Cellular and Molecular Life Sciences

, Volume 66, Issue 15, pp 2479–2488 | Cite as

Antizyme and antizyme inhibitor, a regulatory tango

Review

Abstract

The polyamines are small basic molecules essential for cellular proliferation and viability. An autoregulatory circuit that responds to the intracellular level of polyamines regulates their production. In the center of this circuit is a family of small proteins termed antizymes. Antizymes are themselves regulated at the translational level by the level of polyamines. Antizymes bind ornithine decarboxylase (ODC) subunits and target them to ubiquitin-independent degradation by the 26S proteasome. In addition, antizymes inhibit polyamine transport across the plasma membrane via an as yet unresolved mechanism. Antizymes may also interact with and target degradation of other growth-regulating proteins. An inactive ODC-related protein termed antizyme inhibitor regulates polyamine metabolism by negating antizyme functions. The ability of antizymes to degrade ODC, inhibit polyamine uptake and consequently suppress cellular proliferation suggests that they act as tumor suppressors, while the ability of antizyme inhibitors to negate antizyme function indicates their growth-promoting and oncogenic potential.

Keywords

Antizyme Antizyme inhibitor Ornithine decarboxylase (ODC) Polyamines Cellular proliferation Cellular transformation 

References

  1. 1.
    Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406PubMedCrossRefGoogle Scholar
  2. 2.
    Marton LJ, Pegg AE (1995) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35:55–91PubMedCrossRefGoogle Scholar
  3. 3.
    Pegg AE, Feith DJ (2007) Polyamines and neoplastic growth. Biochem Soc Trans 35:295–299PubMedCrossRefGoogle Scholar
  4. 4.
    Pegg AE, Feith DJ, Fong LY, Coleman CS, O’Brien TG, Shantz LM (2003) Transgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth. Biochem Soc Trans 31:356–360PubMedCrossRefGoogle Scholar
  5. 5.
    Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792PubMedCrossRefGoogle Scholar
  6. 6.
    Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res 48:759–774PubMedGoogle Scholar
  7. 7.
    Tabor CW, Tabor H (1976) 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem 45:285–306PubMedCrossRefGoogle Scholar
  8. 8.
    Don S, Bachrach U (1975) Polyamine metabolism in normal and in virus-transformed chick embryo fibroblasts. Cancer Res 35:3618–3622PubMedGoogle Scholar
  9. 9.
    Gazdar AF, Stull HB, Kilton LJ, Bachrach U (1976) Increased ornithine decarboxylase activity in murine sarcoma virus infected cells. Nature 262:696–698PubMedCrossRefGoogle Scholar
  10. 10.
    Gilmour SK, Avdalovic N, Madara T, O’Brien TG (1985) Induction of ornithine decarboxylase by 12-O-tetradecanoylphorbol 13-acetate in hamster fibroblasts. Relationship between levels of enzyme activity, immunoreactive protein, and RNA during the induction process. J Biol Chem 260:16439–16444PubMedGoogle Scholar
  11. 11.
    Haddox MK, Magun BE, Russell DH (1980) Ornithine decarboxylase induction during B1 progression of normal and Rous sarcoma virus-transformed cells. Cancer Res 40:604–608PubMedGoogle Scholar
  12. 12.
    Holtta E, Auvinen M, Andersson LC (1993) Polyamines are essential for cell transformation by pp60v-src: delineation of molecular events relevant for the transformed phenotype. J Cell Biol 122:903–914PubMedCrossRefGoogle Scholar
  13. 13.
    Holtta E, Sistonen L, Alitalo K (1988) The mechanisms of ornithine decarboxylase deregulation in c-Ha-ras oncogene-transformed NIH 3T3 cells. J Biol Chem 263:4500–4507PubMedGoogle Scholar
  14. 14.
    Janne J, Holtta E, Kallio A, Kapyaho K (1983) Role of polyamines and their antimetabolites in clinical medicine. Spec Top Endocrinol Metab 5:227–293PubMedGoogle Scholar
  15. 15.
    Kahana C, Nathans D (1984) Isolation of cloned cDNA encoding mammalian ornithine decarboxylase. Proc Natl Acad Sci USA 81:3645–3649PubMedCrossRefGoogle Scholar
  16. 16.
