Cellular and Molecular Life Sciences

, Volume 66, Issue 19, pp 3177–3191 | Cite as

Progress in biomimetic carbohydrate recognition

  • D. Barney Walker
  • Gururaj Joshi
  • Anthony P. Davis


The importance of carbohydrate recognition in biology, and the unusual challenges involved, have lead to great interest in mimicking saccharide-binding proteins such as lectins. In this review, we discuss the design of artificial carbohydrate receptors, focusing on those which work under natural (i.e. aqueous) conditions. The problem is intrinsically difficult because of the similarity between substrate (carbohydrate) and solvent (water) and, accordingly, progress has been slow. However, recent developments suggest that solutions can be found. In particular, the “temple” family of carbohydrate receptors show good affinities and excellent selectivities for certain all-equatorial substrates. One example is selective for O-linked β-N-acetylglucosamine (GlcNAc, as in the O-GlcNAc protein modification), while another is specific for β-cellobiosyl and closely related disaccharides. Both show roughly millimolar affinities, matching the strength of some lectin–carbohydrate interactions.


Carbohydrates Molecular recognition Supramolecular chemistry Synthetic receptors Biomimetic chemistry 



The work from the authors’ group described in this article was supported by Enterprise Ireland, the European Union, the University of Bristol and EPSRC (EP/D060192/1). Thanks are due to the many coworkers and collaborators who have contributed to this programme.


  1. 1.
    Diekman AB (2003) Glycoconjugates in sperm function and gamete interactions: how much sugar does it take to sweet-talk the egg? Cell Mol Life Sci 60:298–308PubMedCrossRefGoogle Scholar
  2. 2.
    Miller DJ, Macek MB, Shur BD (1992) Complementarity between sperm surface beta-1,4-galactosyl-transferase and egg-coat Zp3 mediates sperm egg binding. Nature 357:589–593PubMedCrossRefGoogle Scholar
  3. 3.
    Snell WJ, White JM (1996) The molecules of mammalian fertilization. Cell 85:629–637PubMedCrossRefGoogle Scholar
  4. 4.
    Shalgi R, Raz T (1997) The role of carbohydrate residues in mammalian fertilization. Histol Histopathol 12:813–822PubMedGoogle Scholar
  5. 5.
    Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C (2006) The molecular players of sperm–egg fusion in mammals. Semin Cell Dev Biol 17:254–263PubMedCrossRefGoogle Scholar
  6. 6.
    Murrey HE, Hsieh-Wilson LC (2008) The chemical neurobiology of carbohydrates. Chem Rev 108:1708–1731PubMedCrossRefGoogle Scholar
  7. 7.
    Caltabiano G, Campillo M, De Leener A, Smits G, Vassart G, Costagliola S, Pardo L (2008) The specificity of binding of glycoprotein hormones to their receptors. Cell Mol Life Sci 65:2484–2492PubMedCrossRefGoogle Scholar
  8. 8.
    Lau KS, Dennis JW (2008) N-Glycans in cancer progression. Glycobiology 18:750–760PubMedCrossRefGoogle Scholar
  9. 9.
    Buzas EI, Gyorgy B, Pasztoi M, Jelinek I, Falus A, Gabius HJ (2006) Carbohydrate recognition systems in autoimmunity. Autoimmunity 39:691–704PubMedCrossRefGoogle Scholar
  10. 10.
    Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720PubMedCrossRefGoogle Scholar
  11. 11.
    Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:2370–2376PubMedCrossRefGoogle Scholar
  12. 12.
    Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KH, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–2071PubMedCrossRefGoogle Scholar
  13. 13.
    Wittmann V, Danishefsky SJ (2007) Glycopeptides and glycoproteins: synthesis, structure, and application. Springer, BerlinGoogle Scholar
  14. 14.
    Davis BG (2002) Synthesis of glycoproteins. Chem Rev 102:579–601PubMedCrossRefGoogle Scholar
  15. 15.
    Gamblin DP, Scanlan EM, Davis BG (2009) Glycoprotein synthesis: an update. Chem Rev 109:131–163PubMedCrossRefGoogle Scholar
  16. 16.
    Laine RA (1994) A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide—the isomer-barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4:759–767PubMedCrossRefGoogle Scholar
  17. 17.
