, Lyubchenko YL, Potaman VN (2004) Influence of global DNA topology on cruciform formation in supercoiled DNA. J Mol Biol 338:735–743PubMedGoogle Scholar
  34. 34.
    Nag DK, Petes TD (1991) Seven-base-pair inverted repeats in DNA form stable hairpins in vivo in Saccharomyces cerevisiae. Genetics 129:669–673PubMedGoogle Scholar
  35. 35.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedGoogle Scholar
  36. 36.
    Harvey SC (1983) DNA structural dynamics: longitudinal breathing as a possible mechanism for the B in equilibrium Z transition. Nucleic Acids Res 11:4867–4878PubMedGoogle Scholar
  37. 37.
    Peck LJ, Nordheim A, Rich A, Wang JC (1982) Flipping of cloned d(pCpG)n·d(pCpG)n DNA sequences from right- to left-handed helical structure by salt, Co(III), or negative supercoiling. Proc Natl Acad Sci USA 79:4560–4564PubMedGoogle Scholar
  38. 38.
    Singleton CK, Klysik J, Stirdivant SM, Wells RD (1982) Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature 299:312–316PubMedGoogle Scholar
  39. 39.
    Ha SC, Lowenhaupt K, Rich A, Kim YG, Kim KK (2005) Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437:1183–1186PubMedGoogle Scholar
  40. 40.
    Htun H, Dahlberg JE (1988) Single strands, triple strands, and kinks in H-DNA. Science 241:1791–1796PubMedGoogle Scholar
  41. 41.
    Wells RD (1988) Unusual DNA structures. J Biol Chem 263:1095–1098PubMedGoogle Scholar
  42. 42.
    Jain A, Wang G, Vasquez KM (2008) DNA triple helices: biological consequences and therapeutic potential. Biochimie 90:1117–1130PubMedGoogle Scholar
  43. 43.
    Majumdar A, Patel DJ (2002) Identifying hydrogen bond alignments in multistranded DNA architectures by NMR. Acc Chem Res 35:1–11PubMedGoogle Scholar
  44. 44.
    Sinden RR, Pytlos-Sinden MJ, Potaman VN (2007) Slipped strand DNA structures. Front Biosci 12:4788–4799PubMedGoogle Scholar
  45. 45.
    Chou SH, Chin KH, Wang AH (2003) Unusual DNA duplex and hairpin motifs. Nucleic Acids Res 31:2461–2474PubMedGoogle Scholar
  46. 46.
    Wang G, Zhao J, Vasquez KM (2009) Methods to determine DNA structural alterations and genetic instability. Methods 48:54–62PubMedGoogle Scholar
  47. 47.
    Pearson CE, Eichler EE, Lorenzetti D, Kramer SF, Zoghbi HY, Nelson DL, Sinden RR (1998) Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37:2701–2708PubMedGoogle Scholar
  48. 48.
    Caskey CT, Pizzuti A, Fu YH, Fenwick RG Jr, Nelson DL (1992) Triplet repeat mutations in human disease. Science 256:784–789PubMedGoogle Scholar
  49. 49.
    Benton CS, de Silva R, Rutledge SL, Bohlega S, Ashizawa T, Zoghbi HY (1998) Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology 51:1081–1086PubMedGoogle Scholar
  50. 50.
    Palecek E (1991) Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol 26:151–226PubMedGoogle Scholar
  51. 51.
    Schroth GP, Ho PS (1995) Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Res 23:1977–1983PubMedGoogle Scholar
  52. 52.
    Lafer EM, Moller A, Nordheim A, Stollar BD, Rich A (1981) Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci USA 78:3546–3550PubMedGoogle Scholar
  53. 53.
    Nordheim A, Pardue ML, Lafer EM, Moller A, Stollar BD, Rich A (1981) Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes. Nature 294:417–422PubMedGoogle Scholar
  54. 54.
    Nordheim A, Lafer EM, Peck LJ, Wang JC, Stollar BD, Rich A (1982) Negatively supercoiled plasmids contain left-handed Z-DNA segments as detected by specific antibody binding. Cell 31:309–318PubMedGoogle Scholar
  55. 55.
    Lafer EM, Sousa R, Ali R, Rich A, Stollar BD (1986) The effect of anti-Z-DNA antibodies on the B-DNA–Z-DNA equilibrium. J Biol Chem 261:6438–6443PubMedGoogle Scholar
  56. 56.