    Katz A, Kahana C (1989) Rearrangement between ornithine decarboxylase and the switch region of the gamma 1 immunoglobulin gene in alpha-difluoromethylornithine resistant mouse myeloma cells. EMBO J 8:1163–1167PubMedGoogle Scholar
  17. 17.
    Luk GD, Baylin SB (1984) Ornithine decarboxylase as a biologic marker in familial colonic polyposis. N Engl J Med 311:80–83PubMedGoogle Scholar
  18. 18.
    Sistonen L, Holtta E, Makela TP, Keski-Oja J, Alitalo K (1989) The cellular response to induction of the p21 c-Ha-ras oncoprotein includes stimulation of jun gene expression. EMBO J 8:815–822PubMedGoogle Scholar
  19. 19.
    Yuspa SH, Lichti U, Ben T, Patterson E, Hennings H, Slaga TJ, Colburn N, Kelsey W (1976) Phorbol esters stimulate DNA synthesis and ornithine decarboxylase activity in mouse epidermal cell cultures. Nature 262:402–404PubMedCrossRefGoogle Scholar
  20. 20.
    Auvinen M, Paasinen A, Andersson LC, Holtta E (1992) Ornithine decarboxylase activity is critical for cell transformation. Nature 360:355–358PubMedCrossRefGoogle Scholar
  21. 21.
    Fong WF, Heller JS, Canellakis ES (1976) The appearance of an ornithine decarboxylase inhibitory protein upon the addition of putrescine to cell cultures. Biochim Biophys Acta 428:456–465PubMedGoogle Scholar
  22. 22.
    Miyazaki Y, Matsufuji S, Hayashi S (1992) Cloning and characterization of a rat gene encoding ornithine decarboxylase antizyme. Gene 113:191–197PubMedCrossRefGoogle Scholar
  23. 23.
    Mamroud-Kidron E, Omer-Itsicovich M, Bercovich Z, Tobias KE, Rom E, Kahana C (1994) A unified pathway for the degradation of ornithine decarboxylase in reticulocyte lysate requires interaction with the polyamine-induced protein, ornithine decarboxylase antizyme. Eur J Biochem 226:547–554PubMedCrossRefGoogle Scholar
  24. 24.
    Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360:597–599PubMedCrossRefGoogle Scholar
  25. 25.
    Hoshino K, Momiyama E, Yoshida K, Nishimura K, Sakai S, Toida T, Kashiwagi K, Igarashi K (2005) Polyamine transport by mammalian cells and mitochondria: role of antizyme and glycosaminoglycans. J Biol Chem 280:42801–42808PubMedCrossRefGoogle Scholar
  26. 26.
    Mitchell JL, Judd GG, Bareyal-Leyser A, Ling SY (1994) Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J 299(Pt 1):19–22PubMedGoogle Scholar
  27. 27.
    Suzuki T, He Y, Kashiwagi K, Murakami Y, Hayashi S, Igarashi K (1994) Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells. Proc Natl Acad Sci USA 91:8930–8934PubMedCrossRefGoogle Scholar
  28. 28.
    Fujita K, Murakami Y, Hayashi S (1982) A macromolecular inhibitor of the antizyme to ornithine decarboxylase. Biochem J 204:647–652PubMedGoogle Scholar
  29. 29.
    Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60PubMedCrossRefGoogle Scholar
  30. 30.
    Rom E, Kahana C (1994) Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proc Natl Acad Sci USA 91:3959–3963PubMedCrossRefGoogle Scholar
  31. 31.
    Baranov PV, Gesteland RF, Atkins JF (2004) P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA 10:221–230PubMedCrossRefGoogle Scholar
  32. 32.
    Ivanov IP, Gesteland RF, Matsufuji S, Atkins JF (1998) Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but −2 in budding yeast. RNA 4:1230–1238PubMedCrossRefGoogle Scholar
  33. 33.
    Gesteland RF, Weiss RB, Atkins JF (1992) Recoding: reprogrammed genetic decoding. Science 257:1640–1641PubMedCrossRefGoogle Scholar
  34. 34.
    Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 35:1842–1858PubMedCrossRefGoogle Scholar
  35. 35.
    Gramstat A, Prufer D, Rohde W (1994) The nucleic acid-binding zinc finger protein of potato virus M is translated by internal initiation as well as by ribosomal frameshifting involving a shifty stop codon and a novel mechanism of P-site slippage. Nucleic Acids Res 22:3911–3917PubMedCrossRefGoogle Scholar
  36. 36.
    Howard MT, Shirts BH, Zhou J, Carlson CL, Matsufuji S, Gesteland RF, Weeks RS, Atkins JF (2001) Cell culture analysis of the regulatory frameshift event required for the expression of mammalian antizymes. Genes Cells 6:931–941PubMedCrossRefGoogle Scholar
  37. 37.
    Ivanov IP, Gesteland RF, Atkins JF (1998) A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics 52:119–129PubMedCrossRefGoogle Scholar
  38. 38.
    Ivanov IP, Gesteland RF, Atkins JF (2000) Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit. Nucleic Acids Res 28:3185–3196PubMedCrossRefGoogle Scholar
  39. 39.
    Petros LM, Howard MT, Gesteland RF, Atkins JF (2005) Polyamine sensing during antizyme mRNA programmed frameshifting. Biochem Biophys Res Commun 338:1478–1489PubMedCrossRefGoogle Scholar
  40. 40.
    Weiss RB, Dunn DM, Atkins JF, Gesteland RF (1987) Slippery runs, shifty stops, backward steps, and forward hops: −2, −1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harb Symp Quant Biol 52:687–693PubMedGoogle Scholar
  41. 41.
    Harger JW, Meskauskas A, Dinman JD (2002) An “integrated model” of programmed ribosomal frameshifting. Trends Biochem Sci 27:448–454PubMedCrossRefGoogle Scholar
  42. 42.
    Namy O, Galopier A, Martini C, Matsufuji S, Fabret C, Rousset JP (2008) Epigenetic control of polyamines by the prion [PSI(+)]. Nat Cell Biol 10:1069–1075PubMedCrossRefGoogle Scholar
  43. 43.
    Le Roy F, Salehzada T, Bisbal C, Dougherty JP, Peltz SW (2005) A newly discovered function for RNase L in regulating translation termination. Nat Struct Mol Biol 12:505–512PubMedCrossRefGoogle Scholar
  44. 44.
    Chernoff YO (2008) Prion: disease or relief? Nat Cell Biol 10:1019–1021PubMedCrossRefGoogle Scholar
  45. 45.
    Mitchell JL, Choe CY, Judd GG, Daghfal DJ, Kurzeja RJ, Leyser A (1996) Overproduction of stable ornithine decarboxylase and antizyme in the difluoromethylornithine-resistant cell line DH23b. Biochem J 317(Pt 3):811–816PubMedGoogle Scholar
  46. 46.
    Mitchell JL, Judd GG (1998) Antizyme modifications affecting polyamine homoeostasis. Biochem Soc Trans 26:591–595PubMedGoogle Scholar
  47. 47.
    Mitchell JL, Judd GG, Leyser A, Choe C (1998) Osmotic stress induces variation in cellular levels of ornithine decarboxylase-antizyme. Biochem J 329(Pt 3):453–459PubMedGoogle Scholar
  48. 48.
    Gandre S, Bercovich Z, Kahana C (2003) Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion 2:245–256PubMedCrossRefGoogle Scholar
  49. 49.
    Murai N, Murakami Y, Matsufuji S (2003) Identification of nuclear export signals in antizyme-1. J Biol Chem 278:44791–44798PubMedCrossRefGoogle Scholar
  50. 50.
    Gritli-Linde A, Nilsson J, Bohlooly YM, Heby O, Linde A (2001) Nuclear translocation of antizyme and expression of ornithine decarboxylase and antizyme are developmentally regulated. Dev Dyn 220:259–275PubMedCrossRefGoogle Scholar
  51. 51.
    Schipper RG, Cuijpers VM, De Groot LH, Thio M, Verhofstad AA (2004) Intracellular localization of ornithine decarboxylase and its regulatory protein, antizyme-1. J Histochem Cytochem 52:1259–1266PubMedCrossRefGoogle Scholar
  52. 52.
    Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862PubMedCrossRefGoogle Scholar
  53. 53.
    Coleman CS, Stanley BA, Viswanath R, Pegg AE (1994) Rapid exchange of subunits of mammalian ornithine decarboxylase. J Biol Chem 269:3155–3158PubMedGoogle Scholar
  54. 54.
    Rosenberg-Hasson Y, Bercovich Z, Kahana C (1991) cis-recognition and degradation of ornithine decarboxylase subunits in reticulocyte lysate. Biochem J 277(Pt 3):683–685PubMedGoogle Scholar
  55. 55.
    Ghoda L, Phillips MA, Bass KE, Wang CC, Coffino P (1990) Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation. J Biol Chem 265:11823–11826PubMedGoogle Scholar
  56. 56.
    Ghoda L, van Daalen Wetters T, Macrae M, Ascherman D, Coffino P (1989) Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science 243:1493–1495PubMedCrossRefGoogle Scholar
  57. 57.
    Li X, Coffino P (1993) Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol Cell Biol 13:2377–2383PubMedGoogle Scholar
  58. 58.
    Rosenberg-Hasson Y, Bercovich Z, Kahana C (1991) Characterization of sequences involved in mediating degradation of ornithine decarboxylase in cells and in reticulocyte lysate. Eur J Biochem 196:647–651PubMedCrossRefGoogle Scholar
  59. 59.
    Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194PubMedCrossRefGoogle Scholar
  60. 60.
    Gandre S, Kahana C (2002) Degradation of ornithine decarboxylase in Saccharomyces cerevisiae is ubiquitin independent. Biochem Biophys Res Commun 293:139–144PubMedCrossRefGoogle Scholar
  61. 61.
    Porat Z, Landau G, Bercovich Z, Krutauz D, Glickman M, Kahana C (2008) Yeast antizyme mediates degradation of yeast ornithine decarboxylase by yeast but not by mammalian proteasome: new insights on yeast antizyme. J Biol Chem 283:4528–4534PubMedCrossRefGoogle Scholar
  62. 62.
    Li X, Coffino P (1994) Distinct domains of antizyme required for binding and proteolysis of ornithine decarboxylase. Mol Cell Biol 14:87–92PubMedGoogle Scholar
  63. 63.
    Coffino P (2001) Antizyme, a mediator of ubiquitin-independent proteasomal degradation. Biochimie 83:319–323PubMedCrossRefGoogle Scholar
  64. 64.
    Li X, Stebbins B, Hoffman L, Pratt G, Rechsteiner M, Coffino P (1996) The N terminus of antizyme promotes degradation of heterologous proteins. J Biol Chem 271:4441–4446PubMedCrossRefGoogle Scholar
  65. 65.
    Mangold U (2005) The antizyme family: polyamines and beyond. IUBMB Life 57:671–676PubMedCrossRefGoogle Scholar
  66. 66.
    Gandre S, Bercovich Z, Kahana C (2002) Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Eur J Biochem 269:1316–1322PubMedCrossRefGoogle Scholar
  67. 67.
    Palanimurugan R, Scheel H, Hofmann K, Dohmen RJ (2004) Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO J 23:4857–4867PubMedCrossRefGoogle Scholar
  68. 68.
    Sakata K, Kashiwagi K, Igarashi K (2000) Properties of a polyamine transporter regulated by antizyme. Biochem J 347(Pt 1):297–303PubMedCrossRefGoogle Scholar
  69. 69.
    Feith DJ, Origanti S, Shoop PL, Sass-Kuhn S, Shantz LM (2006) Tumor suppressor activity of ODC antizyme in MEK-driven skin tumorigenesis. Carcinogenesis 27:1090–1098PubMedCrossRefGoogle Scholar
  70. 70.
    Feith DJ, Shantz LM, Pegg AE (2001) Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res 61:6073–6081PubMedGoogle Scholar
  71. 71.
    Fong LY, Feith DJ, Pegg AE (2003) Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. Cancer Res 63:3945–3954PubMedGoogle Scholar
  72. 72.
    Iwata S, Sato Y, Asada M, Takagi M, Tsujimoto A, Inaba T, Yamada T, Sakamoto S, Yata J, Shimogori T, Igarashi K, Mizutai S (1999) Anti-tumor activity of antizyme which targets the ornithine decarboxylase (ODC) required for cell growth and transformation. Oncogene 18:165–172PubMedCrossRefGoogle Scholar
  73. 73.
    Murakami Y, Matsufuji S, Miyazaki Y, Hayashi S (1994) Forced expression of antizyme abolishes ornithine decarboxylase activity, suppresses cellular levels of polyamines and inhibits cell growth. Biochem J 304(Pt 1):183–187PubMedGoogle Scholar
  74. 74.
    Tsuji T, Todd R, Meyer C, McBride J, Liao PH, Huang MF, Chou MY, Donoff RB, Wong DT (1998) Reduction of ornithine decarboxylase antizyme (ODC-Az) level in the 7, 12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis model. Oncogene 16:3379–3385PubMedCrossRefGoogle Scholar
  75. 75.
    Jiang L, Ma WL, Li J, Peng YF, Xu B, Zheng WL (2007) Exogenous antizyme 1 gene transfection inhibits proliferation and promotes apoptosis of human neuroblastoma SH-SY5Y cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao 27:1709–1713PubMedGoogle Scholar
  76. 76.
    Liu GY, Liao YF, Hsu PC, Chang WH, Hsieh MC, Lin CY, Hour TC, Kao MC, Tsay GJ, Hung HC (2006) Antizyme, a natural ornithine decarboxylase inhibitor, induces apoptosis of haematopoietic cells through mitochondrial membrane depolarization and caspases’ cascade. Apoptosis 11:1773–1788PubMedCrossRefGoogle Scholar
  77. 77.
    Gruendler C, Lin Y, Farley J, Wang T (2001) Proteasomal degradation of Smad1 induced by bone morphogenetic proteins. J Biol Chem 276:46533–46543PubMedCrossRefGoogle Scholar
  78. 78.
    Lin Y, Martin J, Gruendler C, Farley J, Meng X, Li BY, Lechleider R, Huff C, Kim RH, Grasser WA, Paralkar V, Wang T (2002) A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). BMC Cell Biol 3:15PubMedCrossRefGoogle Scholar
  79. 79.
    Newman RM, Mobascher A, Mangold U, Koike C, Diah S, Schmidt M, Finley D, Zetter BR (2004) Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J Biol Chem 279:41504–41511PubMedCrossRefGoogle Scholar
  80. 80.
    Lim SK, Gopalan G (2007) Antizyme1 mediates AURKAIP1-dependent degradation of Aurora-A. Oncogene 26:6593–6603PubMedCrossRefGoogle Scholar
  81. 81.
    Mangold U, Hayakawa H, Coughlin M, Munger K, Zetter BR (2008) Antizyme, a mediator of ubiquitin-independent proteasomal degradation and its inhibitor localize to centrosomes and modulate centriole amplification. Oncogene 27:604–613PubMedCrossRefGoogle Scholar
  82. 82.
    Tsuji T, Katsurano M, Ibaragi S, Shima K, Sasaki A, Hu GF (2007) Ornithine decarboxylase antizyme upregulates DNA-dependent protein kinase and enhances the nonhomologous end-joining repair of DNA double-strand breaks in human oral cancer cells. Biochemistry 46:8920–8932PubMedCrossRefGoogle Scholar
  83. 83.
    Chen H, MacDonald A, Coffino P (2002) Structural elements of antizymes 1 and 2 are required for proteasomal degradation of ornithine decarboxylase. J Biol Chem 277:45957–45961PubMedCrossRefGoogle Scholar
  84. 84.
    Zhu C, Lang DW, Coffino P (1999) Antizyme2 is a negative regulator of ornithine decarboxylase and polyamine transport. J Biol Chem 274:26425–26430PubMedCrossRefGoogle Scholar
  85. 85.
    Snapir Z, Keren-Paz A, Bercovich Z, Kahana C (2009) Antizyme-3 inhibits polyamine uptake and ornithine decarboxylase (ODC) activity, but does not stimulate ODC degradation. Biochem J 419:99–103PubMedCrossRefGoogle Scholar
  86. 86.
    Ivanov IP, Rohrwasser A, Terreros DA, Gesteland RF, Atkins JF (2000) Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3. Proc Natl Acad Sci USA 97:4808–4813PubMedCrossRefGoogle Scholar
  87. 87.
    Tosaka Y, Tanaka H, Yano Y, Masai K, Nozaki M, Yomogida K, Otani S, Nojima H, Nishimune Y (2000) Identification and characterization of testis specific ornithine decarboxylase antizyme (OAZ-t) gene: expression in haploid germ cells and polyamine-induced frameshifting. Genes Cells 5:265–276PubMedCrossRefGoogle Scholar
  88. 88.
    Lopez-Contreras AJ, Ramos-Molina B, Martinez-de-la-Torre M, Penafiel-Verdu C, Puelles L, Cremades A, Penafiel R (2009) Expression of antizyme inhibitor 2 in male haploid germinal cells suggests a role in spermiogenesis. Int J Biochem Cell Biol 41:1070–1078PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang J, Wang Y, Zhou Y, Cao Z, Huang P, Lu B (2005) Yeast two-hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell-specific protein GGN1. FEBS Lett 579:559–566PubMedCrossRefGoogle Scholar
  90. 90.
    Kitani T, Fujisawa H (1989) Purification and characterization of antizyme inhibitor of ornithine decarboxylase from rat liver. Biochim Biophys Acta 991:44–49PubMedGoogle Scholar
  91. 91.
    Murakami Y, Matsufuji S, Nishiyama M, Hayashi S (1989) Properties and fluctuations in vivo of rat liver antizyme inhibitor. Biochem J 259:839–845PubMedGoogle Scholar
  92. 92.
    Koguchi K, Kobayashi S, Hayashi T, Matsufuji S, Murakami Y, Hayashi S (1997) Cloning and sequencing of a human cDNA encoding ornithine decarboxylase antizyme inhibitor. Biochim Biophys Acta 1353:209–216PubMedGoogle Scholar
  93. 93.
    Murakami Y, Ichiba T, Matsufuji S, Hayashi S (1996) Cloning of antizyme inhibitor, a highly homologous protein to ornithine decarboxylase. J Biol Chem 271:3340–3342PubMedCrossRefGoogle Scholar
  94. 94.
    Mangold U, Leberer E (2005) Regulation of all members of the antizyme family by antizyme inhibitor. Biochem J 385:21–28PubMedCrossRefGoogle Scholar
  95. 95.
    Albeck S, Dym O, Unger T, Snapir Z, Bercovich Z, Kahana C (2008) Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function. Protein Sci 17:793–802PubMedCrossRefGoogle Scholar
  96. 96.
    Tobias KE, Kahana C (1993) Intersubunit location of the active site of mammalian ornithine decarboxylase as determined by hybridization of site-directed mutants. Biochemistry 32:5842–5847PubMedCrossRefGoogle Scholar
  97. 97.
    Li X, Coffino P (1992) Regulated degradation of ornithine decarboxylase requires interaction with the polyamine-inducible protein antizyme. Mol Cell Biol 12:3556–3562PubMedGoogle Scholar
  98. 98.
    Almrud JJ, Oliveira MA, Kern AD, Grishin NV, Phillips MA, Hackert ML (2000) Crystal structure of human ornithine decarboxylase at 2.1 Ǻ resolution: structural insights to antizyme binding. J Mol Biol 295:7–16PubMedCrossRefGoogle Scholar
  99. 99.
    Bercovich Z, Kahana C (2004) Degradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme. J Biol Chem 279:54097–54102PubMedCrossRefGoogle Scholar
  100. 100.
    Nilsson J, Grahn B, Heby O (2000) Antizyme inhibitor is rapidly induced in growth-stimulated mouse fibroblasts and releases ornithine decarboxylase from antizyme suppression. Biochem J 346(Pt 3):699–704PubMedCrossRefGoogle Scholar
  101. 101.
    Jung MH, Kim SC, Jeon GA, Kim SH, Kim Y, Choi KS, Park SI, Joe MK, Kimm K (2000) Identification of differentially expressed genes in normal and tumor human gastric tissue. Genomics 69:281–286PubMedCrossRefGoogle Scholar
  102. 102.
    Schaner ME, Davidson B, Skrede M, Reich R, Florenes VA, Risberg B, Berner A, Goldberg I, Givant-Horwitz V, Trope CG, Kristensen GB, Nesland JM, Borresen-Dale AL (2005) Variation in gene expression patterns in effusions and primary tumors from serous ovarian cancer patients. Mol Cancer 4:26PubMedCrossRefGoogle Scholar
  103. 103.
    van Duin M, van Marion R, Vissers K, Watson JE, van Weerden WM, Schroder FH, Hop WC, van der Kwast TH, Collins C, Van Dekken H (2005) High-resolution array comparative genomic hybridization of chromosome arm 8q: evaluation of genetic progression markers for prostate cancer. Genes Chromosomes Cancer 44:438–449PubMedCrossRefGoogle Scholar
  104. 104.
    Keren-Paz A, Bercovich Z, Porat Z, Erez O, Brener O, Kahana C (2006) Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 25:5163–5172PubMedGoogle Scholar
  105. 105.
    Kim SW, Mangold U, Waghorne C, Mobascher A, Shantz L, Banyard J, Zetter BR (2006) Regulation of cell proliferation by the antizyme inhibitor: evidence for an antizyme-independent mechanism. J Cell Sci 119:2583–2591PubMedCrossRefGoogle Scholar
  106. 106.
    Choi KS, Suh YH, Kim WH, Lee TH, Jung MH (2005) Stable siRNA-mediated silencing of antizyme inhibitor: regulation of ornithine decarboxylase activity. Biochem Biophys Res Commun 328:206–212PubMedCrossRefGoogle Scholar
  107. 107.
    Svensson KJ, Welch JE, Kucharzewska P, Bengtson P, Bjurberg M, Pahlman S, Ten Dam GB, Persson L, Belting M (2008) Hypoxia-mediated induction of the polyamine system provides opportunities for tumor growth inhibition by combined targeting of vascular endothelial growth factor and ornithine decarboxylase. Cancer Res 68:9291–9301PubMedCrossRefGoogle Scholar
  108. 108.
    Tang H, Ariki K, Ohkido M, Murakami Y, Matsufuji S, Li Z, Yamamura K (2009) Role of ornithine decarboxylase antizyme inhibitor in vivo. Genes Cells 14:79–87PubMedCrossRefGoogle Scholar
  109. 109.
    Lopez-Contreras AJ, Lopez-Garcia C, Jimenez-Cervantes C, Cremades A, Penafiel R (2006) Mouse ornithine decarboxylase-like gene encodes an antizyme inhibitor devoid of ornithine and arginine decarboxylating activity. J Biol Chem 281:30896–30906PubMedCrossRefGoogle Scholar
  110. 110.
    Pitkanen LT, Heiskala M, Andersson LC (2001) Expression of a novel human ornithine decarboxylase-like protein in the central nervous system and testes. Biochem Biophys Res Commun 287:1051–1057PubMedCrossRefGoogle Scholar
  111. 111.
    Kanerva K, Makitie LT, Pelander A, Heiskala M, Andersson LC (2008) Human ornithine decarboxylase paralogue (ODCp) is an antizyme inhibitor but not an arginine decarboxylase. Biochem J 409:187–192PubMedCrossRefGoogle Scholar
  112. 112.
    Lopez-Contreras AJ, Ramos-Molina B, Cremades A, Penafiel R (2008) Antizyme inhibitor 2 (AZIN2/ODCp) stimulates polyamine uptake in mammalian cells. J Biol Chem 283:20761–20769PubMedCrossRefGoogle Scholar
  113. 113.
    Snapir Z, Keren-Paz A, Bercovich Z, Kahana C (2008) ODCp, a brain- and testis-specific ornithine decarboxylase paralogue, functions as an antizyme inhibitor, although less efficiently than AzI1. Biochem J 410:613–619PubMedCrossRefGoogle Scholar
  114. 114.
    Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390PubMedCrossRefGoogle Scholar
  115. 115.
    Mitchell JL, Thane TK, Sequeira JM, Marton LJ, Thokala R (2007) Antizyme and antizyme inhibitor activities influence cellular responses to polyamine analogs. Amino Acids 33:291–297PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations