Cellular and Molecular Life Sciences

, Volume 66, Issue 15, pp 2585–2598

Crystal structures of g-type lysozyme from Atlantic cod shed new light on substrate binding and the catalytic mechanism

Research Article

Abstract

Crystal structures of Atlantic cod lysozyme have been solved with and without ligand bound in the active site to 1.7 and 1.9 Å resolution, respectively. The structures reveal the presence of NAG in the substrate binding sites at both sides of the catalytic Glu73, hence allowing the first crystallographic description of the goose-type (g-type) lysozyme E–G binding sites. In addition, two aspartic acid residues suggested to participate in catalysis (Asp101 and Asp90) were mutated to alanine. Muramidase activity data for two single mutants and one double mutant demonstrates that both residues are involved in catalysis, but Asp101 is the more critical of the two. The structures and activity data suggest that a water molecule is the nucleophile completing the catalytic reaction, and the roles of the aspartic acids are to ensure proper positioning of the catalytic water.

Keywords

Atlantic cod Fish lysozyme Crystal structure Active site residues Substrate binding sites Surface potential Muramidase activity 

References

  1. 1.
    Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839PubMedCrossRefGoogle Scholar
  2. 2.
    Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39:223–239CrossRefGoogle Scholar
  3. 3.
    Irwin DM, Gong Z (2003) Molecular evolution of vertebrate goose-type lysozyme genes. J Mol Evol 56:234–242PubMedCrossRefGoogle Scholar
  4. 4.
    Prager EM, Jollès P (1996) Animal lysozymes c and g: an overview. In: Jollès P (ed) Lysozymes: model enzymes in biochemistry and biology. Birkhäuser, Basel, pp 9–31Google Scholar
  5. 5.
    Jolles P, Jolles J (1984) What’s new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 63:165–189PubMedCrossRefGoogle Scholar
  6. 6.
    Grutter MG, Weaver LH, Matthews BW (1983) Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes? Nature 303:828–831PubMedCrossRefGoogle Scholar
  7. 7.
    Weaver LH, Grutter MG, Matthews BW (1995) The refined structures of goose lysozyme and its complex with a bound trisaccharide show that the “goose-type” lysozymes lack a catalytic aspartate residue. J Mol Biol 245:54–68PubMedCrossRefGoogle Scholar
  8. 8.
    Honda Y, Fukamizo T (1998) Substrate binding subsites of chitinase from barley seeds and lysozyme from goose egg white. Biochim Biophys Acta 1388:53–65PubMedGoogle Scholar
  9. 9.
    Strynadka NC, James MN (1991) Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. J Mol Biol 220:401–424PubMedCrossRefGoogle Scholar
  10. 10.
    Song H, Inaka K, Maenaka K, Matsushima M (1994) Structural changes of active site cleft and different saccharide binding modes in human lysozyme co-crystallized with hexa-N-acetyl-chitohexaose at pH 4.0. J Mol Biol 244:522–540PubMedCrossRefGoogle Scholar
  11. 11.
    Hirakawa H, Ochi A, Kawahara Y, Kawamura S, Torikata T, Kuhara S (2008) Catalytic reaction mechanism of goose egg-white lysozyme by molecular modelling of enzyme–substrate complex. J Biochem (Tokyo) 144:753–761Google Scholar
  12. 12.
    Canfield RE, McMurry S (1967) Purification and characterization of a lysozyme from goose egg white. Biochem Biophys Res Commun 26:38–42PubMedCrossRefGoogle Scholar
  13. 13.
    Dianoux AC, Jolles P (1967) Study of a lysozyme poor in cystine and tryptophan: the lysozyme of goose egg white. Biochim Biophys Acta 133:472–479PubMedGoogle Scholar
  14. 14.
    Hikima J, Minagawa S, Hirono I, Aoki T (2001) Molecular cloning, expression and evolution of the Japanese flounder goose-type lysozyme gene, and the lytic activity of its recombinant protein. Biochim Biophys Acta 1520:35–44PubMedGoogle Scholar
  15. 15.
    Kyomuhendo P, Myrnes B, Nilsen IW (2007) A cold-active salmon goose-type lysozyme with high heat tolerance. Cell Mol Life Sci 64:2841–2847PubMedCrossRefGoogle Scholar
  16. 16.
    Savan R, Aman A, Sakai M (2003) Molecular cloning of G type lysozyme cDNA in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 15:263–268PubMedCrossRefGoogle Scholar
  17. 17.
    Sun BJ, Wang GL, Xie HX, Gao Q, Nie P (2006) Gene structure of goose-type lysozyme in the mandarin fish Siniperca chuatsi with analysis on the lytic activity of its recombinant in Escherichia coli. Aquaculture 252:106–113CrossRefGoogle Scholar
  18. 18.
    Yin ZX, He JG, Deng WX, Chan SM (2003) Molecular cloning, expression of orange-spotted grouper goose-type lysozyme cDNA, and lytic activity of its recombinant protein. Dis Aquat Organ 55:117–123PubMedCrossRefGoogle Scholar
