PIAS proteins: pleiotropic interactors associated with SUMO

  • Miia M. Rytinki
  • Sanna Kaikkonen
  • Petri Pehkonen
  • Tiina Jääskeläinen
  • Jorma J. PalvimoEmail author


The interactions and functions of protein inhibitors of activated STAT (PIAS) proteins are not restricted to the signal transducers and activators of transcription (STATs), but PIAS1, -2, -3 and -4 interact with and regulate a variety of distinct proteins, especially transcription factors. Although the majority of PIAS-interacting proteins are prone to modification by small ubiquitin-related modifier (SUMO) proteins and the PIAS proteins have the capacity to promote the modification as RING-type SUMO ligases, they do not function solely as SUMO E3 ligases. Instead, their effects are often independent of their Siz/PIAS (SP)-RING finger, but dependent on their capability to noncovalently interact with SUMOs or DNA through their SUMO-interacting motif and scaffold attachment factor-A/B, acinus and PIAS domain, respectively. Here, we present an overview of the cellular regulation by PIAS proteins and propose that many of their functions are due to their capability to mediate and facilitate SUMO-linked protein assemblies.


Protein inhibitor of activated STAT (PIAS) Small ubiquitin-related modifier (SUMO) SUMOylation (covalent SUMO modification) SUMO-interacting motif (SIM) E3 ligase SP-RING domain Transcription Coregulator 



We are grateful to the Academy of Finland, the Finnish Cancer Foundation, Kuopio Graduate School of Molecular Medicine and Sigrid Jusélius Foundation for support.

Supplementary material

18_2009_61_MOESM1_ESM.doc (126 kb)
Supplementary Table 1 (DOC 126 kb)


  1. 1.
    Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803–1805PubMedCrossRefGoogle Scholar
  2. 2.
    Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA 95:10626–10631PubMedCrossRefGoogle Scholar
  3. 3.
    Schmidt D, Muller S (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60:2561–2574PubMedCrossRefGoogle Scholar
  4. 4.
    Hari KL, Cook KR, Karpen GH (2001) The Drosophila Su(var)2–10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev 15:1334–1348PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744PubMedCrossRefGoogle Scholar
  6. 6.
    Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765PubMedCrossRefGoogle Scholar
  7. 7.
    Beliakoff J, Sun Z (2006) Zimp7 and Zimp10, two novel PIAS-like proteins, function as androgen receptor coregulators. Nucl Recept Signal 4:e017PubMedGoogle Scholar
  8. 8.
    Rodriguez-Magadan H, Merino E, Schnabel D, Ramirez L, Lomeli H (2008) Spatial and temporal expression of Zimp7 and Zimp10 PIAS-like proteins in the developing mouse embryo. Gene Expr Patterns 8:206–213PubMedCrossRefGoogle Scholar
  9. 9.
    Potts PR, Yu H (2007) The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 14:581–590PubMedCrossRefGoogle Scholar
  10. 10.
    Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5:593–605PubMedCrossRefGoogle Scholar
  11. 11.
    Shuai K (2006) Regulation of cytokine signaling pathways by PIAS proteins. Cell Res 16:196–202PubMedCrossRefGoogle Scholar
  12. 12.
    Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956PubMedCrossRefGoogle Scholar
  13. 13.
    Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180PubMedCrossRefGoogle Scholar
  14. 14.
    Hay RT (2007) SUMO-specific proteases: a twist in the tail. Trends Cell Biol 17:370–376PubMedCrossRefGoogle Scholar
  15. 15.
    Kim JH, Baek SH (2009) Emerging roles of desumoylating enzymes. Biochim Biophys Acta 1792:155–162PubMedGoogle Scholar
  16. 16.
    Jones D, Crowe E, Stevens TA, Candido EP (2002) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 3:RESEARCH0002PubMedGoogle Scholar
  17. 17.
    Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, Sternberg PW, Podbilewicz B, Ronai Z (2004) The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes Dev 18:2380–2391PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519PubMedCrossRefGoogle Scholar
  19. 19.
    Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9:769–779PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang FP, Mikkonen L, Toppari J, Palvimo JJ, Thesleff I, Janne OA (2008) Sumo-1 function is dispensable in normal mouse development. Mol Cell Biol 28:5381–5390PubMedCrossRefGoogle Scholar
  21. 21.
    Yamaguchi T, Sharma P, Athanasiou M, Kumar A, Yamada S, Kuehn MR (2005) Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol 25:5171–5182PubMedCrossRefGoogle Scholar
  22. 22.
    Huang TT, D’Andrea AD (2006) Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell Biol. 7:323–334PubMedCrossRefGoogle Scholar
  23. 23.
    Dennis AP, O’Malley BW (2005) Rush hour at the promoter: how the ubiquitin–proteasome pathway polices the traffic flow of nuclear receptor-dependent transcription. J Steroid Biochem Mol Biol 93:139–151PubMedCrossRefGoogle Scholar
  24. 24.
    Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol. Cell 29:653–663PubMedCrossRefGoogle Scholar
  25. 25.
    Vertegaal AC (2007) Small ubiquitin-related modifiers in chains. Biochem Soc Trans 35:1422–1423PubMedCrossRefGoogle Scholar
  26. 26.
    Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell. Proteomics 5:2298–2310PubMedCrossRefGoogle Scholar
  27. 27.
    Perry JJ, Tainer JA, Boddy MN (2008) A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem Sci 33:201–208PubMedCrossRefGoogle Scholar
  28. 28.
    Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26:4089–4101PubMedCrossRefGoogle Scholar
  29. 29.
    Sun H, Leverson JD, Hunter T (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26:4102–4112PubMedCrossRefGoogle Scholar
  30. 30.
    Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546PubMedCrossRefGoogle Scholar
  31. 31.
    Schimmel J, Larsen KM, Matic I, van Hagen M, Cox J, Mann M, Andersen JS, Vertegaal AC (2008) The ubiquitin–proteasome system is a key component of the SUMO-2/3 cycle. Mol. Cell. Proteomics 7:2107–2122PubMedCrossRefGoogle Scholar
  32. 32.
    Hochstrasser M (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107:5–8PubMedCrossRefGoogle Scholar
  33. 33.
    Minty A, Dumont X, Kaghad M, Caput D (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275:36316–36323PubMedCrossRefGoogle Scholar
  34. 34.
    Duval D, Duval G, Kedinger C, Poch O, Boeuf H (2003) The ‘PINIT’ motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. FEBS Lett 554:111–118PubMedCrossRefGoogle Scholar
  35. 35.
    Tan JA, Hall SH, Hamil KG, Grossman G, Petrusz P, French FS (2002) Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators. J Biol Chem 277:16993–17001PubMedCrossRefGoogle Scholar
  36. 36.
    Wong KA, Kim R, Christofk H, Gao J, Lawson G, Wu H (2004) Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol Cell Biol 24:5577–5586PubMedCrossRefGoogle Scholar
  37. 37.
    Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088–3103PubMedCrossRefGoogle Scholar
  38. 38.
    Moilanen AM, Karvonen U, Poukka H, Yan W, Toppari J, Janne OA, Palvimo JJ (1999) A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J Biol Chem 274:3700–3704PubMedCrossRefGoogle Scholar
  39. 39.
    Wu L, Wu H, Ma L, Sangiorgi F, Wu N, Bell JR, Lyons GE, Maxson R (1997) Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev 65:3–17PubMedCrossRefGoogle Scholar
  40. 40.
    Aravind L, Koonin EV (2000) SAP—a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25:112–114PubMedCrossRefGoogle Scholar
  41. 41.
    Kipp M, Gohring F, Ostendorp T, van Drunen CM, van Driel R, Przybylski M, Fackelmayer FO (2000) SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol 20:7480–7489PubMedCrossRefGoogle Scholar
  42. 42.
    Okubo S, Hara F, Tsuchida Y, Shimotakahara S, Suzuki S, Hatanaka H, Yokoyama S, Tanaka H, Yasuda H, Shindo H (2004) NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers. J Biol Chem 279:31455–31461PubMedCrossRefGoogle Scholar
  43. 43.
    Liu B, Gross M, ten Hoeve J, Shuai K (2001) A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci USA 98:3203–3207PubMedCrossRefGoogle Scholar
  44. 44.
    Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736PubMedCrossRefGoogle Scholar
  45. 45.
    Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 101:14373–14378PubMedCrossRefGoogle Scholar
  46. 46.
    Song J, Zhang Z, Hu W, Chen Y (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280:40122–40129PubMedCrossRefGoogle Scholar
  47. 47.
    Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110PubMedCrossRefGoogle Scholar
  48. 48.
    Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127PubMedCrossRefGoogle Scholar
  49. 49.
    Kerscher O (2007) SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8:550–555PubMedCrossRefGoogle Scholar
  50. 50.
    Hakli M, Karvonen U, Janne OA, Palvimo JJ (2005) SUMO-1 promotes association of SNURF (RNF4) with PML nuclear bodies. Exp Cell Res 304:224–233PubMedCrossRefGoogle Scholar
  51. 51.
    Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178PubMedCrossRefGoogle Scholar
  52. 52.
    Potts PR, Yu H (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021–7032PubMedCrossRefGoogle Scholar
  53. 53.
    Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20:2067–2081PubMedCrossRefGoogle Scholar
  54. 54.
    Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22:5222–5234PubMedCrossRefGoogle Scholar
  55. 55.
    Kahyo T, Nishida T, Yasuda H (2001) Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8:713–718PubMedCrossRefGoogle Scholar
  56. 56.
    Takahashi Y, Toh-e A, Kikuchi Y (2001) A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275:223–231PubMedCrossRefGoogle Scholar
  57. 57.
    Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109–120PubMedCrossRefGoogle Scholar
  58. 58.
    Pichler A, Knipscheer P, Saitoh H, Sixma TK, Melchior F (2004) The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat Struct Mol Biol 11:984–991PubMedCrossRefGoogle Scholar
  59. 59.
    Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113:127–137PubMedCrossRefGoogle Scholar
  60. 60.
    Weger S, Hammer E, Heilbronn R (2005) Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 579:5007–5012PubMedCrossRefGoogle Scholar
  61. 61.
    Pungaliya P, Kulkarni D, Park HJ, Marshall H, Zheng H, Lackland H, Saleem A, Rubin EH (2007) TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. J Proteome Res 6:3918–3923PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao X, Sternsdorf T, Bolger TA, Evans RM, Yao TP (2005) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 25:8456–8464PubMedCrossRefGoogle Scholar
  63. 63.
    Gregoire S, Yang XJ (2005) Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol 25:2273–2287PubMedCrossRefGoogle Scholar
  64. 64.
    Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM, Rosenfeld MG, Glass CK (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25:57–70PubMedCrossRefGoogle Scholar
  65. 65.
    Stankovic-Valentin N, Deltour S, Seeler J, Pinte S, Vergoten G, Guerardel C, Dejean A, Leprince D (2007) An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol 27:2661–2675PubMedCrossRefGoogle Scholar
  66. 66.
    Takahashi Y, Kahyo T, Toh-E A, Yasuda H, Kikuchi Y (2001) Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem 276:48973–48977PubMedCrossRefGoogle Scholar
  67. 67.
    Deng Z, Wan M, Sui G (2007) PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol Cell Biol 27:3780–3792PubMedCrossRefGoogle Scholar
  68. 68.
    Reverter D, Lima CD (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687–692PubMedCrossRefGoogle Scholar
  69. 69.
    Tang Z, Hecker CM, Scheschonka A, Betz H (2008) Protein interactions in the sumoylation cascade: lessons from X-ray structures. FEBS J 275:3003–3015PubMedCrossRefGoogle Scholar
  70. 70.
    Takahashi Y, Kikuchi Y (2005) Yeast PIAS-type Ull1/Siz1 is composed of SUMO ligase and regulatory domains. J Biol Chem 280:35822–35828PubMedCrossRefGoogle Scholar
  71. 71.
    Reindle A, Belichenko I, Bylebyl GR, Chen XL, Gandhi N, Johnson ES (2006) Multiple domains in Siz SUMO ligases contribute to substrate selectivity. J Cell Sci 119:4749–4757PubMedCrossRefGoogle Scholar
  72. 72.
    Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A (2008) Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31:371–382PubMedCrossRefGoogle Scholar
  73. 73.
    Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24:341–354PubMedCrossRefGoogle Scholar
  74. 74.
    Karvonen U, Jaaskelainen T, Rytinki M, Kaikkonen S, Palvimo JJ (2008) ZNF451 is a novel PML body- and SUMO-associated transcriptional coregulator. J Mol Biol 382:585–600PubMedCrossRefGoogle Scholar
  75. 75.
    Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, Psulkowski E, Fredericks WJ, White DE, Maul GG, Sadofsky MJ, Zhou MM, Rauscher FJ III (2007) PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 28:823–837PubMedCrossRefGoogle Scholar
  76. 76.
    Zeng L, Yap KL, Ivanov AV, Wang X, Mujtaba S, Plotnikova O, Rauscher FJ 3rd, Zhou MM (2008) Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing. Nat Struct Mol Biol 15:626–633PubMedCrossRefGoogle Scholar
  77. 77.
    Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci USA 103:45–50PubMedCrossRefGoogle Scholar
  78. 78.
    Yang SH, Galanis A, Witty J, Sharrocks AD (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J 25:5083–5093PubMedCrossRefGoogle Scholar
  79. 79.
    Anckar J, Sistonen L (2007) SUMO: getting it on. Biochem Soc Trans 35:1409–1413PubMedCrossRefGoogle Scholar
  80. 80.
    Wang J, Zhang H, Iyer D, Feng XH, Schwartz RJ (2008) Regulation of cardiac specific nkx2.5 gene activity by small ubiquitin-like modifier. J Biol Chem 283:23235–23243PubMedCrossRefGoogle Scholar
  81. 81.
    Wible BA, Yang Q, Kuryshev YA, Accili EA, Brown AM (1998) Cloning and expression of a novel K+ channel regulatory protein. KChAP J Biol Chem 273:11745–11751CrossRefGoogle Scholar
  82. 82.
    Martin S, Nishimune A, Mellor JR, Henley JM (2007) SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447:321–325PubMedCrossRefGoogle Scholar
  83. 83.
    Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R, Dejean A (2006) The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell 22:783–794PubMedCrossRefGoogle Scholar
  84. 84.
    Onishi A, Peng GH, Hsu C, Alexis U, Chen S, Blackshaw S (2009) Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 61:234–246PubMedCrossRefGoogle Scholar
  85. 85.
    Munarriz E, Barcaroli D, Stephanou A, Townsend PA, Maisse C, Terrinoni A, Neale MH, Martin SJ, Latchman DS, Knight RA, Melino G, De Laurenzi V (2004) PIAS-1 is a checkpoint regulator which affects exit from G1 and G2 by sumoylation of p73. Mol Cell Biol 24:10593–10610PubMedCrossRefGoogle Scholar
  86. 86.
    Martin N, Schwamborn K, Urlaub H, Gan B, Guan JL, Dejean A (2008) Spatial interplay between PIASy and FIP200 in the regulation of signal transduction and transcriptional activity. Mol Cell Biol 28:2771–2781PubMedCrossRefGoogle Scholar
  87. 87.
    Poukka H, Karvonen U, Janne OA, Palvimo JJ (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA 97:14145–14150PubMedCrossRefGoogle Scholar
  88. 88.
    Tian S, Poukka H, Palvimo JJ, Janne OA (2002) Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem J 367:907–911PubMedCrossRefGoogle Scholar
  89. 89.
    Sentis S, Le Romancer M, Bianchin C, Rostan MC, Corbo L (2005) Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity. Mol Endocrinol 19:2671–2684PubMedCrossRefGoogle Scholar
  90. 90.
    Ohshima T, Koga H, Shimotohno K (2004) Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. J Biol Chem 279:29551–29557PubMedCrossRefGoogle Scholar
  91. 91.
    Tallec LP, Kirsh O, Lecomte MC, Viengchareun S, Zennaro MC, Dejean A, Lombes M (2003) Protein inhibitor of activated signal transducer and activator of transcription 1 interacts with the N-terminal domain of mineralocorticoid receptor and represses its transcriptional activity: implication of small ubiquitin-related modifier 1 modification. Mol Endocrinol 17:2529–2542PubMedCrossRefGoogle Scholar
  92. 92.
    Kotaja N, Aittomaki S, Silvennoinen O, Palvimo JJ, Janne OA (2000) ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol 14:1986–2000PubMedCrossRefGoogle Scholar
  93. 93.
    Kotaja N, Vihinen M, Palvimo JJ, Janne OA (2002) Androgen receptor-interacting protein 3 and other PIAS proteins cooperate with glucocorticoid receptor-interacting protein 1 in steroid receptor-dependent signaling. J Biol Chem 277:17781–17788PubMedCrossRefGoogle Scholar
  94. 94.
    Yang SH, Sharrocks AD (2005) PIASx acts as an Elk-1 coactivator by facilitating derepression. EMBO J 24:2161–2171PubMedCrossRefGoogle Scholar
  95. 95.
    Liu B, Yang R, Wong KA, Getman C, Stein N, Teitell MA, Cheng G, Wu H, Shuai K (2005) Negative regulation of NF-kappaB signaling by PIAS1. Mol Cell Biol 25:1113–1123PubMedCrossRefGoogle Scholar
  96. 96.
    Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S, Yang R, Mink S, Shultz D, Bellone CJ, Loo JA, Shuai K (2007) Proinflammatory stimuli induce IKKalpha-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell 129:903–914PubMedCrossRefGoogle Scholar
  97. 97.
    Long J, Wang G, Matsuura I, He D, Liu F (2004) Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc Natl Acad Sci USA 101:99–104PubMedCrossRefGoogle Scholar
  98. 98.
    Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437:759–763PubMedCrossRefGoogle Scholar
  99. 99.
    Kim J, Sharma S, Li Y, Cobos E, Palvimo JJ, Williams SC (2005) Repression and coactivation of CCAAT/enhancer-binding protein epsilon by sumoylation and protein inhibitor of activated STATx proteins. J Biol Chem 280:12246–12254PubMedCrossRefGoogle Scholar
  100. 100.
    Chun TH, Itoh H, Subramanian L, Iniguez-Lluhi JA, Nakao K (2003) Modification of GATA-2 transcriptional activity in endothelial cells by the SUMO E3 ligase PIASy. Circ Res 92:1201–1208PubMedCrossRefGoogle Scholar
  101. 101.
    Lee H, Quinn JC, Prasanth KV, Swiss VA, Economides KD, Camacho MM, Spector DL, Abate-Shen C (2006) PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev 20:784–794PubMedCrossRefGoogle Scholar
  102. 102.
    van den Akker E, Ano S, Shih HM, Wang LC, Pironin M, Palvimo JJ, Kotaja N, Kirsh O, Dejean A, Ghysdael J (2005) FLI-1 functionally interacts with PIASxalpha, a member of the PIAS E3 SUMO ligase family. J Biol Chem 280:38035–38046PubMedCrossRefGoogle Scholar
  103. 103.
    Zhou S, Si J, Liu T, DeWille JW (2008) PIASy represses CCAAT/enhancer-binding protein delta (C/EBPdelta) transcriptional activity by sequestering C/EBPdelta to the nuclear periphery. J Biol Chem 283:20137–20148PubMedCrossRefGoogle Scholar
  104. 104.
    Tolkunova E, Malashicheva A, Parfenov VN, Sustmann C, Grosschedl R, Tomilin A (2007) PIAS proteins as repressors of Oct4 function. J Mol Biol 374:1200–1212PubMedCrossRefGoogle Scholar
  105. 105.
    Yang SH, Sharrocks AD (2006) PIASxalpha differentially regulates the amplitudes of transcriptional responses following activation of the ERK and p38 MAPK pathways. Mol Cell 22:477–487PubMedCrossRefGoogle Scholar
  106. 106.
    Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13PubMedCrossRefGoogle Scholar
  107. 107.
    Stehmeier P, Muller S (2009) Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol Cell 33:400–409PubMedCrossRefGoogle Scholar
  108. 108.
    Weber S, Maass F, Schuemann M, Krause E, Suske G, Bauer UM (2009) PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling. Genes Dev 23:118–132PubMedCrossRefGoogle Scholar
  109. 109.
    Depaux A, Regnier-Ricard F, Germani A, Varin-Blank N (2007) A crosstalk between hSiah2 and Pias E3-ligases modulates Pias-dependent activation. Oncogene 26:6665–6676PubMedCrossRefGoogle Scholar
  110. 110.
    Albor A, El-Hizawi S, Horn EJ, Laederich M, Frosk P, Wrogemann K, Kulesz-Martin M (2006) The interaction of Piasy with Trim32, an E3-ubiquitin ligase mutated in limb-girdle muscular dystrophy type 2H, promotes Piasy degradation and regulates UVB-induced keratinocyte apoptosis through NFkappaB. J Biol Chem 281:25850–25866PubMedCrossRefGoogle Scholar
  111. 111.
    Chen XL, Reindle A, Johnson ES (2005) Misregulation of 2 microm circle copy number in a SUMO pathway mutant. Mol Cell Biol 25:4311–4320PubMedCrossRefGoogle Scholar
  112. 112.
    Chen XL, Silver HR, Xiong L, Belichenko I, Adegite C, Johnson ES (2007) Topoisomerase I-dependent viability loss in Saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics 177:17–30PubMedCrossRefGoogle Scholar
  113. 113.
    Watts FZ, Skilton A, Ho JC, Boyd LK, Trickey MA, Gardner L, Ogi FX, Outwin EA (2007) The role of Schizosaccharomyces pombe SUMO ligases in genome stability. Biochem Soc Trans 35:1379–1384PubMedCrossRefGoogle Scholar
  114. 114.
    Xhemalce B, Seeler JS, Thon G, Dejean A, Arcangioli B (2004) Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 23:3844–3853PubMedCrossRefGoogle Scholar
  115. 115.
    Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ (2005) Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25:185–196PubMedCrossRefGoogle Scholar
  116. 116.
    Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102:4777–4782PubMedCrossRefGoogle Scholar
  117. 117.
    Mohr SE, Boswell RE (1999) Zimp encodes a homologue of mouse Miz1 and PIAS3 and is an essential gene in Drosophila melanogaster. Gene 229:109–116PubMedCrossRefGoogle Scholar
  118. 118.
    Betz A, Lampen N, Martinek S, Young MW, Darnell JE Jr (2001) A Drosophila PIAS homologue negatively regulates stat92E. Proc Natl Acad Sci USA 98:9563–9568PubMedCrossRefGoogle Scholar
  119. 119.
    Roy Chowdhuri S, Crum T, Woollard A, Aslam S, Okkema PG (2006) The T-box factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived pharyngeal muscle in C. elegans. Dev Biol 295:664–677PubMedCrossRefGoogle Scholar
  120. 120.
    Holway AH, Kim SH, La Volpe A, Michael WM (2006) Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos. J Cell Biol 172:999–1008PubMedCrossRefGoogle Scholar
  121. 121.
    Kim SH, Michael WM (2008) Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. elegans. Mol Cell 32:757–766PubMedCrossRefGoogle Scholar
  122. 122.
    Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966PubMedCrossRefGoogle Scholar
  123. 123.
    Miura K, Jin JB, Hasegawa PM (2007) Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol 10:495–502PubMedCrossRefGoogle Scholar
  124. 124.
    Roth W, Sustmann C, Kieslinger M, Gilmozzi A, Irmer D, Kremmer E, Turck C, Grosschedl R (2004) PIASy-deficient mice display modest defects in IFN and Wnt signaling. J Immunol 173:6189–6199PubMedGoogle Scholar
  125. 125.
    Bischof O, Dejean A (2007) SUMO is growing senescent. Cell Cycle 6:677–681PubMedGoogle Scholar
  126. 126.
    Liu B, Mink S, Wong KA, Stein N, Getman C, Dempsey PW, Wu H, Shuai K (2004) PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol 5:891–898PubMedCrossRefGoogle Scholar
  127. 127.
    Yan W, Santti H, Janne OA, Palvimo JJ, Toppari J (2003) Expression of the E3 SUMO-1 ligases PIASx and PIAS1 during spermatogenesis in the rat. Gene Expr Patterns 3:301–308PubMedCrossRefGoogle Scholar
  128. 128.
    Santti H, Mikkonen L, Anand A, Hirvonen-Santti S, Toppari J, Panhuysen M, Vauti F, Perera M, Corte G, Wurst W, Janne OA, Palvimo JJ (2005) Disruption of the murine PIASx gene results in reduced testis weight. J Mol Endocrinol 34:645–654PubMedCrossRefGoogle Scholar
  129. 129.
    Tahk S, Liu B, Chernishof V, Wong KA, Wu H, Shuai K (2007) Control of specificity and magnitude of NF-kappa B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. Proc Natl Acad Sci USA 104:11643–11648PubMedCrossRefGoogle Scholar
  130. 130.
    Thompson SJ, Loftus LT, Ashley MD, Meller R (2008) Ubiquitin–proteasome system as a modulator of cell fate. Curr Opin Pharmacol 8:90–95PubMedCrossRefGoogle Scholar
  131. 131.
    Dorval V, Fraser PE (2007) SUMO on the road to neurodegeneration. Biochim Biophys Acta 1773:694–706PubMedCrossRefGoogle Scholar
  132. 132.
    Hernandez-Toro J, Prieto C, De las Rivas J (2007) APID2NET: unified interactome graphic analyzer. Bioinformatics 23:2495–2497PubMedCrossRefGoogle Scholar
  133. 133.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedCrossRefGoogle Scholar
  134. 134.
    Bader GD, Betel D, Hogue CW (2003) BIND: the Biomolecular interaction network database. Nucleic Acids Res 31:248–250PubMedCrossRefGoogle Scholar
  135. 135.
    Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539PubMedCrossRefGoogle Scholar
  136. 136.
    Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451PubMedCrossRefGoogle Scholar
  137. 137.
    Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M et al (2009) Human protein reference database–2009 update. Nucleic Acids Res 37:D767–D772PubMedCrossRefGoogle Scholar
  138. 138.
    Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B et al (2007) IntAct—open source resource for molecular interaction data. Nucleic Acids Res 35:D561–D565PubMedCrossRefGoogle Scholar
  139. 139.
    Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35:D572–D574PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Miia M. Rytinki
    • 1
  • Sanna Kaikkonen
    • 1
  • Petri Pehkonen
    • 2
  • Tiina Jääskeläinen
    • 1
  • Jorma J. Palvimo
    • 1
    Email author
  1. 1.Institute of Biomedicine/Medical BiochemistryUniversity of KuopioKuopioFinland
  2. 2.Department of BiosciencesUniversity of KuopioKuopioFinland

Personalised recommendations