    Agazie YM, Lee JS, Burkholder GD (1994) Characterization of a new monoclonal antibody to triplex DNA and immunofluorescent staining of mammalian chromosomes. J Biol Chem 269:7019–7023PubMedGoogle Scholar
  57. 57.
    Lee JS, Burkholder GD, Latimer LJ, Haug BL, Braun RP (1987) A monoclonal antibody to triplex DNA binds to eucaryotic chromosomes. Nucleic Acids Res 15:1047–1061PubMedGoogle Scholar
  58. 58.
    Agazie YM, Burkholder GD, Lee JS (1996) Triplex DNA in the nucleus: direct binding of triplex-specific antibodies and their effect on transcription, replication and cell growth. Biochem J 316(Pt 2):461–466PubMedGoogle Scholar
  59. 59.
    Ohno M, Fukagawa T, Lee JS, Ikemura T (2002) Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma 111:201–213PubMedGoogle Scholar
  60. 60.
    Brown JC, Brown BA 2nd, Li Y, Hardin CC (1998) Construction and characterization of a quadruplex DNA selective single-chain autoantibody from a viable motheaten mouse hybridoma with homology to telomeric DNA binding proteins. Biochemistry 37:16338–16348PubMedGoogle Scholar
  61. 61.
    Brown BA 2nd, Li Y, Brown JC, Hardin CC, Roberts JF, Pelsue SC, Shultz LD (1998) Isolation and characterization of a monoclonal anti-quadruplex DNA antibody from autoimmune “viable motheaten” mice. Biochemistry 37:16325–16337PubMedGoogle Scholar
  62. 62.
    Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A (2001) In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 98:8572–8577PubMedGoogle Scholar
  63. 63.
    Frappier L, Price GB, Martin RG, Zannis-Hadjopoulos M (1989) Characterization of the binding specificity of two anticruciform DNA monoclonal antibodies. J Biol Chem 264:334–341PubMedGoogle Scholar
  64. 64.
    Sinden RR (1994) Cruciform structures in DNA and triplex DNA in DNA structure and function. Academic, San Diego, pp 160–164 (see also pp 241–242)Google Scholar
  65. 65.
    Raghavan SC, Tsai A, Hsieh CL, Lieber MR (2006) Analysis of non-B DNA structure at chromosomal sites in the mammalian genome. Methods Enzymol 409:301–316PubMedGoogle Scholar
  66. 66.
    Cox R, Mirkin SM (1997) Characteristic enrichment of DNA repeats in different genomes. Proc Natl Acad Sci USA 94:5237–5242PubMedGoogle Scholar
  67. 67.
    Repping S, Skaletsky H, Lange J, Silber S, Van Der Veen F, Oates RD, Page DC, Rozen S (2002) Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet 71:906–922PubMedGoogle Scholar
  68. 68.
    Lobachev KS, Rattray A, Narayanan V (2007) Hairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells. Front Biosci 12:4208–4220PubMedGoogle Scholar
  69. 69.
    Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G (2004) Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res 14:1861–1869PubMedGoogle Scholar
  70. 70.
    Khuu P, Sandor M, DeYoung J, Ho PS (2007) Phylogenomic analysis of the emergence of GC-rich transcription elements. Proc Natl Acad Sci USA 104:16528–16533PubMedGoogle Scholar
  71. 71.
    Nordheim A, Rich A (1983) Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303:674–679PubMedGoogle Scholar
  72. 72.
    Oh DB, Kim YG, Rich A (2002) Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc Natl Acad Sci USA 99:16666–16671PubMedGoogle Scholar
  73. 73.
    Wong B, Chen S, Kwon JA, Rich A (2007) Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:2229–2234PubMedGoogle Scholar
  74. 74.
    Bacolla A, Collins JR, Gold B, Chuzhanova N, Yi M, Stephens RM, Stefanov S, Olsh A, Jakupciak JP, Dean M, Lempicki RA, Cooper DN, Wells RD (2006) Long homopurine*homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region. Nucleic Acids Res 34:2663–2675PubMedGoogle Scholar
  75. 75.
    Todd AK, Johnston M, Neidle S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33:2901–2907PubMedGoogle Scholar
  76. 76.
    Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–2916PubMedGoogle Scholar
  77. 77.
    Sundquist WI, Klug A (1989) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342:825–829PubMedGoogle Scholar
  78. 78.
    Williamson JR, Raghuraman MK, Cech TR (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59:871–880PubMedGoogle Scholar
  79. 79.
    Panyutin IG, Kovalsky OI, Budowsky EI (1989) Magnesium-dependent supercoiling-induced transition in (dG)n·(dC)n stretches and formation of a new G-structure by (dG)n strand. Nucleic Acids Res 17:8257–8271PubMedGoogle Scholar
  80. 80.
    Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413PubMedGoogle Scholar
  81. 81.
    Du Z, Zhao Y, Li N (2008) Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription. Genome Res 18:233–241PubMedGoogle Scholar
  82. 82.
    Du Z, Kong P, Gao Y, Li N (2007) Enrichment of G4 DNA motif in transcriptional regulatory region of chicken genome. Biochem Biophys Res Commun 354:1067–1070PubMedGoogle Scholar
  83. 83.
    Huppert JL, Bugaut A, Kumari S, Balasubramanian S (2008) G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res 36:6260–6268PubMedGoogle Scholar
  84. 84.
    Sen D, Gilbert W (1990) A sodium–potassium switch in the formation of four-stranded G4-DNA. Nature 344:410–414PubMedGoogle Scholar
  85. 85.
    Moyzis RK, Torney DC, Meyne J, Buckingham JM, Wu JR, Burks C, Sirotkin KM, Goad WB (1989) The distribution of interspersed repetitive DNA sequences in the human genome. Genomics 4:273–289PubMedGoogle Scholar
  86. 86.
    Stallings RL, Torney DC, Hildebrand CE, Longmire JL, Deaven LL, Jett JH, Doggett NA, Moyzis RK (1990) Physical mapping of human chromosomes by repetitive sequence fingerprinting. Proc Natl Acad Sci USA 87:6218–6222PubMedGoogle Scholar
  87. 87.
    Krontiris TG (1995) Minisatellites and human disease. Science 269:1682–1683PubMedGoogle Scholar
  88. 88.
    Bacolla A, Wojciechowska M, Kosmider B, Larson JE, Wells RD (2006) The involvement of non-B DNA structures in gross chromosomal rearrangements. DNA Repair (Amst) 5:1161–1170Google Scholar
  89. 89.
    Bacolla A, Larson JE, Collins JR, Li J, Milosavljevic A, Stenson PD, Cooper DN, Wells RD (2008) Abundance and length of simple repeats in vertebrate genomes are determined by their structural properties. Genome Res 18:1545–1553PubMedGoogle Scholar
  90. 90.
    International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945Google Scholar
  91. 91.
    Eichler EE, Clark RA, She X (2004) An assessment of the sequence gaps: unfinished business in a finished human genome. Nat Rev Genet 5:345–354PubMedGoogle Scholar
  92. 92.
    Repping S, van Daalen SK, Brown LG, Korver CM, Lange J, Marszalek JD, Pyntikova T, van der Veen F, Skaletsky H, Page DC, Rozen S (2006) High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat Genet 38:463–467PubMedGoogle Scholar
  93. 93.
    Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13PubMedGoogle Scholar
  94. 94.
    Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, Stray SM, Rippey CF, Roccanova P, Makarov V, Lakshmi B, Findling RL, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler EE, Meltzer PS, Nelson SF, Singleton AB, Lee MK, Rapoport JL, King MC, Sebat J (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543PubMedGoogle Scholar
  95. 95.
    Venkatasubramanian G (2009) Triplex DNA, human evolution and schizophrenia. Acta Neuropsychiatr 21:100–101Google Scholar
  96. 96.
    Alba MM, Guigo R (2004) Comparative analysis of amino acid repeats in rodents and humans. Genome Res 14:549–554PubMedGoogle Scholar
  97. 97.
    Faux NG, Bottomley SP, Lesk AM, Irving JA, Morrison JR, de la Banda MG, Whisstock JC (2005) Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res 15:537–551PubMedGoogle Scholar
  98. 98.
    Schaafsma D, Roscioni SS, Meurs H, Schmidt M (2008) Monomeric G-proteins as signal transducers in airway physiology and pathophysiology. Cell Signal 20:1705–1714PubMedGoogle Scholar
  99. 99.
    Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179PubMedGoogle Scholar
  100. 100.
    Zhao Y, Du Z, Li N (2007) Extensive selection for the enrichment of G4 DNA motifs in transcriptional regulatory regions of warm blooded animals. FEBS Lett 581:1951–1956PubMedGoogle Scholar
  101. 101.
    Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006) Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res 16:644–655PubMedGoogle Scholar
  102. 102.
    Qin Y, Hurley LH (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90:1149–1171PubMedGoogle Scholar
  103. 103.
    Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 99:11593–11598PubMedGoogle Scholar
  104. 104.
    Hurley LH, Von Hoff DD, Siddiqui-Jain A, Yang D (2006) Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element. Semin Oncol 33:498–512PubMedGoogle Scholar
  105. 105.
    Aitken RJ, Marshall Graves JA (2002) The future of sex. Nature 415:963PubMedGoogle Scholar
  106. 106.
    Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC (2003) Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423:873–876PubMedGoogle Scholar
  107. 107.
    Bhowmick BK, Satta Y, Takahata N (2007) The origin and evolution of human ampliconic gene families and ampliconic structure. Genome Res 17:441–450PubMedGoogle Scholar
  108. 108.
    Hughes JF, Skaletsky H, Pyntikova T, Minx PJ, Graves T, Rozen S, Wilson RK, Page DC (2005) Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature 437:100–103PubMedGoogle Scholar
  109. 109.
    Kolb J, Chuzhanova NA, Hogel J, Vasquez KM, Cooper DN, Bacolla A, Kehrer-Sawatzki H (2009) Cruciform-forming inverted repeats appear to have mediated many of the microinversions that distinguish the human and chimpanzee genomes. Chromosome Res 7:469–483Google Scholar
  110. 110.
    Losch FO, Bredenbeck A, Hollstein VM, Walden P, Wrede P (2007) Evidence for a large double-cruciform DNA structure on the X chromosome of human and chimpanzee. Hum Genet 122:337–343PubMedGoogle Scholar
  111. 111.
    Kurahashi H, Inagaki H, Kato T, Hosoba E, Kogo H, Ohye T, Tsutsumi M, Bolor H, Tong M, Emanuel BS (2009) Impaired DNA replication prompts deletions within palindromic sequences, but does not induce translocations in human cells. Hum Mol Genet 18:3397–3406Google Scholar
  112. 112.
    Sinden RR, Bat O, Kramer PR (1999) Psoralen cross-linking as probe of torsional tension and topological domain size in vivo. Methods 17:112–124PubMedGoogle Scholar
  113. 113.
    Pearson CE, Nichol Edamura K, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742PubMedGoogle Scholar
  114. 114.
    Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35PubMedGoogle Scholar
  115. 115.
    Wang G, Vasquez KM (2009) Models for chromosomal replication-independent non-B DNA structure-induced genetic instability. Mol Carcinog 48:286–298PubMedGoogle Scholar
  116. 116.
    Freudenreich CH (2007) Chromosome fragility: molecular mechanisms and cellular consequences. Front Biosci 12:4911–4924PubMedGoogle Scholar
  117. 117.
    Collins NS, Bhattacharyya S, Lahue RS (2007) Rev1 enhances CAG·CTG repeat stability in Saccharomyces cerevisiae. DNA Repair (Amst) 6:38–44Google Scholar
  118. 118.
    Voineagu I, Narayanan V, Lobachev KS, Mirkin SM (2008) Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci USA 105:9936–9941PubMedGoogle Scholar
  119. 119.
    Zhang H, Freudenreich CH (2007) An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27:367–379PubMedGoogle Scholar
  120. 120.
    Balakumaran BS, Freudenreich CH, Zakian VA (2000) CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum Mol Genet 9:93–100PubMedGoogle Scholar
  121. 121.
    Panigrahi GB, Cleary JD, Pearson CE (2002) In vitro (CTG)*(CAG) expansions and deletions by human cell extracts. J Biol Chem 277:13926–13934PubMedGoogle Scholar
  122. 122.
    Kang S, Jaworski A, Ohshima K, Wells RD (1995) Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet 10:213–218PubMedGoogle Scholar
  123. 123.
    Freudenreich CH, Stavenhagen JB, Zakian VA (1997) Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol Cell Biol 17:2090–2098PubMedGoogle Scholar
  124. 124.
    Kim HM, Narayanan V, Mieczkowski PA, Petes TD, Krasilnikova MM, Mirkin SM, Lobachev KS (2008) Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J 27:2896–2906PubMedGoogle Scholar
  125. 125.
    Hebert ML, Spitz LA, Wells RD (2004) DNA double-strand breaks induce deletion of CTG·CAG repeats in an orientation-dependent manner in Escherichia coli. J Mol Biol 336:655–672PubMedGoogle Scholar
  126. 126.
    Mitas M (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Res 25:2245–2254PubMedGoogle Scholar
  127. 127.
    Pearson CE, Tam M, Wang YH, Montgomery SE, Dar AC, Cleary JD, Nichol K (2002) Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res 30:4534–4547PubMedGoogle Scholar
  128. 128.
    Kovtun IV, McMurray CT (2008) Features of trinucleotide repeat instability in vivo. Cell Res 18:198–213PubMedGoogle Scholar
  129. 129.
    Owen BA, Yang Z, Lai M, Gajec M, Badger JD 2nd, Hayes JJ, Edelmann W, Kucherlapati R, Wilson TM, McMurray CT (2005) (CAG)n-hairpin DNA binds to Msh2–Msh3 and changes properties of mismatch recognition. Nat Struct Mol Biol 12:663–670PubMedGoogle Scholar
  130. 130.
    Manley K, Shirley TL, Flaherty L, Messer A (1999) Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat Genet 23:471–473PubMedGoogle Scholar
  131. 131.
    Lin Y, Dion V, Wilson JH (2006) Transcription promotes contraction of CAG repeat tracts in human cells. Nat Struct Mol Biol 13:179–180PubMedGoogle Scholar
  132. 132.
    Voineagu I, Surka CF, Shishkin AA, Krasilnikova MM, Mirkin SM (2009) Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat Struct Mol Biol 16:226–228PubMedGoogle Scholar
  133. 133.
    Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA (2000) Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 19:3822–3830PubMedGoogle Scholar
  134. 134.
    Spiro C, Pelletier R, Rolfsmeier ML, Dixon MJ, Lahue RS, Gupta G, Park MS, Chen X, Mariappan SV, McMurray CT (1999) Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol Cell 4:1079–1085PubMedGoogle Scholar
  135. 135.
    Refsland EW, Livingston DM (2005) Interactions among DNA ligase I, the flap endonuclease and proliferating cell nuclear antigen in the expansion and contraction of CAG repeat tracts in yeast. Genetics 171:923–934PubMedGoogle Scholar
  136. 136.
    Bhattacharyya S, Lahue RS (2005) Srs2 helicase of Saccharomyces cerevisiae selectively unwinds triplet repeat DNA. J Biol Chem 280:33311–33317PubMedGoogle Scholar
  137. 137.
    Kerrest A, Anand RP, Sundararajan R, Bermejo R, Liberi G, Dujon B, Freudenreich CH, Richard GF (2009) SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 16:159–167PubMedGoogle Scholar
  138. 138.
    Daee DL, Mertz T, Lahue RS (2007) Postreplication repair inhibits CAG·CTG repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol 27:102–110PubMedGoogle Scholar
  139. 139.
    Moe SE, Sorbo JG, Holen T (2008) Huntingtin triplet-repeat locus is stable under long-term Fen1 knockdown in human cells. J Neurosci Methods 171:233–238PubMedGoogle Scholar
  140. 140.
    van den Broek WJ, Nelen MR, van der Heijden GW, Wansink DG, Wieringa B (2006) Fen1 does not control somatic hypermutability of the (CTG)n*(CAG)n repeat in a knock-in mouse model for DM1. FEBS Lett 580:5208–5214PubMedGoogle Scholar
  141. 141.
    Chong SS, McCall AE, Cota J, Subramony SH, Orr HT, Hughes MR, Zoghbi HY (1995) Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet 10:344–350PubMedGoogle Scholar
  142. 142.
    Telenius H, Kremer B, Goldberg YP, Theilmann J, Andrew SE, Zeisler J, Adam S, Greenberg C, Ives EJ, Clarke LA et al (1994) Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet 6:409–414PubMedGoogle Scholar
  143. 143.
    Kovtun IV, McMurray CT (2001) Trinucleotide expansion in haploid germ cells by gap repair. Nat Genet 27:407–411PubMedGoogle Scholar
  144. 144.
    Trujillo KM, Sung P (2001) DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J Biol Chem 276:35458–35464PubMedGoogle Scholar
  145. 145.
    Nag DK, Fasullo M, Dong Z, Tronnes A (2005) Inverted repeat-stimulated sister-chromatid exchange events are RAD1-independent but reduced in a msh2 mutant. Nucleic Acids Res 33:5243–5249PubMedGoogle Scholar
  146. 146.
    Kirkpatrick DT, Petes TD (1997) Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature 387:929–931PubMedGoogle Scholar
  147. 147.
    Parniewski P, Bacolla A, Jaworski A, Wells RD (1999) Nucleotide excision repair affects the stability of long transcribed (CTG*CAG) tracts in an orientation-dependent manner in Escherichia coli. Nucleic Acids Res 27:616–623PubMedGoogle Scholar
  148. 148.
    Pelletier R, Farrell BT, Miret JJ, Lahue RS (2005) Mechanistic features of CAG*CTG repeat contractions in cultured cells revealed by a novel genetic assay. Nucleic Acids Res 33:5667–5676PubMedGoogle Scholar
  149. 149.
    Panigrahi GB, Lau R, Montgomery SE, Leonard MR, Pearson CE (2005) Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nat Struct Mol Biol 12:654–662PubMedGoogle Scholar
  150. 150.
    Savouret C, Garcia-Cordier C, Megret J, te Riele H, Junien C, Gourdon G (2004) MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice. Mol Cell Biol 24:629–637PubMedGoogle Scholar
  151. 151.
    Wang G, Vasquez KM (2007) Z-DNA, an active element in the genome. Front Biosci 12:4424–4438PubMedGoogle Scholar
  152. 152.
    Zhao J, Jain A, Iyer RR, Modrich PL, Vasquez KM (2009). Mismatch repair and nucleotide excision repair proteins cooperate in the recognition of DNA interstrand crosslinks. Nucleic Acids Res 37:4420–4429Google Scholar
  153. 153.
    Rolfsmeier ML, Dixon MJ, Lahue RS (2000) Mismatch repair blocks expansions of interrupted trinucleotide repeats in yeast. Mol Cell 6:1501–1507PubMedGoogle Scholar
  154. 154.
    Savouret C, Brisson E, Essers J, Kanaar R, Pastink A, te Riele H, Junien C, Gourdon G (2003) CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J 22:2264–2273PubMedGoogle Scholar
  155. 155.
    Hebert ML, Wells RD (2005) Roles of double-strand breaks, nicks and gaps in stimulating deletions of CTG·CAG repeats by intramolecular DNA repair. J Mol Biol 353:961–979PubMedGoogle Scholar
  156. 156.
    Pollard LM, Bourn RL, Bidichandani SI (2008) Repair of DNA double-strand breaks within the (GAA*TTC)n sequence results in frequent deletion of the triplet-repeat sequence. Nucleic Acids Res 36:489–500PubMedGoogle Scholar
  157. 157.
    Marcadier JL, Pearson CE (2003) Fidelity of primate cell repair of a double-strand break within a (CTG)·(CAG) tract. Effect of slipped DNA structures. J Biol Chem 278:33848–33856PubMedGoogle Scholar
  158. 158.
    Downing B, Morgan R, VanHulle K, Deem A, Malkova A (2008) Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51. Mutat Res 645:9–18PubMedGoogle Scholar
  159. 159.
    VanHulle K, Lemoine FJ, Narayanan V, Downing B, Hull K, McCullough C, Bellinger M, Lobachev K, Petes TD, Malkova A (2007) Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27:2601–2614PubMedGoogle Scholar
  160. 160.
    Jakupciak JP, Wells RD (2000) Gene conversion (recombination) mediates expansions of CTG·CAG repeats. J Biol Chem 275:40003–40013PubMedGoogle Scholar
  161. 161.
    Tartier L, Michalik V, Spotheim-Maurizot M, Rahmouni AR, Sabattier R, Charlier M (1994) Radiolytic signature of Z-DNA. Nucleic Acids Res 22:5565–5570PubMedGoogle Scholar
  162. 162.
    Ribeiro DT, Madzak C, Sarasin A, Di Mascio P, Sies H, Menck CF (1992) Singlet oxygen induced DNA damage and mutagenicity in a single-stranded SV40-based shuttle vector. Photochem Photobiol 55:39–45PubMedGoogle Scholar
  163. 163.
    Lagravere C, Malfoy B, Leng M, Laval J (1984) Ring-opened alkylated guanine is not repaired in Z-DNA. Nature 310:798–800PubMedGoogle Scholar
  164. 164.
    Boiteux S, Costa de Oliveira R, Laval J (1985) The Escherichia coli O6-methylguanine-DNA methyltransferase does not repair promutagenic O6-methylguanine residues when present in Z-DNA. J Biol Chem 260:8711–8715PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Junhua Zhao
    • 1
  • Albino Bacolla
    • 1
  • Guliang Wang
    • 1
  • Karen M. Vasquez
    • 1
    Email author
  1. 1.Department of Carcinogenesis, Science Park-Research DivisionThe University of Texas M.D. Anderson Cancer CenterSmithvilleUSA

Personalised recommendations