Cellular and Molecular Life Sciences

, Volume 66, Issue 21, pp 3435–3448 | Cite as

Human glucocorticoid receptor isoform β: recent understanding of its potential implications in physiology and pathophysiology

  • Tomoshige KinoEmail author
  • Yan A. Su
  • George P. Chrousos


The human glucocorticoid receptor (GR) gene expresses two splicing isoforms α and β through alternative use of specific exons 9α and 9β. In contrast to the classic receptor GRα, which mediates most of the known actions of glucocorticoids, the functions of GRβ have been largely unexplored. Owing to newly developed methods, for example microarrays and the jellyfish fluorescence proteins, we and others have recently revealed novel functions of GRβ. Indeed, this enigmatic GR isoform influences positively and negatively the transcriptional activity of large subsets of genes, most of which are not responsive to glucocorticoids, in addition to its well-known dominant negative effect against GRα-mediated transcriptional activity. A recent report suggested that the “ligand-binding domain” of GRβ is active, forming a functional ligand-binding pocket associated with the synthetic compound RU 486. In this review, we discuss the functions of GRβ, its mechanisms of action, and its pathologic implications.


Cytoplasmic to nuclear translocation Glucocorticoid receptor Ligand-binding pocket Microarray Splicing isoform Zebrafish 



Literary work of this article was funded partly by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.


  1. 1.
    Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332:1351–1362CrossRefPubMedGoogle Scholar
  2. 2.
    Kino T, Chrousos GP (2001) Glucocorticoid and mineralocorticoid resistance/hypersensitivity syndromes. J Endocrinol 169:437–445CrossRefPubMedGoogle Scholar
  3. 3.
    Kino T, Chrousos GP (2005) Glucocorticoid effect on gene expression. In: Steckler T, Kalin NH, Reul JMHM (eds) Handbook on stress and the brain. Elsevier, Amsterdam, pp 295–312Google Scholar
  4. 4.
    Chrousos GP (2001) Glucocorticoid therapy. In: Felig P, Frohman LA (eds) Endocrinology & metabolism. McGraw–Hill, New York, pp 609–632Google Scholar
  5. 5.
    Chrousos GP, Kino T (2005) Intracellular glucocorticoid signaling: a formerly simple system turns stochastic. Sci STKE 2005, pe48Google Scholar
  6. 6.
    Kino T, Chrousos GP (2004) Glucocorticoid and mineralocorticoid receptors and associated diseases. Essays Biochem 40:137–155PubMedGoogle Scholar
  7. 7.
    Chrousos GP, Kino T, Charmandari E (2008) Generalized glucocorticoid resistance. Eur J Endocrinol 2:93–99Google Scholar
  8. 8.
    Bamberger CM, Bamberger AM, de Castro M, Chrousos GP (1995) Glucocorticoid receptor β, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 95:2435–2441CrossRefPubMedGoogle Scholar
  9. 9.
    de Castro M, Elliot S, Kino T, Bamberger C, Karl M, Webster E, Chrousos GP (1996) The non-ligand binding β-isoform of the human glucocorticoid receptor (hGRβ): tissue levels, mechanism of action, and potential physiologic role. Mol Med 2:597–607PubMedGoogle Scholar
  10. 10.
    Kino T, Manoli I, Kelkar S, Wang Y, Su YA, Chrousos GP (2009) Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity. Biochem Biophys Res Commun 381:671–675CrossRefPubMedGoogle Scholar
  11. 11.
    Lewis-Tuffin LJ, Jewell CM, Bienstock RJ, Collins JB, Cidlowski JA (2007) Human glucocorticoid receptor β binds RU-486 and is transcriptionally active. Mol Cell Biol 27:2266–2282CrossRefPubMedGoogle Scholar
  12. 12.
    Kino T, De Martino MU, Charmandari E, Mirani M, Chrousos GP (2003) Tissue glucocorticoid resistance/hypersensitivity syndromes. J Steroid Biochem Mol Biol 85:457–467CrossRefPubMedGoogle Scholar
  13. 13.
    Breslin MB, Geng CD, Vedeckis WV (2001) Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids. Mol Endocrinol 15:1381–1395CrossRefPubMedGoogle Scholar
  14. 14.
