Cellular and Molecular Life Sciences

, Volume 66, Issue 24, pp 3923–3935 | Cite as

Ectodomain shedding of the receptor for advanced glycation end products: a novel therapeutic target for Alzheimer’s disease

  • Ling ZhangEmail author
  • Rolf Postina
  • Yingqun WangEmail author


Receptor for advanced glycation end products (RAGE) mediates diverse physiological and pathological effects and is involved in the pathogenesis of Alzheimer’s disease (AD). RAGE is a receptor for amyloid β peptides (Aβ), mediates Aβ neurotoxicity and also promotes Aβ influx into the brain and contributes to Aβ aggregation. Soluble RAGE (sRAGE), a secreted RAGE isoform, acts as a decoy receptor to antagonize RAGE-mediated damages. Accumulating evidence has suggested that sRAGE represents a promising pharmaceutic against RAGE-mediated disorders. Recent studies revealed proteolysis of RAGE as a previously unappreciated means of sRAGE production. In this review we summarize these findings on the proteolytic cleavage of RAGE and discuss the underlying regulatory mechanisms of RAGE shedding. Furthermore, we propose a model in which proteolysis of RAGE could restrain AD development by reducing Aβ transport into the brain and Aβ production via BACE. Thus, the modulation of RAGE proteolysis provides a novel intervention strategy for AD.


Receptor for advanced glycation end products Alzheimer’s disease Ectodomain shedding Amyloid β peptide ADAM10 MMP9 



This work was supported by the Alzheimer Forschung Initiative e.V. (Düsseldorf, Germany) and the Deutsche Forschungsgemeinschaft (DFG Priority Program SPP1085–Cellular Mechanisms of Alzheimer’s Disease). We thank Dr. Zhijun Zhang (Zhongda Hospital Affiliated to Southeast University, Nanjing, China) for support and helpful discussion.


  1. 1.
    Tanzi RE (1999) A genetic dichotomy model for the inheritance of Alzheimer’s disease and common age-related disorders. J Clin Invest 104:1175–1179PubMedCrossRefGoogle Scholar
  2. 2.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  3. 3.
    Gandy S (2005) The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest 115:1121–1129PubMedGoogle Scholar
  4. 4.
    Postina R (2008) A closer look at alpha-secretase. Curr Alzheimer Res 5:179–186PubMedCrossRefGoogle Scholar
  5. 5.
    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185PubMedCrossRefGoogle Scholar
  6. 6.
    Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827PubMedCrossRefGoogle Scholar
  7. 7.
    Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C (1997) Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci USA 94:2642–2647PubMedCrossRefGoogle Scholar
  8. 8.
    Klegeris A, Walker DG, McGeer PL (1994) Activation of macrophages by Alzheimer beta amyloid peptide. Biochem Biophys Res Commun 199:984–991PubMedCrossRefGoogle Scholar
  9. 9.
    Gitter BD, Cox LM, Rydel RE, May PC (1995) Amyloid beta peptide potentiates cytokine secretion by interleukin-1 beta-activated human astrocytoma cells. Proc Natl Acad Sci USA 92:10738–10741PubMedCrossRefGoogle Scholar
  10. 10.
    Giri R, Selvaraj S, Miller CA, Hofman F, Yan SD, Stern D, Zlokovic BV, Kalra VK (2002) Effect of endothelial cell polarity on beta-amyloid-induced migration of monocytes across normal and AD endothelium. Am J Physiol Cell Physiol 283:C895–C904PubMedGoogle Scholar
  11. 11.
    Zlokovic B (1997) Can blood–brain barrier play a role in the development of cerebral amyloidosis and Alzheimer’s disease pathology. Neurobiol Dis 4:23–26PubMedCrossRefGoogle Scholar
  12. 12.
    Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201PubMedCrossRefGoogle Scholar
  13. 13.
    Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B (2000) Clearance of amyloid beta-peptide from brain: transport or metabolism? Nat Med 6:718CrossRefGoogle Scholar
  14. 14.
    Martel CL, Mackic JB, Matsubara E, Governale S, Miguel C, Miao W, McComb JG, Frangione B, Ghiso J, Zlokovic BV (1997) Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood–brain barrier transport of circulating Alzheimer’s amyloid beta. J Neurochem 69:1995–2004PubMedCrossRefGoogle Scholar
  15. 15.
    Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292:1550–1552PubMedCrossRefGoogle Scholar
  16. 16.
    Selkoe DJ (2001) Clearing the brain’s amyloid cobwebs. Neuron 32:177–180PubMedCrossRefGoogle Scholar
  17. 17.
    Zlokovic BV (2004) Clearing amyloid through the blood–brain barrier. J Neurochem 89:807–811PubMedCrossRefGoogle Scholar
  18. 18.
    Sugaya K, Fukagawa T, Matsumoto K, Mita K, Takahashi E, Ando A, Inoko H, Ikemura T (1994) Three genes in the human MHC class III region near the junction with the class II: gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics 23:408–419PubMedCrossRefGoogle Scholar
  19. 19.
    Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267:14998–15004PubMedGoogle Scholar
  20. 20.
    Srikrishna G, Huttunen HJ, Johansson L, Weigle B, Yamaguchi Y, Rauvala H, Freeze HH (2002) N-Glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J Neurochem 80:998–1008PubMedCrossRefGoogle Scholar
  21. 21.
    Li J, Schmidt AM (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272:16498–16506PubMedCrossRefGoogle Scholar
  22. 22.
    Hori O, Brett J, Slattery T, Cao R, Zhang JH, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D, Morser J, Stern D, Schmidt AM (1995) The receptor for advanced glycation end-products (Rage) is a cellular-binding site for amphoterin—mediation of neurite outgrowth and coexpression of rage and amphoterin in the developing nervous-system. J Biol Chem 270:25752–25761PubMedCrossRefGoogle Scholar
  23. 23.
    Sakaguchi T, Yan SF, Du Yan S, Belov D, Rong LL, Sousa M, Andrassy M, Marso SP, Duda S, Arnold B, Liliensiek B, Nawroth PP, Stern DM, Schmidt AM, Naka Y (2003) Central role of RAGE-dependent neointimal expansion in arterial restenosis. J Clin Invest 111:959–972PubMedGoogle Scholar
  24. 24.
    Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A (1993) Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 143:1699–1712PubMedGoogle Scholar
  25. 25.
    Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM (2002) RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 59:1117–1128PubMedCrossRefGoogle Scholar
  26. 26.
    Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT (2009) RAGE (receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7:17PubMedCrossRefGoogle Scholar
  27. 27.
    Rong LL, Trojaborg W, Qu W, Kostov K, Yan SD, Gooch C, Szabolcs M, Hays AP, Schmidt AM (2004) Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J 18:1812–1817PubMedCrossRefGoogle Scholar
  28. 28.
    Bierhaus A, Haslbeck KM, Humpert PM, Liliensiek B, Dehmer T, Morcos M, Sayed AA, Andrassy M, Schiekofer S, Schneider JG, Schulz JB, Heuss D, Neundorfer B, Dierl S, Huber J, Tritschler H, Schmidt AM, Schwaninger M, Haering HU, Schleicher E, Kasper M, Stern DM, Arnold B, Nawroth PP (2004) Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 114:1741–1751PubMedGoogle Scholar
  29. 29.
    Bartling B, Hofmann HS, Weigle B, Silber RE, Simm A (2005) Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis 26:293–301PubMedCrossRefGoogle Scholar
  30. 30.
    Cho HJ, Son SM, Jin SM, Hong HS, Shin DH, Kim SJ, Huh K, Mook-Jung I (2009) RAGE regulates BACE1 and Aβ generation via NFAT1 activation in Alzheimer’s disease animal model. FASEB J 23:2639–2649Google Scholar
  31. 31.