    Toone EJ (1994) Structure and energetics of protein carbohydrate complexes. Curr Opin Struct Biol 4:719–728CrossRefGoogle Scholar
  18. 18.
    Ambrosi M, Cameron NR, Davis BG (2005) Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 3:1593–1608PubMedCrossRefGoogle Scholar
  19. 19.
    García-Hernández E, Hernández-Arana A (1999) Structural bases of lectin–carbohydrate affinities: comparison with protein-folding energetics. Protein Sci 8:1075–1086PubMedCrossRefGoogle Scholar
  20. 20.
    Gabius HJ (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87:108–121PubMedCrossRefGoogle Scholar
  21. 21.
    Lemieux RU (1996) How water provides the impetus for molecular recognition in aqueous solution. Acc Chem Res 29:373–380CrossRefGoogle Scholar
  22. 22.
    Kubik S (2009) Synthetic lectins. Angew Chem Int Ed 48:1722–1725CrossRefGoogle Scholar
  23. 23.
    Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674PubMedCrossRefGoogle Scholar
  24. 24.
    Davis AP, Wareham RS (1999) Carbohydrate recognition through noncovalent interactions: a challenge for biomimetic and supramolecular chemistry. Angew Chem Int Ed 38:2978–2996CrossRefGoogle Scholar
  25. 25.
    Lee YC, Lee RT (1995) Carbohydrate–protein interactions—basis of glycobiology. Acc Chem Res 28:321–327CrossRefGoogle Scholar
  26. 26.
    Weis WI, Drickamer K (1996) Structural basis of lectin–carbohydrate recognition. Annu Rev Biochem 65:441–473PubMedCrossRefGoogle Scholar
  27. 27.
    Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364PubMedCrossRefGoogle Scholar
  28. 28.
    Tohda K, Gratzl M (2003) A microscopic, continous, optical monitor for interstitial electrolytes and glucose. Chemphyschem 4:155–160PubMedCrossRefGoogle Scholar
  29. 29.
    Katz E, Sheeney-Haj-Ichia L, Buckmann AF, Willner I (2002) Dual biosensing by magneto-controlled bioelectrocatalysis. Angew Chem Int Ed 41:1343–1346CrossRefGoogle Scholar
  30. 30.
    Wei Y, Dong H, Xu JG, Feng QW (2002) Simultaneous immobilization of horseradish peroxidase and glucose oxidase in mesoporous sol-gel host materials. Chemphyschem 3:802–808PubMedCrossRefGoogle Scholar
  31. 31.
    Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 125:588–593PubMedCrossRefGoogle Scholar
  32. 32.
    Stuart DA, Yuen JM, Lyandres NSO, Yonzon CR, Glucksberg MR, Walsh JT, Van Duyne RP (2006) In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal Chem 78:7211–7215PubMedCrossRefGoogle Scholar
  33. 33.
    Binu S, Pillai VRM, Pradeepkumar V, Padhy BB, Joseph CS, Chandrasekaran N (2009) Fibre optic glucose sensor. Mat Sci Eng C Bio S 29:183–186CrossRefGoogle Scholar
  34. 34.
    James TD, Sandanayake KRAS, Shinkai S (1996) Saccharide sensing with molecular receptors based on boronic acid. Angew Chem Int Ed 35:1910–1922CrossRefGoogle Scholar
  35. 35.
    James TD, Phillips MD, Shinkai S (2006) Boronic acids in saccharide recognition. RSC, CambridgeGoogle Scholar
  36. 36.
    Davis AP, James TD (2005) Carbohydrate receptors. In: Schrader T, Hamilton AD (eds) Functional synthetic receptors. Wiley, Weinheim, pp 45–109CrossRefGoogle Scholar
  37. 37.
    Quiocho FA (1986) Carbohydrate-binding proteins—tertiary structures and protein–sugar interactions. Annu Rev Biochem 55:287–315PubMedCrossRefGoogle Scholar
  38. 38.
    Quiocho FA (1989) Protein–carbohydrate interactions—basic molecular-features. Pure Appl Chem 61:1293–1306CrossRefGoogle Scholar
  39. 39.
    Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250CrossRefGoogle Scholar
  40. 40.
    Chervenak MC, Toone EJ (1994) A direct measure of the contribution of solvent reorganization to the enthalpy of ligand-binding. J Am Chem Soc 116:10533–10539CrossRefGoogle Scholar
  41. 41.
    Laughrey ZR, Kiehna SE, Rierrien AJ, Waters ML (2008) Carbohydrate–pi interactions: what are they worth? J Am Chem Soc 130:14625–14633PubMedCrossRefGoogle Scholar
  42. 42.
    Fernandez-Alonso MC, Canada FJ, Jiménez-Barbero J, Cuevas G (2005) Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate–aromatic interactions. J Am Chem Soc 127:7379–7386CrossRefGoogle Scholar
  43. 43.
    Chavez MI, Andreu C, Vidal P, Aboitiz N, Freire F, Groves P, Asensio JL, Asensio G, Muraki M, Canada FJ, Jiménez-Barbero J (2005) On the importance of carbohydrate–aromatic interactions for the molecular recognition of oligosaccharides by proteins: NMR studies of the structure and binding affinity of AcAMP2-like peptides with non-natural naphthyl and fluoroaromatic residues. Chem Eur J 11:7060–7074CrossRefGoogle Scholar
  44. 44.
    Terraneo G, Potenza D, Canales A, Jiménez-Barbero J, Baldridge KK, Bernardi A (2007) A simple model system for the study of carbohydrate–aromatic interactions. J Am Chem Soc 129:2890–2900PubMedCrossRefGoogle Scholar
  45. 45.
    Vandenbussche S, Diaz D, Fernandez-Alonso MC, Pan WD, Vincent SP, Cuevas G, Canada FJ, Jiménez-Barbero J, Bartik K (2008) Aromatic–carbohydrate interactions: an NMR and computational study of model systems. Chem Eur J 14:7570–7578CrossRefGoogle Scholar
  46. 46.
    Jiménez-Barbero J, Junquera E, Martin-Pastor M, Sharma S, Vicent C, Penadés S (1995) Molecular recognition of carbohydrates using a synthetic receptor—a model system to understand the stereoselectivity of a carbohydrate–carbohydrate interaction in water. J Am Chem Soc 117:11198–11204CrossRefGoogle Scholar
  47. 47.
    Morales JC, Zurita D, Penadés S (1998) Carbohydrate–carbohydrate interactions in water with glycophanes as model systems. J Org Chem 63:9212–9222CrossRefGoogle Scholar
  48. 48.
    Lutzen A (2004) Carbohydrate recognition by artificial receptors. In: Schmuck C, Wennemers H (eds) Highlights in bioorganic chemistry: methods and applications. Wiley, Weinheim, pp 109–119Google Scholar
  49. 49.
    Mazik M (2009) Molecular recognition of carbohydrates by acyclic receptors employing noncovalent interactions. Chem Soc Rev 38:935–956PubMedCrossRefGoogle Scholar
  50. 50.
    Mazik M, Kuschel M (2008) Highly effective acyclic carbohydrate receptors consisting of aminopyridine, imidazole, and indole recognition units. Chem Eur J 14:2405–2419CrossRefGoogle Scholar
  51. 51.
    Mazik M, Kuschel M (2008) Amide, amino, hydroxy and aminopyridine groups as building blocks for carbohydrate receptors. Eur J Org Chem 151:7–1526Google Scholar
  52. 52.
    Nativi C, Cacciarini M, Francesconi O, Vacca A, Moneti G, Ienco A, Roelens S (2007) Pyrrolic tripodal receptors effectively recognizing monosaccharides. Affinity assessment through a generalized binding descriptor. J Am Chem Soc 129:4377–4385PubMedCrossRefGoogle Scholar
  53. 53.
    Nativi C, Cacciarini M, Francesconi O, Moneti G, Roelens S (2007) A beta-mannoside-selective pyrrolic tripodal receptor. Org Lett 9:4685–4688PubMedCrossRefGoogle Scholar
  54. 54.
    Francesconi O, Ienco A, Moneti G, Nativi C, Roelens S (2006) A self-assembled pyrrolic cage receptor specifically recognizes beta-glucopyranosides. Angew Chem Int Ed 45:6693–6696CrossRefGoogle Scholar
  55. 55.
    Vacca A, Nativi C, Cacciarini M, Pergoli R, Roelens S (2004) A new tripodal receptor for molecular recognition of monosaccharides. A paradigm for assessing glycoside binding affinities and selectivities by H-1 NMR spectroscopy. J Am Chem Soc 126:16456–16465PubMedCrossRefGoogle Scholar
  56. 56.