    Lu NZ, Cidlowski JA (2005) Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell 18:331–342CrossRefPubMedGoogle Scholar
  15. 15.
    Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318:635–641CrossRefPubMedGoogle Scholar
  16. 16.
    Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE (2002) Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110:93–105CrossRefPubMedGoogle Scholar
  17. 17.
    Tanenbaum DM, Wang Y, Williams SP, Sigler PB (1998) Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc Natl Acad Sci USA 95:5998–6003CrossRefPubMedGoogle Scholar
  18. 18.
    Williams SP, Sigler PB (1998) Atomic structure of progesterone complexed with its receptor. Nature 393:392–396CrossRefPubMedGoogle Scholar
  19. 19.
    Savory JG, Hsu B, Laquian IR, Giffin W, Reich T, Hache RJ, Lefebvre YA (1999) Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol Cell Biol 19:1025–1037PubMedGoogle Scholar
  20. 20.
    Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20:1405–1428CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Q, Blackford JA Jr, Song LN, Huang Y, Cho S, Simons SS Jr (2004) Equilibrium interactions of corepressors and coactivators with agonist and antagonist complexes of glucocorticoid receptors. Mol Endocrinol 18:1376–1395CrossRefPubMedGoogle Scholar
  22. 22.
    Schulz M, Eggert M, Baniahmad A, Dostert A, Heinzel T, Renkawitz R (2002) RU486-induced glucocorticoid receptor agonism is controlled by the receptor N terminus and by corepressor binding. J Biol Chem 277:26238–26243CrossRefPubMedGoogle Scholar
  23. 23.
    Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, Schutz G (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93:531–541CrossRefPubMedGoogle Scholar
  24. 24.
    Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, Schutz G (1995) Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 9:1608–1621CrossRefPubMedGoogle Scholar
  25. 25.
    Reichardt HM, Tuckermann JP, Gottlicher M, Vujic M, Weih F, Angel P, Herrlich P, Schutz G (2001) Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J 20:7168–7173CrossRefPubMedGoogle Scholar
  26. 26.
    Miner JN, Yamamoto KR (1991) Regulatory crosstalk at composite response elements. Trends Biochem Sci 16:423–426CrossRefPubMedGoogle Scholar
  27. 27.
    De Bosscher K, Haegeman G (2009) Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 23:281–291CrossRefPubMedGoogle Scholar
  28. 28.
    Karin M, Chang L (2001) AP-1-glucocorticoid receptor crosstalk taken to a higher level. J Endocrinol 169:447–451CrossRefPubMedGoogle Scholar
  29. 29.
    Barnes PJ, Karin M (1997) Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071CrossRefPubMedGoogle Scholar
  30. 30.
    Didonato JA, Saatcioglu F, Karin M (1996) Molecular mechanisms of immunosuppression and anti-inflammatory activities by glucocorticoids. Am J Respir Crit Care Med 154:S11–S15PubMedGoogle Scholar
  31. 31.
    Kino T, Ichijo T, Amin ND, Kesavapany S, Wang Y, Kim N, Rao S, Player A, Zheng YL, Garabedian MJ, Kawasaki E, Pant HC, Chrousos GP (2007) Cyclin-dependent kinase 5 differentially regulates the transcriptional activity of the glucocorticoid receptor through phosphorylation: clinical implications for the nervous system response to glucocorticoids and stress. Mol Endocrinol 21:1552–1568CrossRefPubMedGoogle Scholar
  32. 32.
    Schaaf MJ, Champagne D, van Laanen IH, van Wijk DC, Meijer AH, Meijer OC, Spaink HP, Richardson MK (2008) Discovery of a functional glucocorticoid receptor β-isoform in zebrafish. Endocrinology 149:1591–1599CrossRefPubMedGoogle Scholar
  33. 33.
    Otto C, Reichardt HM, Schutz G (1997) Absence of glucocorticoid receptor-β in mice. J Biol Chem 272:26665–26668CrossRefPubMedGoogle Scholar
  34. 34.
    Charmandari E, Chrousos GP, Ichijo T, Bhattacharyya N, Vottero A, Souvatzoglou E, Kino T (2005) The human glucocorticoid receptor (hGR) β isoform suppresses the transcriptional activity of hGRα by interfering with formation of active coactivator complexes. Mol Endocrinol 19:52–64CrossRefPubMedGoogle Scholar
  35. 35.
    Oakley RH, Sar M, Cidlowski JA (1996) The human glucocorticoid receptor β isoform. Expression, biochemical properties, and putative function. J Biol Chem 271:9550–9559CrossRefPubMedGoogle Scholar
  36. 36.
    van der Vaart M, Schaaf MJ (2009) Naturally occurring C-terminal splice variants of nuclear receptors. Nucl Recept Signal 7:e007PubMedGoogle Scholar
  37. 37.
    Ogawa S, Inoue S, Watanabe T, Orimo A, Hosoi T, Ouchi Y, Muramatsu M (1998) Molecular cloning and characterization of human estrogen receptor βcx: a potential inhibitor of estrogen action in human. Nucleic Acids Res 26:3505–3512CrossRefPubMedGoogle Scholar
  38. 38.
    Benbrook D, Pfahl M (1987) A novel thyroid hormone receptor encoded by a cDNA clone from a human testis library. Science 238:788–791CrossRefPubMedGoogle Scholar
  39. 39.
    Ebihara K, Masuhiro Y, Kitamoto T, Suzawa M, Uematsu Y, Yoshizawa T, Ono T, Harada H, Matsuda K, Hasegawa T, Masushige S, Kato S (1996) Intron retention generates a novel isoform of the murine vitamin D receptor that acts in a dominant negative way on the vitamin D signaling pathway. Mol Cell Biol 16:3393–3400PubMedGoogle Scholar
  40. 40.
    Arnold KA, Eichelbaum M, Burk O (2004) Alternative splicing affects the function and tissue-specific expression of the human constitutive androstane receptor. Nucl Recept 2:1CrossRefPubMedGoogle Scholar
  41. 41.
    Hossain A, Li C, Saunders GF (2004) Generation of two distinct functional isoforms of dosage-sensitive sex reversal-adrenal hypoplasia congenita-critical region on the X chromosome gene 1 (DAX-1) by alternative splicing. Mol Endocrinol 18:1428–1437CrossRefPubMedGoogle Scholar
  42. 42.
    Ohkura N, Hosono T, Maruyama K, Tsukada T, Yamaguchi K (1999) An isoform of Nurr1 functions as a negative inhibitor of the NGFI-B family signaling. Biochim Biophys Acta 1444:69–79PubMedGoogle Scholar
  43. 43.
    Petropoulos I, Part D, Ochoa A, Zakin MM, Lamas E (1995) NOR-2 (neuron-derived orphan receptor), a brain zinc finger protein, is highly induced during liver regeneration. FEBS Lett 372:273–278CrossRefPubMedGoogle Scholar
  44. 44.
    Gervois P, Torra IP, Chinetti G, Grotzinger T, Dubois G, Fruchart JC, Fruchart-Najib J, Leitersdorf E, Staels B (1999) A truncated human peroxisome proliferator-activated receptor α splice variant with dominant negative activity. Mol Endocrinol 13:1535–1549CrossRefPubMedGoogle Scholar
  45. 45.
    Sabatino L, Casamassimi A, Peluso G, Barone MV, Capaccio D, Migliore C, Bonelli P, Pedicini A, Febbraro A, Ciccodicola A, Colantuoni V (2005) A novel peroxisome proliferator-activated receptor γ isoform with dominant negative activity generated by alternative splicing. J Biol Chem 280:26517–26525CrossRefPubMedGoogle Scholar
  46. 46.
    Li LB, Leung DY, Hall CF, Goleva E (2006) Divergent expression and function of glucocorticoid receptor β in human monocytes and T cells. J Leukoc Biol 79:818–827CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang X, Clark AF, Yorio T (2005) Regulation of glucocorticoid responsiveness in glaucomatous trabecular meshwork cells by glucocorticoid receptor-β. Invest Ophthalmol Vis Sci 46:4607–4616CrossRefPubMedGoogle Scholar
  48. 48.
    Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA (1999) The dominant negative activity of the human glucocorticoid receptor β isoform. Specificity and mechanisms of action. J Biol Chem 274:27857–27866CrossRefPubMedGoogle Scholar
  49. 49.
    Goleva E, Li LB, Eves PT, Strand MJ, Martin RJ, Leung DY (2006) Increased glucocorticoid receptor β alters steroid response in glucocorticoid-insensitive asthma. Am J Respir Crit Care Med 173:607–616CrossRefPubMedGoogle Scholar
  50. 50.
    Derijk RH, Schaaf MJ, Turner G, Datson NA, Vreugdenhil E, Cidlowski J, de Kloet ER, Emery P, Sternberg EM, Detera-Wadleigh SD (2001) A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor β-isoform mRNA is associated with rheumatoid arthritis. J Rheumatol 28:2383–2388PubMedGoogle Scholar
  51. 51.
    Lee CK, Lee EY, Cho YS, Moon KA, Yoo B, Moon HB (2005) Increased expression of glucocorticoid receptor β messenger RNA in patients with ankylosing spondylitis. Korean J Intern Med 20:146–151CrossRefPubMedGoogle Scholar
  52. 52.
    Longui CA, Vottero A, Adamson PC, Cole DE, Kino T, Monte O, Chrousos GP (2000) Low glucocorticoid receptor α/β ratio in T-cell lymphoblastic leukemia. Horm Metab Res 32:401–406CrossRefPubMedGoogle Scholar
  53. 53.
    Pujols L, Mullol J, Benitez P, Torrego A, Xaubet A, de Haro J, Picado C (2003) Expression of the glucocorticoid receptor α and β isoforms in human nasal mucosa and polyp epithelial cells. Respir Med 97:90–96CrossRefPubMedGoogle Scholar
  54. 54.
    Shahidi H, Vottero A, Stratakis CA, Taymans SE, Karl M, Longui CA, Chrousos GP, Daughaday WH, Gregory SA, Plate JM (1999) Imbalanced expression of the glucocorticoid receptor isoforms in cultured lymphocytes from a patient with systemic glucocorticoid resistance and chronic lymphocytic leukemia. Biochem Biophys Res Commun 254:559–565CrossRefPubMedGoogle Scholar
  55. 55.
    Piotrowski P, Burzynski M, Lianeri M, Mostowska M, Wudarski M, Chwalinska-Sadowska H, Jagodzinski PP (2007) Glucocorticoid receptor β splice variant expression in patients with high and low activity of systemic lupus erythematosus. Folia Histochem Cytobiol 45:339–342PubMedGoogle Scholar
  56. 56.
    Leung DY, Hamid Q, Vottero A, Szefler SJ, Surs W, Minshall E, Chrousos GP, Klemm DJ (1997) Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor β. J Exp Med 186:1567–1574CrossRefPubMedGoogle Scholar
  57. 57.
    Webster JC, Oakley RH, Jewell CM, Cidlowski JA (2001) Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative β isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci USA 98:6865–6870CrossRefPubMedGoogle Scholar
  58. 58.
    Xu Q, Leung DY, Kisich KO (2003) Serine-arginine-rich protein p30 directs alternative splicing of glucocorticoid receptor pre-mRNA to glucocorticoid receptor β in neutrophils. J Biol Chem 278:27112–27118CrossRefPubMedGoogle Scholar
  59. 59.
    Strickland I, Kisich K, Hauk PJ, Vottero A, Chrousos GP, Klemm DJ, Leung DY (2001) High constitutive glucocorticoid receptor β in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 193:585–593CrossRefPubMedGoogle Scholar
  60. 60.
    Orii F, Ashida T, Nomura M, Maemoto A, Fujiki T, Ayabe T, Imai S, Saitoh Y, Kohgo Y (2002) Quantitative analysis for human glucocorticoid receptor α/β mRNA in IBD. Biochem Biophys Res Commun 296:1286–1294CrossRefPubMedGoogle Scholar
  61. 61.
    Tliba O, Damera G, Banerjee A, Gu S, Baidouri H, Keslacy S, Amrani Y (2008) Cytokines induce an early steroid resistance in airway smooth muscle cells: novel role of interferon regulatory factor-1. Am J Respir Cell Mol Biol 38:463–472CrossRefPubMedGoogle Scholar
  62. 62.
    Chung CC, Shimmin L, Natarajan S, Hanis CL, Boerwinkle E, Hixson JE (2009) Glucocorticoid receptor gene variant in the 3′ untranslated region is associated with multiple measures of blood pressure. J Clin Endocrinol Metab 94:268–276CrossRefPubMedGoogle Scholar
  63. 63.
    van den Akker EL, Koper JW, van Rossum EF, Dekker MJ, Russcher H, de Jong FH, Uitterlinden AG, Hofman A, Pols HA, Witteman JC, Lamberts SW (2008) Glucocorticoid receptor gene and risk of cardiovascular disease. Arch Intern Med 168:33–39CrossRefPubMedGoogle Scholar
  64. 64.
    van den Akker EL, Nouwen JL, Melles DC, van Rossum EF, Koper JW, Uitterlinden AG, Hofman A, Verbrugh HA, Pols HA, Lamberts SW, van Belkum A (2006) Staphylococcus aureus nasal carriage is associated with glucocorticoid receptor gene polymorphisms. J Infect Dis 194:814–818CrossRefPubMedGoogle Scholar
  65. 65.
    Wallberg AE, Neely KE, Hassan AH, Gustafsson JA, Workman JL, Wright AP (2000) Recruitment of the SWI-SNF chromatin remodeling complex as a mechanism of gene activation by the glucocorticoid receptor tau1 activation domain. Mol Cell Biol 20:2004–2013CrossRefPubMedGoogle Scholar
  66. 66.
    Ma H, Hong H, Huang SM, Irvine RA, Webb P, Kushner PJ, Coetzee GA, Stallcup MR (1999) Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol Cell Biol 19:6164–6173PubMedGoogle Scholar
  67. 67.
    Webb P, Nguyen P, Shinsako J, Anderson C, Feng W, Nguyen MP, Chen D, Huang SM, Subramanian S, McKinerney E, Katzenellenbogen BS, Stallcup MR, Kushner PJ (1998) Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol 12:1605–1618CrossRefPubMedGoogle Scholar
  68. 68.
    Wallberg AE, Neely KE, Gustafsson JA, Workman JL, Wright AP, Grant PA (1999) Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain. Mol Cell Biol 19:5952–5959PubMedGoogle Scholar
  69. 69.
    Hittelman AB, Burakov D, Iniguez-Lluhi JA, Freedman LP, Garabedian MJ (1999) Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J 18:5380–5388CrossRefPubMedGoogle Scholar
  70. 70.
    Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27CrossRefPubMedGoogle Scholar
  71. 71.
    Gougat C, Jaffuel D, Gagliardo R, Henriquet C, Bousquet J, Demoly P, Mathieu M (2002) Overexpression of the human glucocorticoid receptor α and β isoforms inhibits AP-1 and NF-κB activities hormone independently. J Mol Med 80:309–318CrossRefPubMedGoogle Scholar
  72. 72.
    Kelly A, Bowen H, Jee YK, Mahfiche N, Soh C, Lee T, Hawrylowicz C, Lavender P (2008) The glucocorticoid receptor β isoform can mediate transcriptional repression by recruiting histone deacetylases. J Allergy Clin Immunol 121:203–208e1CrossRefPubMedGoogle Scholar
  73. 73.
    Kumar R, Thompson EB (2005) Gene regulation by the glucocorticoid receptor: structure: function relationship. J Steroid Biochem Mol Biol 94:383–394CrossRefPubMedGoogle Scholar
  74. 74.
    He B, Bowen NT, Minges JT, Wilson EM (2001) Androgen-induced NH2- and COOH-terminal Interaction Inhibits p160 coactivator recruitment by activation function 2. J Biol Chem 276:42293–42301CrossRefPubMedGoogle Scholar
  75. 75.
    Kauppi B, Jakob C, Farnegardh M, Yang J, Ahola H, Alarcon M, Calles K, Engstrom O, Harlan J, Muchmore S, Ramqvist AK, Thorell S, Ohman L, Greer J, Gustafsson JA, Carlstedt-Duke J, Carlquist M (2003) The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 278:22748–22754CrossRefPubMedGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Tomoshige Kino
    • 1
    Email author
  • Yan A. Su
    • 2
  • George P. Chrousos
    • 3
  1. 1.Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA
  2. 2.GenProMarkers, Inc.RockvilleUSA
  3. 3.First Department of PediatricsAthens UniversityAthensGreece

Personalised recommendations