    Hudson BI, Kalea AZ, Del Mar AM, Harja E, Boulanger E, D’Agati V, Schmidt AM (2008) Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283:34457–34468PubMedCrossRefGoogle Scholar
  32. 32.
    Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360PubMedCrossRefGoogle Scholar
  33. 33.
    Simm A, Munch G, Seif F, Schenk O, Heidland A, Richter H, Vamvakas S, Schinzel R (1997) Advanced glycation endproducts stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS Lett 410:481–484PubMedCrossRefGoogle Scholar
  34. 34.
    Huttunen HJ, Kuja-Panula J, Rauvala H (2002) Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation. J Biol Chem 277:38635–38646PubMedCrossRefGoogle Scholar
  35. 35.
    Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691PubMedCrossRefGoogle Scholar
  36. 36.
    Yan SD, Stern D, Kane MD, Kuo YM, Lampert HC, Roher AE (1998) RAGE–Abeta interactions in the pathophysiology of Alzheimer’s disease. Restor Neurol Neurosci 12:167–173PubMedGoogle Scholar
  37. 37.
    Yan SD, Stern D, Schmidt AM (1997) What’s the RAGE? The receptor for advanced glycation end products (RAGE) and the dark side of glucose. Eur J Clin Invest 27:179–181PubMedCrossRefGoogle Scholar
  38. 38.
    Li JJ, Dickson D, Hof PR, Vlassara H (1998) Receptors for advanced glycosylation endproducts in human brain: role in brain homeostasis. Mol Med 4:46–60PubMedGoogle Scholar
  39. 39.
    Du YS, Zhu H, Fu J, Yan SF, Roher A, Tourtellotte WW, Rajavashisth T, Chen X, Godman GC, Stern D, Schmidt AM (1997) Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci USA 94:5296–5301CrossRefGoogle Scholar
  40. 40.
    Mackic JB, Stins M, McComb JG, Calero M, Ghiso J, Kim KS, Yan SD, Stern D, Schmidt AM, Frangione B, Zlokovic BV (1998) Human blood–brain barrier receptors for Alzheimer’s amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 102:734–743PubMedCrossRefGoogle Scholar
  41. 41.
    Deane R, Du YS, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9:907–913PubMedCrossRefGoogle Scholar
  42. 42.
    Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood–brain and blood–cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93:4229–4234PubMedCrossRefGoogle Scholar
  43. 43.
    Giri R, Shen Y, Stins M, Du YS, Schmidt AM, Stern D, Kim KS, Zlokovic B, Kalra VK (2000) beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol 279:C1772–C1781PubMedGoogle Scholar
  44. 44.
    Arancio O, Zhang HP, Chen X, Lin C, Trinchese F, Puzzo D, Liu S, Hegde A, Yan SF, Stern A, Luddy JS, Lue LF, Walker DG, Roher A, Buttini M, Mucke L, Li W, Schmidt AM, Kindy M, Hyslop PA, Stern DM, Du Yan SS (2004) RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice. EMBO J 23:4096–4105PubMedCrossRefGoogle Scholar
  45. 45.
    Ding Q, Keller JN (2005) Evaluation of rage isoforms, ligands, and signaling in the brain. Biochim Biophys Acta 1746:18–27PubMedCrossRefGoogle Scholar
  46. 46.
    Ding Q, Keller JN (2005) Splice variants of the receptor for advanced glycosylation end products (RAGE) in human brain. Neurosci Lett 373:67–72PubMedCrossRefGoogle Scholar
  47. 47.
    Goova MT, Li J, Kislinger T, Qu W, Lu Y, Bucciarelli LG, Nowygrod S, Wolf BM, Caliste X, Yan SF, Stern DM, Schmidt AM (2001) Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am J Pathol 159:513–525PubMedGoogle Scholar
  48. 48.