  19. 19.
    Zheng W, Tian C, Chen X (2007) Molecular characterization of goose-type lysozyme homologue of large yellow croaker and its involvement in immune response induced by trivalent bacterial vaccine as an acute-phase protein. Immunol Lett 113:107–116PubMedCrossRefGoogle Scholar
  20. 20.
    Larsen AN, Solstad T, Svineng G, Seppola M, Jorgensen TØ (2009) Molecular characterisation of a goose-type lysozyme gene in Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 26:122–132PubMedCrossRefGoogle Scholar
  21. 21.
    Karlsen S, Hough E, Rao ZH, Isaacs NW (1996) Structure of a bulgecin-inhibited g-type lysozyme from the egg white of the Australian black swan. A comparison of the binding of bulgecin to three muramidases. Acta Crystallogr D Biol Crystallogr 52:105–114PubMedCrossRefGoogle Scholar
  22. 22.
    Rao Z, Esnouf R, Isaacs N, Stuart D (1995) A strategy for rapid and effective refinement applied to black swan lysozyme. Acta Crystallogr D Biol Crystallogr 51:331–336PubMedCrossRefGoogle Scholar
  23. 23.
    Kawamura S, Ohno K, Ohkuma M, Chijiiwa Y, Torikata T (2006) Experimental verification of the crucial roles of Glu73 in the catalytic activity and structural stability of goose type lysozyme. J Biochem (Tokyo) 140:75–85Google Scholar
  24. 24.
    Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26:795–800CrossRefGoogle Scholar
  25. 25.
    Collaborative Computational Project, N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763CrossRefGoogle Scholar
  26. 26.
    Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025CrossRefGoogle Scholar
  27. 27.
    Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463PubMedCrossRefGoogle Scholar
  28. 28.
    Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A Found Crystallogr 47:110–119CrossRefGoogle Scholar
  29. 29.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255PubMedCrossRefGoogle Scholar
  30. 30.
    Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16:566–567PubMedCrossRefGoogle Scholar
  31. 31.
    Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlinear Poisson–Boltzmann equation: multiple dielectric constants and multivalent ions. J Phys Chem B 105:6507–6514CrossRefGoogle Scholar
  32. 32.
    Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688PubMedCrossRefGoogle Scholar
  33. 33.
    Mcdonald IK, Thornton JM (1994) Satisfying hydrogen-bonding potential in proteins. J Mol Biol 238:777–793PubMedCrossRefGoogle Scholar
  34. 34.
    Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308PubMedCrossRefGoogle Scholar
  35. 35.
    Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8:127–134PubMedCrossRefGoogle Scholar
  36. 36.
    Fukamizo T, Torikata T, Nagayama T, Minematsu T, Hayashi K (1983) Enzymatic activity of avian egg-white lysozymes. J Biochem (Tokyo) 94:115–122Google Scholar
  37. 37.
    Maenaka K, Matsushima M, Song H, Sunada F, Watanabe K, Kumagai I (1995) Dissection of protein–carbohydrate interactions in mutant hen egg-white lysozyme complexes and their hydrolytic activity. J Mol Biol 247:281–293PubMedCrossRefGoogle Scholar
  38. 38.
    Kuroki R, Weaver LH, Matthews BW (1999) Structural basis of the conversion of T4 lysozyme into a transglycosidase by reengineering the active site. Proc Natl Acad Sci USA 96:8949–8954PubMedCrossRefGoogle Scholar
  39. 39.
    Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412:835–838PubMedCrossRefGoogle Scholar
  40. 40.
    Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433PubMedCrossRefGoogle Scholar
  41. 41.
    Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57PubMedCrossRefGoogle Scholar
  42. 42.
    Kawamura S, Ohkuma M, Chijiiwa Y, Kohno D, Nakagawa H, Hirakawa H, Kuhara S, Torikata T (2008) Role of disulfide bonds in goose-type lysozyme. FEBS J 275:2818–2830PubMedCrossRefGoogle Scholar
  43. 43.
    Pooart J, Torikata T, Araki T (2005) Enzymatic properties of rhea lysozyme. Biosci Biotechnol Biochem 69:103–112PubMedCrossRefGoogle Scholar
  44. 44.
    Muraki M, Morikawa M, Jigami Y, Tanaka H (1988) Engineering of human lysozyme as a polyelectrolyte by the alteration of molecular surface charge. Protein Eng 2:49–54PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of Chemistry, The Norwegian Structural Biology CentreUniversity of TromsøTromsøNorway
  2. 2.Nofima MarineTromsøNorway
  3. 3.Department of Marine Biotechnology, Norwegian College of Fishery ScienceUniversity of TromsøTromsøNorway

Personalised recommendations