    Abe H, Machiguchi H, Matsumoto S, Inouye M (2008) Saccharide recognition-induced transformation of pyridine–pyridone alternate oligomers from self-dimer to helical complex. J Org Chem 73:4650–4661PubMedCrossRefGoogle Scholar
  57. 57.
    Li C, Wang GT, Yi HP, Jiang XK, Li ZT, Wang RX (2007) Diastereomeric recognition of chiral foldamer receptors for chiral glucoses. Org Lett 9:1797–1800PubMedCrossRefGoogle Scholar
  58. 58.
    Palde PB, Gareiss PC, Miller BL (2008) Selective recognition of alkyl pyranosides in protic and aprotic solvents. J Am Chem Soc 130:9566–9573PubMedCrossRefGoogle Scholar
  59. 59.
    Waki M, Abe H, Inouye M (2007) Translation of mutarotation into induced circular dichroism signals through helix inversion of host polymers. Angew Chem Int Ed 46:3059–3061CrossRefGoogle Scholar
  60. 60.
    Aoyama Y, Tanaka Y, Toi H, Ogoshi H (1988) Polar host guest interaction—binding of nonionic polar compounds with a resorcinol–aldehyde cyclooligomer as a lipophilic polar host. J Am Chem Soc 110:634–635CrossRefGoogle Scholar
  61. 61.
    Kobayashi K, Asakawa Y, Kato Y, Aoyama Y (1992) Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity—importance of guest host CH–π interaction. J Am Chem Soc 114:10307–10313CrossRefGoogle Scholar
  62. 62.
    Nishio M, Umezawa Y, Hirota M, Takeuchi Y (1995) Tetrahedron report number-378—the CH–π interaction—significance in molecular recognition. Tetrahedron 51:8665–8701CrossRefGoogle Scholar
  63. 63.
    Yanagihara R, Aoyama Y (1994) Enhanced sugar-binding ability of deprotonated calix[4]resorcarene in water—balance of CH–π interaction and hydrophobic effect. Tetrahedron Lett 35:9725–9728CrossRefGoogle Scholar
  64. 64.
    Rusin O, Kral V (2001) 1,1′-Binaphthyl substituted calixresorcinols-methyl red complexes: receptors for optical saccharide sensing. Tetrahedron Lett 42:4235–4238CrossRefGoogle Scholar
  65. 65.
    Poh B-L, Tan CM (1993) Contribution of guest–host CH–π interactions to the stability of complexes formed from cyclotetrachromotropylene as host and alcohols and sugars as guests in water. Tetrahedron 49:9581–9592CrossRefGoogle Scholar
  66. 66.
    Goto H, Furusho Y, Yashima E (2007) Double helical oligoresorcinols specifically recognize oligosaccharides via heteroduplex formation through noncovalent interactions in water. J Am Chem Soc 129:9168–9174PubMedCrossRefGoogle Scholar
  67. 67.
    Villalonga R, Cao R, Fragoso A (2007) Supramolecular chemistry of cyclodextrins in enzyme technology. Chem Rev 107:3088–3116PubMedCrossRefGoogle Scholar
  68. 68.
    Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753PubMedCrossRefGoogle Scholar
  69. 69.
    Aoyama Y, Nagai Y, Otsuki J, Kobayashi K, Toi H (1992) Selective binding of sugar to beta cyclodextrin—a prototype for sugar–sugar interactions in water. Angew Chem Int Ed 31:745–747CrossRefGoogle Scholar
  70. 70.
    Hacket F, Coterón JM, Schneider HJ, Kazachenko VP (1997) The complexation of glucose and other monosaccharides with cyclodextrins. Can J Chem 75:52–55CrossRefGoogle Scholar
  71. 71.
    De Namor AFD, Blackett PM, Cabaleiro MC, Alrawi JMA (1994) Cyclodextrin monosaccharide interactions in water. J Chem Soc Faraday T 90:845–847CrossRefGoogle Scholar
  72. 72.
    Eliseev AV, Schneider HJ (1994) Supramolecular chemistry 46. Molecular recognition of nucleotides, nucleosides, and sugars by aminocyclodextrins. J Am Chem Soc 116:6081–6088CrossRefGoogle Scholar
  73. 73.
    Rusin O, Kral V (1999) Novel macrocycles with 1,1′-binaphthyl substituents for the recognition of saccharides. Chem Comm 236:7–2368Google Scholar
  74. 74.
    Kral V, Rusin O, Charvatova J, Anzenbacher P, Fogl J (2000) Porphyrin phosphonates: novel anionic receptors for saccharide recognition. Tetrahedron Lett 41:10147–10151CrossRefGoogle Scholar
  75. 75.
    Charvatova J, Rusin O, Král V, Volka K, Matejka P (2001) Novel porphyrin based receptors for saccharide recognition in water. Sensor Actuat B Chem 76:366–372CrossRefGoogle Scholar
  76. 76.
    Král V, Rusin O, Schmidtchen FP (2001) Novel porphyrin-cryptand cyclic systems: receptors for saccharide recognition in water. Org Lett 3:873–876PubMedCrossRefGoogle Scholar
  77. 77.
    Rusin O, Hub M, Král V (2001) Novel water-soluble porphyrin-based receptors for saccharide recognition. Mat Sci Eng C Bio S 18:135–140CrossRefGoogle Scholar
  78. 78.
    Rusin O, Král V (2001) 1,1′-Binaphthyl subunits as recognition groups of novel macrocyclic ligands—application for saccharide sensing. Sens Actuators B Chem 76:331–335CrossRefGoogle Scholar
  79. 79.
    Rusin O, Lang K, Král V (2002) 1,1′-Binaphthyl-substituted macrocycles as receptors for saccharide recognition. Chem Eur J 8:655–663CrossRefGoogle Scholar
  80. 80.
    Kralova J, Koivukorpi J, Kejik Z, Pouckova P, Sievanen E, Kolehmainen E, Král V (2008) Porphyrin–bile acid conjugates: from saccharide recognition in the solution to the selective cancer cell fluorescence detection. Org Biomol Chem 6:1548–1552PubMedCrossRefGoogle Scholar
  81. 81.
    Wallis R (2000) C-type lectins and collectins. In: Ernst B, Hart GW, Sinay P (eds) Carbohydrates in chemistry and biology, vol II. Wiley, Weinheim, pp 597–611CrossRefGoogle Scholar
  82. 82.
    Striegler S, Tewes E (2002) Investigation of sugar-binding sites in ternary ligand–copper(II)–carbohydrate complexes. Eur J Inorg Chem 48:7–495Google Scholar
  83. 83.
    Striegler S, Dittel M (2003) A sugar discriminating binuclear copper(II) complex. J Am Chem Soc 125:11518–11524PubMedCrossRefGoogle Scholar
  84. 84.
    Striegler S, Dittel M (2005) A sugar’s choice: coordination to a mononuclear or a dinuclear copper(II) complex? Inorg Chem 44:2728–2733PubMedCrossRefGoogle Scholar
  85. 85.
    Striegler S, Gichinga MG (2008) Disaccharide recognition by binuclear copper(II) complexes. Chem Comm 45:5930–5932PubMedCrossRefGoogle Scholar
  86. 86.
    Striegler S, Dittel M (2003) Evaluation of new strategies to prepare templated polymers with sufficient oligosaccharide recognition capacity. Anal Chim Acta 484:53–62CrossRefGoogle Scholar
  87. 87.
    Alpturk O, Rusin O, Fakayode SO, Wang WH, Escobedo JO, Warner IM, Crowe WE, Král V, Pruet JM, Strongin RM (2006) Lanthanide complexes as fluorescent indicators for neutral sugars and cancer biomarkers. Proc Natl Acad Sci USA 103:9756–9760PubMedCrossRefGoogle Scholar
  88. 88.
    Mazik M, Cavga H (2006) Carboxylate-based receptors for the recognition of carbohydrates in organic and aqueous media. J Org Chem 71:2957–2963PubMedCrossRefGoogle Scholar
  89. 89.
    Billing J, Grundberg H, Nilsson UJ (2002) Amphiphilic anthracene-amino acid conjugates as simple carbohydrate receptors in water. Supramol Chem 14:367–372CrossRefGoogle Scholar
  90. 90.
    Siebert HC, Lu SY, Frank M, Kramer J, Wechselberger R, Joosten J, Andre S, Rittenhouse-Olson K, Roy R, von der Lieth CW, Kaptein R, Vliegenthart JFG, Heck AJR, Gabius HJ (2002) Analysis of protein–carbohydrate interaction at the lower size limit of the protein part (15-mer peptide) by NMR spectroscopy, electrospray ionization mass spectrometry, and molecular modeling. Biochem US 41:9707–9717CrossRefGoogle Scholar
  91. 91.
    Peletskaya EN, Glinsky VV, Glinsky GV, Deutscher SL, Quinn TP (1997) Characterization of peptides that bind the tumor-associated Thomsen-Friedenreich antigen selected from bacteriophage display libraries. J Mol Biol 270:374–384PubMedCrossRefGoogle Scholar
  92. 92.
    Glinsky VV, Huflejt ME, Glinsky GV, Deutscher SL, Quinn TP (2000) Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res 60:2584–2588PubMedGoogle Scholar
  93. 93.
    Landon LA, Peletskaya EN, Glinsky VV, Karasseva N, Quinn TP, Deutscher SL (2003) Combinatorial evolution of high-affinity peptides that bind to the Thomsen-Friedenreich carcinoma antigen. J Prot Chem 22:193–204CrossRefGoogle Scholar
  94. 94.
    Otsuki J, Kobayashi K, Toi H, Aoyama Y (1993) Oligosaccharide–peptide interaction. Binding of maltodextrin to Trp-Trp via sugar-bisindole intercalculation. Tetrahedron Lett 34:1945–1948CrossRefGoogle Scholar
  95. 95.
    Reenberg T, Nyberg N, Duus JO, van Dongen JLJ, Meldal M (2007) Specific recognition of disaccharides in water by an artificial bicyclic carbohydrate receptor. Eur J Org Chem 500:3–5009Google Scholar
  96. 96.
    Davis AP, Wareham RS (1998) A tricyclic polyamide receptor for carbohydrates in organic media. Angew Chem Int Ed 37:2270–2273CrossRefGoogle Scholar
  97. 97.
    Ryan TJ, Lecollinet G, Velasco T, Davis AP (2002) Phase transfer of monosaccharides through non-covalent interactions; selective extraction of glucose by a lipophilic cage receptor. Proc Natl Acad Sci USA 99:4863–4866PubMedCrossRefGoogle Scholar
  98. 98.
    Klein E, Crump MP, Davis AP (2005) Carbohydrate recognition in water by a tricyclic polyamide receptor. Angew Chem Int Ed 44:298–302CrossRefGoogle Scholar
  99. 99.
    Ferrand Y, Klein E, Barwell NP, Crump MP, Jiménez-Barbero J, Vicent C, Boons G-J, Ingale S, Davis AP (2009) A synthetic lectin for o-linked β-N-acetylglucosamine (O-GlcNAc). Angew Chem Int Ed 49:1775–1779CrossRefGoogle Scholar
  100. 100.
    Zachara NE, Hart GW (2002) The emerging significance of O-GlcNAc in cellular regulation. Chem Rev 102:431–438PubMedCrossRefGoogle Scholar
  101. 101.
    Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022PubMedCrossRefGoogle Scholar
  102. 102.
    Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378PubMedCrossRefGoogle Scholar
  103. 103.
    Ferrand Y, Crump MP, Davis AP (2007) A synthetic lectin analog for biomimetic disaccharide recognition. Science 318:619–622PubMedCrossRefGoogle Scholar
  104. 104.
    Lemieux RU (1993) How proteins recognise and bind oligosaccharides. In: Garegg PJ, Lindberg AA (eds) Carbohydrate antigens. American Chemical Society, Washington, D.C., pp 5–18Google Scholar
  105. 105.
    Klein E, Ferrand Y, Barwell NR, Davis AP (2008) Solvent effects in carbohydrate binding by synthetic receptors: implications for the role of water in natural carbohydrate recognition. Angew Chem Int Ed 47:2693–2696CrossRefGoogle Scholar
  106. 106.
    Mazik M (2008) Design of lectin mimetics. ChemBioChem 9:1015–1017PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • D. Barney Walker
    • 1
  • Gururaj Joshi
    • 1
  • Anthony P. Davis
    • 1
  1. 1.School of ChemistryUniversity of BristolBristolUK

Personalised recommendations