    Choi ME (1999) Cloning and characterization of a naturally occurring soluble form of TGF-beta type I receptor. Am J Physiol 276:F88–F95PubMedGoogle Scholar
  49. 49.
    Michel J, Langstein J, Hofstadter F, Schwarz H (1998) A soluble form of CD137 (ILA/4–1BB), a member of the TNF receptor family, is released by activated lymphocytes and is detectable in sera of patients with rheumatoid arthritis. Eur J Immunol 28:290–295PubMedCrossRefGoogle Scholar
  50. 50.
    Haudenschild D, Moseley T, Rose L, Reddi AH (2002) Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J Biol Chem 277:4309–4316PubMedCrossRefGoogle Scholar
  51. 51.
    Hanford LE, Enghild JJ, Valnickova Z, Petersen SV, Schaefer LM, Schaefer TM, Reinhart TA, Oury TD (2004) Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 279:50019–50024PubMedCrossRefGoogle Scholar
  52. 52.
    Arribas J, Borroto A (2002) Protein ectodomain shedding. Chem Rev 102:4627–4637PubMedCrossRefGoogle Scholar
  53. 53.
    Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 96:3922–3927PubMedCrossRefGoogle Scholar
  54. 54.
    Sanderson MP, Erickson SN, Gough PJ, Garton KJ, Wille PT, Raines EW, Dunbar AJ, Dempsey PJ (2005) ADAM10 mediates ectodomain shedding of the betacellulin precursor activated by p-aminophenylmercuric acetate and extracellular calcium influx. J Biol Chem 280:1826–1837PubMedCrossRefGoogle Scholar
  55. 55.
    Hirata M, Umata T, Takahashi T, Ohnuma M, Miura Y, Iwamoto R, Mekada E (2001) Identification of serum factor inducing ectodomain shedding of proHB-EGF and sStudies of noncleavable mutants of proHB-EGF. Biochem Biophys Res Commun 283:915–922PubMedCrossRefGoogle Scholar
  56. 56.
    Nakamura H, Suenaga N, Taniwaki K, Matsuki H, Yonezawa K, Fujii M, Okada Y, Seiki M (2004) Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res 64:876–882PubMedCrossRefGoogle Scholar
  57. 57.
    Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904PubMedCrossRefGoogle Scholar
  58. 58.
    Budagian V, Bulanova E, Orinska Z, Ludwig A, Rose-John S, Saftig P, Borden EC, Bulfone-Paus S (2004) Natural soluble interleukin-15Ralpha is generated by cleavage that involves the tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17). J Biol Chem 279:40368–40375PubMedCrossRefGoogle Scholar
  59. 59.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733PubMedCrossRefGoogle Scholar
  60. 60.
    Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN, Boyce RW, Nelson N, Kozlosky CJ, Wolfson MF, Rauch CT, Cerretti DP, Paxton RJ, March CJ, Black RA (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284PubMedCrossRefGoogle Scholar
  61. 61.
    Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrenholz F, Fogel M, Lemmon V, Altevogt P (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155:661–673PubMedCrossRefGoogle Scholar
  62. 62.
    Parkin ET, Tan F, Skidgel RA, Turner AJ, Hooper NM (2003) The ectodomain shedding of angiotensin-converting enzyme is independent of its localisation in lipid rafts. J Cell Sci 116:3079–3087PubMedCrossRefGoogle Scholar
  63. 63.
    Allinson TM, Parkin ET, Condon TP, Schwager SL, Sturrock ED, Turner AJ, Hooper NM (2004) The role of ADAM10 and ADAM17 in the ectodomain shedding of angiotensin converting enzyme and the amyloid precursor protein. Eur J Biochem 271:2539–2547PubMedCrossRefGoogle Scholar
  64. 64.
    Cisse MA, Sunyach C, Lefranc-Jullien S, Postina R, Vincent B, Checler F (2005) The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity. J Biol Chem 280:40624–40631PubMedCrossRefGoogle Scholar
  65. 65.
    Mortier E, Bernard J, Plet A, Jacques Y (2004) Natural, proteolytic release of a soluble form of human IL-15 receptor alpha-chain that behaves as a specific, high affinity IL-15 antagonist. J Immunol 173:1681–1688PubMedGoogle Scholar
  66. 66.
    Vollmer P, Peters M, Ehlers M, Yagame H, Matsuba T, Kondo M, Yasukawa K, Buschenfelde KH, Rose-John S (1996) Yeast expression of the cytokine receptor domain of the soluble interleukin-6 receptor. J Immunol Methods 199:47–54PubMedCrossRefGoogle Scholar
  67. 67.
    Hooper NM, Karran EH, Turner AJ (1997) Membrane protein secretases. Biochem J 321(Pt 2):265–279PubMedGoogle Scholar
  68. 68.
    Le Gall SM, Bobe P, Reiss K, Horiuchi K, Niu XD, Lundell D, Gibb DR, Conrad D, Saftig P, Blobel CP (2009) ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, l-selectin, and tumor necrosis factor alpha. Mol Biol Cell 20:1785–1794PubMedCrossRefGoogle Scholar
  69. 69.
    Reiss K, Saftig P (2009) The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: Physiological and cellular functions. Semin Cell Dev Biol 20:126–137PubMedCrossRefGoogle Scholar
  70. 70.
    Huovila AP, Turner AJ, Pelto-Huikko M, Karkkainen I, Ortiz RM (2005) Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30:413–422PubMedCrossRefGoogle Scholar
  71. 71.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289PubMedCrossRefGoogle Scholar
  72. 72.
    Deuss M, Reiss K, Hartmann D (2008) Part-time alpha-secretases: the functional biology of ADAM 9, 10 and 17. Curr Alzheimer Res 5:187–201PubMedCrossRefGoogle Scholar
  73. 73.
    Dzwonek J, Rylski M, Kaczmarek L (2004) Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett 567:129–135PubMedCrossRefGoogle Scholar
  74. 74.
    Hartung HP, Kieseier BC (2000) The role of matrix metalloproteinases in autoimmune damage to the central and peripheral nervous system. J Neuroimmunol 107:140–147PubMedCrossRefGoogle Scholar
  75. 75.
    van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78:203–212PubMedCrossRefGoogle Scholar
  76. 76.
    Krane SM, Inada M (2008) Matrix metalloproteinases and bone. Bone 43:7–18PubMedCrossRefGoogle Scholar
  77. 77.
    Rydlova M, Holubec L Jr, Ludvikova M Jr, Kalfert D, Franekova J, Povysil C, Ludvikova M (2008) Biological activity and clinical implications of the matrix metalloproteinases. Anticancer Res 28:1389–1397PubMedGoogle Scholar
  78. 78.
    Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216PubMedCrossRefGoogle Scholar
  79. 79.
    Monea S, Jordan BA, Srivastava S, DeSouza S, Ziff EB (2006) Membrane localization of membrane type 5 matrix metalloproteinase by AMPA receptor binding protein and cleavage of cadherins. J Neurosci 26:2300–2312PubMedCrossRefGoogle Scholar
  80. 80.
    Haro H, Crawford HC, Fingleton B, Shinomiya K, Spengler DM, Matrisian LM (2000) Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption. J Clin Invest 105:143–150PubMedCrossRefGoogle Scholar
  81. 81.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176PubMedGoogle Scholar
  82. 82.
    Sheu BC, Hsu SM, Ho HN, Lien HC, Huang SC, Lin RH (2001) A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 61:237–242PubMedGoogle Scholar
  83. 83.
    Fiore E, Fusco C, Romero P, Stamenkovic I (2002) Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 21:5213–5223PubMedCrossRefGoogle Scholar
  84. 84.
    Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, Grant PJ, Schmidt AM (2008) Identification, classification, and expression of RAGE gene splice variants. FASEB J 22:1572–1580PubMedCrossRefGoogle Scholar
  85. 85.
    Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, Ramsgaard L, Richards TJ, Loutaev I, Nawroth PP, Kasper M, Bierhaus A, Oury TD (2008) A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am J Pathol 172:583–591PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang L, Bukulin M, Kojro E, Roth A, Metz VV, Fahrenholz F, Nawroth PP, Bierhaus A, Postina R (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J Biol Chem 283:35507–35516PubMedCrossRefGoogle Scholar
  87. 87.
    Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 22:3716–3727PubMedCrossRefGoogle Scholar
  88. 88.
    Qin J, Goswami R, Dawson S, Dawson G (2008) Expression of the receptor for advanced glycation end products in oligodendrocytes in response to oxidative stress. J Neurosci Res 86:2414–2422PubMedCrossRefGoogle Scholar
  89. 89.
    Galichet A, Weibel M, Heizmann CW (2008) Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 370:1–5PubMedCrossRefGoogle Scholar
  90. 90.
    Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025–1031PubMedCrossRefGoogle Scholar
  91. 91.
    Ghidoni R, Benussi L, Glionna M, Franzoni M, Geroldi D, Emanuele E, Binetti G (2008) Decreased plasma levels of soluble receptor for advanced glycation end products in mild cognitive impairment. J Neural Transm 115:1047–1050PubMedCrossRefGoogle Scholar
  92. 92.
    Emanuele E, D’Angelo A, Tomaino C, Binetti G, Ghidoni R, Politi P, Bernardi L, Maletta R, Bruni AC, Geroldi D (2005) Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Arch Neurol 62:1734–1736PubMedCrossRefGoogle Scholar
  93. 93.
    Geroldi D, Falcone C, Emanuele E, D’Angelo A, Calcagnino M, Buzzi MP, Scioli GA, Fogari R (2005) Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J Hypertens 23:1725–1729PubMedCrossRefGoogle Scholar
  94. 94.
    Pullerits R, Bokarewa M, Dahlberg L, Tarkowski A (2005) Decreased levels of soluble receptor for advanced glycation end products in patients with rheumatoid arthritis indicating deficient inflammatory control. Arthritis Res Ther 7:R817–R824PubMedCrossRefGoogle Scholar
  95. 95.
    Falcone C, Emanuele E, D’Angelo A, Buzzi MP, Belvito C, Cuccia M, Geroldi D (2005) Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 25:1032–1037PubMedCrossRefGoogle Scholar
  96. 96.
    Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886PubMedCrossRefGoogle Scholar
  97. 97.
    Racchi M, Solano DC, Sironi M, Govoni S (1999) Activity of alpha-secretase as the common final effector of protein kinase C-dependent and -independent modulation of amyloid precursor protein metabolism. J Neurochem 72:2464–2470PubMedCrossRefGoogle Scholar
  98. 98.
    Birkedal-Hansen H (1995) Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 7:728–735PubMedCrossRefGoogle Scholar
  99. 99.
    Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273:8890–8896PubMedCrossRefGoogle Scholar
  100. 100.
    Franklin RA, Atherfold PA, McCubrey JA (2000) Calcium-induced ERK activation in human T lymphocytes occurs via p56(Lck) and CaM-kinase. Mol Immunol 37:675–683PubMedCrossRefGoogle Scholar
  101. 101.
    Kim J, Lin J, Adam RM, Lamb C, Shively SB, Freeman MR (2005) An oxidative stress mechanism mediates chelerythrine-induced heparin-binding EGF-like growth factor ectodomain shedding. J Cell Biochem 94:39–49PubMedCrossRefGoogle Scholar
  102. 102.
    Yu R, Mandlekar S, Tan TH, Kong AN (2000) Activation of p38 and c-Jun N-terminal kinase pathways and induction of apoptosis by chelerythrine do not require inhibition of protein kinase C. J Biol Chem 275:9612–9619PubMedCrossRefGoogle Scholar
  103. 103.
    Colciaghi F, Marcello E, Borroni B, Zimmermann M, Caltagirone C, Cattabeni F, Padovani A, Di Luca M (2004) Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer disease. Neurology 62:498–501PubMedGoogle Scholar
  104. 104.
    Colciaghi F, Borroni B, Pastorino L, Marcello E, Zimmermann M, Cattabeni F, Padovani A, Di Luca M (2002) [alpha]-Secretase ADAM10 as well as [alpha]APPs is reduced in platelets and CSF of Alzheimer disease patients. Mol Med 8:67–74PubMedGoogle Scholar
  105. 105.
    Lorenzl S, Albers DS, Relkin N, Ngyuen T, Hilgenberg SL, Chirichigno J, Cudkowicz ME, Beal MF (2003) Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem Int 43:191–196PubMedCrossRefGoogle Scholar
  106. 106.
    Backstrom JR, Lim GP, Cullen MJ, Tokes ZA (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). J Neurosci 16:7910–7919PubMedGoogle Scholar
  107. 107.
    Yan P, Hu X, Song H, Yin K, Bateman RJ, Cirrito JR, Xiao Q, Hsu FF, Turk JW, Xu J, Hsu CY, Holtzman DM, Lee JM (2006) Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 281:24566–24574PubMedCrossRefGoogle Scholar
  108. 108.
    Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu FF, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee JM (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26:10939–10948PubMedCrossRefGoogle Scholar
  109. 109.
    Renard C, Chappey O, Wautier MP, Nagashima M, Lundh E, Morser J, Zhao L, Schmidt AM, Scherrmann JM, Wautier JL (1997) Recombinant advanced glycation end product receptor pharmacokinetics in normal and diabetic rats. Mol Pharmacol 52:54–62PubMedGoogle Scholar
  110. 110.
    Kojro E, Postina R, Buro C, Meiringer C, Gehrig-Burger K, Fahrenholz F (2006) The neuropeptide PACAP promotes the alpha-secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J 20:512–514PubMedGoogle Scholar
  111. 111.
    Khan TK, Nelson TJ, Verma VA, Wender PA, Alkon DL (2009) A cellular model of Alzheimer’s disease therapeutic efficacy: PKC activation reverses Abeta-induced biomarker abnormality on cultured fibroblasts. Neurobiol Dis 34:332–339PubMedCrossRefGoogle Scholar
  112. 112.
    Sun MK, Alkon DL (2006) Bryostatin-1: pharmacology and therapeutic potential as a CNS drug. CNS Drug Rev 12:1–8PubMedCrossRefGoogle Scholar
  113. 113.
    Kojro E, Postina R (2009) Regulated proteolysis of RAGE and AbetaPP as possible link between type 2 diabetes mellitus and Alzheimer’s disease. J Alzheimer’s Dis 16:865–878Google Scholar
  114. 114.
    Adlerz L, Holback S, Multhaup G, Iverfeldt K (2007) IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem 282:10203–10209PubMedCrossRefGoogle Scholar
  115. 115.
    Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA 104:19796–19801PubMedCrossRefGoogle Scholar
  116. 116.
    Yan SF, Du YS, Ramasamy R, Schmidt AM (2009) Tempering the wrath of RAGE: an emerging therapeutic strategy against diabetic complications, neurodegeneration, and inflammation. Ann Med 25:1–15Google Scholar
  117. 117.
    Santilli F, Vazzana N, Bucciarelli LG, Davi G (2009) Soluble forms of RAGE in human diseases: clinical and therapeutical implications. Curr Med Chem 16:940–952PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of NeurologyZhongda Hospital Affiliated to Southeast UniversityNanjingChina
  2. 2.Institute of BiochemistryJohannes Gutenberg University of MainzMainzGermany
  3. 3.Abramson Family Cancer Research InstituteUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations