Advertisement

Cellular and Molecular Life Sciences

, Volume 66, Issue 17, pp 2805–2818 | Cite as

Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme

  • Rong Grace ZhaiEmail author
  • Menico RizziEmail author
  • Silvia Garavaglia
Review

Abstract

Nicotinamide/nicotinic acid mononucleotide adenylyltransferase (NMNAT) has long been known as the master enzyme in NAD biosynthesis in living organisms. A burst of investigations on NMNAT, going beyond enzymology, have paralleled increasing discoveries of key roles played by NAD homeostasis in a number or patho-physiological conditions. The availability of in-depth kinetics and structural enzymology analyses carried out on NMNATs from different organisms offer a powerful tool for uncovering fascinating evolutionary relationships. On the other hand, additional functions featuring NMNAT have emerged from investigations aimed at unraveling the molecular mechanisms responsible for complex biological phenomena such as neurodegeneration. NMNAT appears to be a multifunctional protein that sits both at the core of central metabolism and at a crossroads of multiple cellular processes. The resultant wealth of biochemical data has built a robust framework upon which design of NMNAT activators, inhibitors or enzyme variants of potential medical interest can be based.

Keywords

(5–8) NAD Crystal structures Oligomeric assembly Neuroprotection Enzyme Chimerical proteins Protein–protein interaction 

Abbreviations

NAD

Nicotinamide adenine dinucleotide

NaAD

Nicotinic acid adenine dinucleotide

NMN

Nicotinamide mononucleotide

NaMN

Nicotinic acid mononucleotide

NmR

Nicotinamide ribose

AMP-CPP

Alpha, beta-methyleneadenosine 5′-triphosphate

NLS

Nuclear localization signal

Notes

Acknowledgements

This work was supported by funding to M.R. from Regione Piemonte (Ricerca Applicata, CIPE 2004) and MIUR (PRIN 2007), and to R.G.Z. from the Florida Biomedical Research Program (Florida, USA) and the Neuroscience Center at the University of Miami, Miller School of Medicine.

References

  1. 1.
    Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S (2004) Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem 11:873–885PubMedCrossRefGoogle Scholar
  2. 2.
    Lau C, Niere M, Ziegler M (2009) The NMN/NaMN adenylyltranfrease (NMNAT) protein family. Frontiers Biosci 14:410–431CrossRefGoogle Scholar
  3. 3.
    Gerdes SY, Scholle MD, D’Souza M, Bernal A, Baev MV, Farrell M, Kurnasov OV, Daugherty MD, Mseeh F, Polanuyer BM, Campbell JW, Anantha S, Shatalin KY, Chowdhury SA, Fonstein MY, Osterman AL (2002) From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol 184:4555–4572PubMedCrossRefGoogle Scholar
  4. 4.
    Magni G, Orsomando G, Raffelli N, Ruggieri S (2008) Enzymology of mammalian NAD metabolism in health and disease. Frontiers Biosci 13:6135–6154CrossRefGoogle Scholar
  5. 5.
    Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32:12–19PubMedCrossRefGoogle Scholar
  6. 6.
    Rizzi M, Schindelin H (2002) Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis. Curr Opin Struct Biol 12:709–720PubMedCrossRefGoogle Scholar
  7. 7.
    Press C, Milbrandt J (2008) Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J Neurosci 28:4861–4871PubMedCrossRefGoogle Scholar
  8. 8.
    Zhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ (2008) NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature 452:887–891PubMedCrossRefGoogle Scholar
  9. 9.
    Zhai RG, Cao Y, Hiesinger PR, Zhou Y, Mehta SQ, Schulze KL, Verstreken P, Bellen HJ (2006) Drosophila NMNAT maintains neural integrity independent of its NAD synthesis activity. PLoS Biol 4:e416PubMedCrossRefGoogle Scholar
  10. 10.
    MacDonald JM, Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR (2006) The Drosophila cell corpse engulfment receptor draper mediates glial clearance of severed axons. Neuron 50:869–881PubMedCrossRefGoogle Scholar
  11. 11.
    Wang J, Zhai Q, Chen Y, Lin E, Gu W, McBurney MW, He Z (2005) A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol 170:349–355PubMedCrossRefGoogle Scholar
  12. 12.
    Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013PubMedCrossRefGoogle Scholar
  13. 13.
    D’Angelo I, Raffaelli N, Dabusti V, Lorenzi T, Magni G, Rizzi M (2000) Structure of nicotinamide mononucleotide adenylyltransferase: a key enzyme in NAD(+) biosynthesis. Struct Fold Des 8:993–1004CrossRefGoogle Scholar
  14. 14.
    Saridakis V, Christendat D, Kimber MS, Dharamsi A, Edwards AM, Pai EF (2001) Insights into ligand binding and catalysis of a central step in NAD+ synthesis: structures of Methanobacterium thermoautotrophicum NMN adenylyltransferase complexes. J Biol Chem 276:7225–7232PubMedCrossRefGoogle Scholar
  15. 15.
    Saridakis V, Pai EF (2003) Mutational, structural, and kinetic studies of the ATP-binding site of Methanobacterium thermoautotrophicum nicotinamide mononucleotide adenylyltransferase. J Biol Chem 278:34356–34363PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang H, Zhou T, Kurnasov O, Cheek S, Grishin NV, Osterman A (2002) Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD. Structure (Camb) 10:69–79CrossRefGoogle Scholar
  17. 17.
    Yoon HJ, Kim HL, Mikami B, Suh SW (2005) Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Pseudomonas aeruginosa in its Apo and substrate-complexed forms reveals a fully open conformation. J Mol Biol 351:258–265PubMedCrossRefGoogle Scholar
  18. 18.
    Olland AM, Underwood KW, Czerwinski RM, Lo MC, Aulabaugh A, Bard J, Stahl ML, Somers WS, Sullivan FX, Chopra R (2002) Identification, characterization, and crystal structure of Bacillus subtilis nicotinic acid mononucleotide adenylyltransferase. J Biol Chem 277:3698–3707PubMedCrossRefGoogle Scholar
  19. 19.
    Han S, Forman MD, Loulakis P, Rosner MH, Xie Z, Wang H, Danley DE, Yuan W, Schafer J, Xu Z (2006) Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Staphyloccocus aureus: structural basis for NaAD interaction in functional dimer. J Mol Biol 360:814–825PubMedCrossRefGoogle Scholar
  20. 20.
    Lu S, Smith CD, Yang Z, Pruett PS, Nagy L, McCombs D, Delucas LJ, Brouillette WJ, Brouillette CG (2008) Structure of nicotinic acid mononucleotide adenylyltransferase from Bacillus anthracis. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:893–898PubMedCrossRefGoogle Scholar
  21. 21.
    Sershon VC, Santarsiero BD, Mesecar AD (2009) Kinetic and X-ray structural evidence for negative cooperativity in substrate binding to nicotinate mononucleotide adenylyltransferase (NMAT) from Bacillus anthracis. J Mol Biol 385:867–888PubMedCrossRefGoogle Scholar
  22. 22.
    Garavaglia S, D’Angelo I, Emanuelli M, Carnevali F, Pierella F, Magni G, Rizzi M (2002) Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J Biol Chem 277:8524–8530PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL, Zhang H (2003) Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J Biol Chem 278:13503–13511PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou T, Kurnasov O, Tomchick DR, Binns DD, Grishin NV, Marquez VE, Osterman AL, Zhang H (2002) Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin. J Biol Chem 277:13148–13154PubMedCrossRefGoogle Scholar
  25. 25.
    Werner E, Ziegler M, Lerner F, Schweiger M, Heinemann U (2002) Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN. FEBS Lett 516:239–244PubMedCrossRefGoogle Scholar
  26. 26.
    Huang N, Sorci L, Zhang X, Brautigam CA, Li X, Raffaelli N, Magni G, Grishin NV, Osterman AL, Zhang H (2008) Bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase: structure and function in bacterial NAD metabolism. Structure 16:196–209PubMedCrossRefGoogle Scholar
  27. 27.
    Raffaelli N, Lorenzi T, Mariani PL, Emanuelli M, Amici A, Ruggieri S, Magni G (1999) The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity. J Bacteriol 181:5509–5511PubMedGoogle Scholar
  28. 28.
    Kurnasov OV, Polanuyer BM, Ananta S, Sloutsky R, Tam A, Gerdes SY, Osterman AL (2002) Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis. J Bacteriol 184:6906–6917PubMedCrossRefGoogle Scholar
  29. 29.
    Penfound T, Foster JW (1999) NAD-dependent DNA-binding activity of the bifunctional NadR regulator of Salmonella typhimurium. J Bacteriol 181:648–655PubMedGoogle Scholar
  30. 30.
    Foster JW, Park YK, Penfound T, Fenger T, Spector MP (1990) Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnu. C operon J Bacteriol 172:4187–4196Google Scholar
  31. 31.
    Zhu N, Olivera BM, Roth JR (1991) Activity of the nicotinamide mononucleotide transport system is regulated in Salmonella typhimurium. J Bacteriol 173:1311–1320PubMedGoogle Scholar
  32. 32.
    Grose JH, Bergthorsson U, Roth JR (2005) Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol 187:2774–2782PubMedCrossRefGoogle Scholar
  33. 33.
    Singh SK, Kurnasov OV, Chen B, Robinson H, Grishin NV, Osterman AL, Zhang H (2002) Crystal structure of Haemophilus influenzae NadR protein. A bifunctional enzyme endowed with NMN adenyltransferase and ribosylnicotinimide kinase activities. J Biol Chem 277:33291–33299PubMedCrossRefGoogle Scholar
  34. 34.
    Reidl J, Schlor S, Kraiss A, Schmidt-Brauns J, Kemmer G, Soleva E (2000) NADP and NAD utilization in Haemophilus influenzae. Mol Microbiol 35:1573–1581PubMedCrossRefGoogle Scholar
  35. 35.
    Gerlach G, Reidl J (2006) NAD+ utilization in Pasteurellaceae: simplification of a complex pathway. J Bacteriol 188:6719–6727PubMedCrossRefGoogle Scholar
  36. 36.
    Bork P, Holm L, Koonin EV, Sander C (1995) The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction. Proteins 22:259–266PubMedCrossRefGoogle Scholar
  37. 37.
    Yalowitz JA, Xiao S, Biju MP, Antony AC, Cummings OW, Deeg MA, Jayaram HN (2004) Characterization of human brain nicotinamide 5′-mononucleotide adenylyltransferase-2 and expression in human pancreas. Biochem J 377:317–326PubMedCrossRefGoogle Scholar
  38. 38.
    Sorci L, Cimadamore F, Scotti S, Petrelli R, Cappellacci L, Franchetti P, Orsomando G, Magni G (2007) Initial-rate kinetics of human NMN-adenylyltransferases: substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD + biosynthesis. Biochemistry 46:4912–4922PubMedCrossRefGoogle Scholar
  39. 39.
    Berger F, Lau C, Dahlmann M, Ziegler M (2005) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 280:36334–36341PubMedCrossRefGoogle Scholar
  40. 40.
    Lowe G, Sproat BS, Tansley G (1983) A stereochemical and positional isotope-exchange study of the mechanism of activation of methionine by methionyl-tRNA synthetase from Escherichia coli. Eur J Biochem 130:341–345PubMedCrossRefGoogle Scholar
  41. 41.
    Raffaelli N, Pisani FM, Lorenzi T, Emanuelli M, Amici A, Ruggieri S, Magni G (1997) Characterization of nicotinamide mononucleotide adenylyltransferase from thermophilic archaea. J Bacteriol 179:7718–7723PubMedGoogle Scholar
  42. 42.
    Schweiger M, Hennig K, Lerner F, Niere M, Hirsch-Kauffmann M, Specht T, Weise C, Oei SL, Ziegler M (2001) Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis. FEBS Lett 492:95–100PubMedCrossRefGoogle Scholar
  43. 43.
    Emanuelli M, Carnevali F, Saccucci F, Pierella F, Amici A, Raffaelli N, Magni G (2001) Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. J Biol Chem 276:406–412PubMedCrossRefGoogle Scholar
  44. 44.
    Berger F, Lau C, Ziegler M (2007) Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1. Proc Natl Acad Sci USA 104:3765–3770PubMedCrossRefGoogle Scholar
  45. 45.
    Emanuelli M, Carnevali F, Lorenzi M, Raffaelli N, Amici A, Ruggieri S, Magni G (1999) Identification and characterization of YLR328W, the Saccharomyces cerevisiae structural gene encoding NMN adenylyltransferase. Expression and characterization of the recombinant enzyme. FEBS Lett 455:13–17PubMedCrossRefGoogle Scholar
  46. 46.
    Emanuelli M, Amici A, Carnevali F, Pierella F, Raffaelli N, Magni G (2003) Identification and characterization of a second NMN adenylyltransferase gene in Saccharomyces cerevisiae. Protein Expr Purif 27:357–364PubMedCrossRefGoogle Scholar
  47. 47.
    Raffaelli N, Sorci L, Amici A, Emanuelli M, Mazzola F, Magni G (2002) Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem Biophys Res Commun 297:835–840PubMedCrossRefGoogle Scholar
  48. 48.
    Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. Embo J 22:1953–1958PubMedCrossRefGoogle Scholar
  49. 49.
    Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429PubMedCrossRefGoogle Scholar
  50. 50.
    D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268PubMedCrossRefGoogle Scholar
  51. 51.
    Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435PubMedCrossRefGoogle Scholar
  52. 52.
    Burkle A (2001) Physiology and pathophysiology of poly(ADP-ribosyl)ation. Bioessays 23:795–806PubMedCrossRefGoogle Scholar
  53. 53.
    Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci 1:27–33PubMedCrossRefGoogle Scholar
  54. 54.
    Waller A (1850) Experiments on the section of the glossopharyngeal and hyoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos Trans R Soc Lond 140:423–429CrossRefGoogle Scholar
  55. 55.
    Ribchester RR, Tsao JW, Barry JA, Asgari-Jirhandeh N, Perry VH, Brown MC (1995) Persistence of neuromuscular junctions after axotomy in mice with slow Wallerian degeneration (C57BL/WldS). Eur J Neurosci 7:1641–1650PubMedCrossRefGoogle Scholar
  56. 56.
    Conforti L, Tarlton A, Mack TG, Mi W, Buckmaster EA, Wagner D, Perry VH, Coleman MP (2000) A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (Wld S) mouse. Proc Natl Acad Sci USA 97:11377–11382PubMedCrossRefGoogle Scholar
  57. 57.
    Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Fernando FS, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester RR, Perry VH, Coleman MP (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4:1199–1206PubMedCrossRefGoogle Scholar
  58. 58.
    Conforti L, Fang G, Beirowski B, Wang MS, Sorci L, Asress S, Adalbert R, Silva A, Bridge K, Huang XP, Magni G, Glass JD, Coleman MP (2007) NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration. Cell Death Differ 14:116–127PubMedCrossRefGoogle Scholar
  59. 59.
    Sasaki Y, Araki T, Milbrandt J (2006) Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci 26:8484–8491PubMedCrossRefGoogle Scholar
  60. 60.
    Avery MA, Sheehan AE, Kerr KS, Wang J, Freeman MR (2009) Wld S requires Nmnat1 enzymatic activity and N16-VCP interactions to suppress Wallerian degeneration. J Cell Biol 184:501–513PubMedCrossRefGoogle Scholar
  61. 61.
    Conforti L, Wilbrey A, Morreale G, Janeckova L, Beirowski B, Adalbert R, Mazzola F, Di Stefano M, Hartley R, Babetto E, Smith T, Gilley J, Billington RA, Genazzani AA, Ribchester RR, Magni G, Coleman M (2009) Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. J Cell Biol 184:491–500PubMedCrossRefGoogle Scholar
  62. 62.
    Perry VH, Brown MC, Lunn ER (1991) Very slow retrograde and Wallerian degeneration in the CNS of C57BL/Ola mice. Eur J Neurosci 3:102–105PubMedCrossRefGoogle Scholar
  63. 63.
    Ludwin SK, Bisby MA (1992) Delayed wallerian degeneration in the central nervous system of Ola mice: an ultrastructural study. J Neurol Sci 109:140–147PubMedCrossRefGoogle Scholar
  64. 64.
    Adalbert R, Gillingwater TH, Haley JE, Bridge K, Beirowski B, Berek L, Wagner D, Grumme D, Thomson D, Celik A, Addicks K, Ribchester RR, Coleman MP (2005) A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses. Eur J Neurosci 21:271–277PubMedCrossRefGoogle Scholar
  65. 65.
    Wang MS, Davis AA, Culver DG, Glass JD (2002) WldS mice are resistant to paclitaxel (taxol) neuropathy. Ann Neurol 52:442–447PubMedCrossRefGoogle Scholar
  66. 66.
    Gillingwater TH, Haley JE, Ribchester RR, Horsburgh K (2004) Neuroprotection after transient global cerebral ischemia in WldS mutant mice. J Cereb Blood Flow Metab 24:62–66PubMedCrossRefGoogle Scholar
  67. 67.
    Samsam M, Mi W, Wessig C, Zielasek J, Toyka KV, Coleman MP, Martini R (2003) The Wld S mutation delays robust loss of motor and sensory axons in a genetic model for myelin-related axonopathy. J Neurosci 23:2833–2839PubMedGoogle Scholar
  68. 68.
    Ferri A, Sanes JR, Coleman MP, Cunningham JM, Kato AC (2003) Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr Biol 13:669–673PubMedCrossRefGoogle Scholar
  69. 69.
    Mi W, Beirowski B, Gillingwater TH, Adalbert R, Wagner D, Grumme D, Osaka H, Conforti L, Arnhold S, Addicks K, Wada K, Ribchester RR, Coleman MP (2005) The slow Wallerian degeneration gene, Wld S, inhibits axonal spheroid pathology in gracile axonal dystrophy mice. Brain 128:405–416PubMedCrossRefGoogle Scholar
  70. 70.
    Sajadi A, Schneider BL, Aebischer P (2004) WldS-mediated protection of dopaminergic fibers in an animal model of Parkinson disease. Curr Biol 14:326–330PubMedGoogle Scholar
  71. 71.
    Jia H, Yan T, Feng Y, Zeng C, Shi X, Zhai Q (2007) Identification of a critical site in Wld(s): essential for Nmnat enzyme activity and axon-protective function. Neurosci Lett 413:46–51PubMedCrossRefGoogle Scholar
  72. 72.
    Fonte V, Kipp DR, Yerg J 3rd, Merin D, Forrestal M, Wagner E, Roberts CM, Link CD (2008) Suppression of in vivo-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J Biol Chem 283:784–791PubMedCrossRefGoogle Scholar
  73. 73.
    Magrane J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24:1700–1706PubMedCrossRefGoogle Scholar
  74. 74.
    Gifondorwa DJ, Robinson MB, Hayes CD, Taylor AR, Prevette DM, Oppenheim RW, Caress J, Milligan CE (2007) Exogenous delivery of heat shock protein 70 increases lifespan in a mouse model of amyotrophic lateral sclerosis. J Neurosci 27:13173–13180PubMedCrossRefGoogle Scholar
  75. 75.
    Auluck PK, Bonini NM (2002) Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 8:1185–1186PubMedCrossRefGoogle Scholar
  76. 76.
    Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154PubMedCrossRefGoogle Scholar
  77. 77.
    Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518PubMedCrossRefGoogle Scholar
  78. 78.
    Chan HY, Warrick JM, Gray-Board GL, Paulson HL, Bonini NM (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9:2811–2820PubMedCrossRefGoogle Scholar
  79. 79.
    Holm L, Sander C (1997) New structure–novel fold? Structure 5:165–171PubMedCrossRefGoogle Scholar
  80. 80.
    Sousa MC, McKay DB (2001) Structure of the universal stress protein of Haemophilus influenzae. Structure 9:1135–1141PubMedCrossRefGoogle Scholar
  81. 81.
    Li J, Sha B (2003) Crystal structure of the E. coli Hsp100 ClpB N-terminal domain. Structure 11:323–328PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cellular Pharmacology, Neuroscience Center, Miller School of MedicineUniversity of MiamiMiamiUSA
  2. 2.DiSCAFFUniversity of Piemonte Orientale “A. Avogadro”NovaraItaly

Personalised recommendations