Cellular and Molecular Life Sciences

, Volume 66, Issue 15, pp 2445–2455 | Cite as

Aptamers against prion proteins and prions

Review

Abstract

Prion diseases are fatal neurodegenerative and infectious disorders of humans and animals, characterized by structural transition of the host-encoded cellular prion protein (PrPc) into the aberrantly folded pathologic isoform PrPSc. RNA, DNA or peptide aptamers are classes of molecules which can be selected from complex combinatorial libraries for high affinity and specific binding to prion proteins and which might therefore be useful in diagnosis and therapy of prion diseases. Nucleic acid aptamers, which can be chemically synthesized, stabilized and immobilized, appear more suitable for diagnostic purposes, allowing use of PrPSc as selection target. Peptide aptamers facilitate appropriate intracellular expression, targeting and re-routing without losing their binding properties to PrP, a requirement for potential therapeutic gene transfer experiments in vivo. Elucidation of structural properties of peptide aptamers might be used as basis for rational drug design, providing another attractive application of peptide aptamers in the search for effective anti-prion strategies.

Keywords

Prion Prion protein Aptamer Peptide aptamer Combinatorial library Anti-prion compound 

References

  1. 1.
    Dearmond SJ, Prusiner SB (1995) Etiology and pathogenesis of prion diseases. Am J Pathol 146:785–811PubMedGoogle Scholar
  2. 2.
    Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383PubMedCrossRefGoogle Scholar
  3. 3.
    Weissmann C (2004) The state of the prion. Nat Rev Microbiol 2:861–871PubMedCrossRefGoogle Scholar
  4. 4.
    Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116:313–327PubMedCrossRefGoogle Scholar
  5. 5.
    Collinge J (2005) Molecular neurology of prion disease. J Neurol Neurosurg Psychiatry 76:906–919PubMedCrossRefGoogle Scholar
  6. 6.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144PubMedCrossRefGoogle Scholar
  7. 7.
    Cohen FE, Pan KM, Huang Z, Baldwin M, Fletterick RJ, Prusiner SB (1994) Structural clues to prion replication. Science 264:530–531PubMedCrossRefGoogle Scholar
  8. 8.
    Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550PubMedCrossRefGoogle Scholar
  9. 9.
    Aguzzi A, Haass C (2003) Games played by rogue proteins in prion disorders and Alzheimer’s disease. Science 302:814–818PubMedCrossRefGoogle Scholar
  10. 10.
    Dobson CM (2006) Protein aggregation and its consequences for human disease. Protein Pept Lett 13:219–227PubMedCrossRefGoogle Scholar
  11. 11.
    Gajdusek DC (1977) Unconventional viruses and the origin and disappearance of kuru. Science 197:943–960PubMedCrossRefGoogle Scholar
  12. 12.
    Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383:685–690PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson RM, Donnelly CA, Ferguson NM, Woolhouse MEJ, Watt CJ, Udy HJ, Mawhinney S, Dunstan SP, Southwood TRE, Wilesmith JW, Ryan JBM, Hoinville LJ, Hillerton JE, Austin AR, Wells GAH (1997) Transmission dynamics and epidemiology of BSE in British cattle (vol 382, pp 779, 1996). Nature 386:302–302Google Scholar
  14. 14.
    Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock CJ (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389:498–501PubMedCrossRefGoogle Scholar
  15. 15.
    Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I, Collinge J, Doey LJ, Lantos P (1997) The same prion strain causes vCJD and BSE. Nature 389:448–450 526PubMedCrossRefGoogle Scholar
  16. 16.
    Wadsworth JD, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, Collinge J (2001) Tissue distribution of protease resistant prion protein in variant Creutzfeldt–Jakob disease using a highly sensitive immunoblotting assay. Lancet 358:171–180PubMedCrossRefGoogle Scholar
  17. 17.
    Sigurdson CJ, Miller MW (2003) Other animal prion diseases. Br Med Bull 66:199–212PubMedCrossRefGoogle Scholar
  18. 18.
    Angers RC, Browning SR, Seward TS, Sigurdson CJ, Miller MW, Hoover EA, Telling GC (2006) Prions in skeletal muscles of deer with chronic wasting disease. Science 311:1117Google Scholar
  19. 19.
    Peden AH, Head MW, Ritchie DL, Bell JE, Ironside JW (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364:527–529PubMedCrossRefGoogle Scholar
  20. 20.
    Llewelyn CA, Hewitt PE, Knight RS, Amar K, Cousens S, Mackenzie J, Will RG (2004) Possible transmission of variant Creutzfeldt–Jakob disease by blood transfusion. Lancet 363:417–421PubMedCrossRefGoogle Scholar
  21. 21.
    Caughey B, Raymond GJ (1991) The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem 266:18217–18223PubMedGoogle Scholar
  22. 22.
    Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267:16188–16199PubMedGoogle Scholar
  23. 23.
    Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim Biophys Acta 1772:629–644PubMedGoogle Scholar
  24. 24.
    Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443:803–810PubMedCrossRefGoogle Scholar
  25. 25.
    McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A, Rennison KA, Ritchie D, Brannan F, Head MW, Ironside JW, Williams A, Bell JE (2004) Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol 165:227–235PubMedGoogle Scholar
  26. 26.
    Kuwahara C, Takeuchi AM, Nishimura T, Haraguchi K, Kubosaki A, Matsumoto Y, Saeki K, Matsumoto Y, Yokoyama T, Itohara S, Onodera T (1999) Prions prevent neuronal cell-line death. Nature 400:225–226PubMedCrossRefGoogle Scholar
  27. 27.
    Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R (2002) Cellular prion protein transduces neuroprotective signals. EMBO J 21:3317–3326PubMedCrossRefGoogle Scholar
  28. 28.
    Hundt C, Peyrin JM, Haik S, Gauczynski S, Leucht C, Rieger R, Riley ML, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J 20:5876–5886PubMedCrossRefGoogle Scholar
  29. 29.
    Leucht C, Simoneau S, Rey C, Vana K, Rieger R, Lasmezas CI, Weiss S (2003) The 37 kDa/67 kDa laminin receptor is required for PrP(Sc) propagation in scrapie-infected neuronal cells. EMBO Rep 4:290–295PubMedCrossRefGoogle Scholar
  30. 30.
    Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci USA 101:9683–9688PubMedCrossRefGoogle Scholar
  31. 31.
    Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211:582–590PubMedCrossRefGoogle Scholar
  32. 32.
    Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, Prusiner SB (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129:121–132PubMedCrossRefGoogle Scholar
  33. 33.
    Vey M, Pilkuhn S, Wille H, Nixon R, Dearmond SJ, Smart EJ, Anderson RG, Taraboulos A, Prusiner SB (1996) Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci USA 93:14945–14949PubMedCrossRefGoogle Scholar
  34. 34.
    Come JH, Fraser PE, Lansbury PT Jr (1993) A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci USA 90:5959–5963PubMedCrossRefGoogle Scholar
  35. 35.
    Lansbury PT (1994) Mechanism of scrapie replication. Science 265:1510Google Scholar
  36. 36.
    Daude N, Marella M, Chabry J (2003) Specific inhibition of pathological prion protein accumulation by small interfering RNAs. J Cell Sci 116:2775–2779PubMedCrossRefGoogle Scholar
  37. 37.
    Gilch S, Winklhofer KF, Groschup MH, Nunziante M, Lucassen R, Spielhaupter C, Muranyi W, Riesner D, Tatzelt J, Schatzl HM (2001) Intracellular re-routing of prion protein prevents propagation of PrP(Sc) and delays onset of prion disease. EMBO J 20:3957–3966PubMedCrossRefGoogle Scholar
  38. 38.
    Tatzelt J, Prusiner SB, Welch WJ (1996) Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15:6363–6373PubMedGoogle Scholar
  39. 39.
    Caspi S, Halimi M, Yanai A, Sasson SB, Taraboulos A, Gabizon R (1998) The anti-prion activity of Congo red. Putative mechanism. J Biol Chem 273:3484–3489PubMedCrossRefGoogle Scholar
  40. 40.
    Chabry J, Priola SA, Wehrly K, Nishio J, Hope J, Chesebro B (1999) Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence. J Virol 73:6245–6250PubMedGoogle Scholar
  41. 41.
    Horiuchi M, Baron GS, Xiong LW, Caughey B (2001) Inhibition of interactions and interconversions of prion protein isoforms by peptide fragments from the C-terminal folded domain. J Biol Chem 276:15489–15497PubMedCrossRefGoogle Scholar
  42. 42.
    Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E, Schmitt-Ulms G, Mehlhorn IR, Legname G, Wormald MR, Rudd PM, Dwek RA, Burton DR, Prusiner SB (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412:739–743PubMedCrossRefGoogle Scholar
  43. 43.
    Caughey B, Raymond GJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67:643–650PubMedGoogle Scholar
  44. 44.
    Zuber C, Knackmuss S, Rey C, Reusch U, Rottgen P, Frohlich T, Arnold GJ, Pace C, Mitteregger G, Kretzschmar HA, Little M, Weiss S (2008) Single chain Fv antibodies directed against the 37 kDa/67 kDa laminin receptor as therapeutic tools in prion diseases. Mol Immunol 45:144–151PubMedCrossRefGoogle Scholar
  45. 45.
    Winklhofer KF, Tatzelt J (2000) Cationic lipopolyamines induce degradation of PrPSc in scrapie-infected mouse neuroblastoma cells. Biol Chem 381:463–469PubMedCrossRefGoogle Scholar
  46. 46.
    Ertmer A, Gilch S, Yun SW, Flechsig E, Klebl B, Stein-Gerlach M, Klein MA, Schatzl HM (2004) The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. J Biol Chem 279:41918–41927PubMedCrossRefGoogle Scholar
  47. 47.
    Aguib Y, Heiseke A, Gilch S, Riemer C, Baier M, Schatzl HM, Ertmer A (2009) Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 5:361–369Google Scholar
  48. 48.
    Heiseke A, Aguib Y, Riemer C, Baier M, Schatzl HM (2009) Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 109:25–34Google Scholar
  49. 49.
    Priola SA, Raines A, Caughey WS (2000) Porphyrin and phthalocyanine antiscrapie compounds. Science 287:1503–1506PubMedCrossRefGoogle Scholar
  50. 50.
    Forloni G, Iussich S, Awan T, Colombo L, Angeretti N, Girola L, Bertani I, Poli G, Caramelli M, Grazia BM, Farina L, Limido L, Rossi G, Giaccone G, Ironside JW, Bugiani O, Salmona M, Tagliavini F (2002) Tetracyclines affect prion infectivity. Proc Natl Acad Sci USA 99:10849–10854PubMedCrossRefGoogle Scholar
  51. 51.
    Korth C, Stierli B, Streit P, Moser M, Schaller O, Fischer R, Schulz-Schaeffer W, Kretzschmar H, Raeber A, Braun U, Ehrensperger F, Hornemann S, Glockshuber R, Riek R, Billeter M, Wuthrich K, Oesch B (1997) Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390:74–77PubMedCrossRefGoogle Scholar
  52. 52.
    Paramithiotis E, Pinard M, Lawton T, LaBoissiere S, Leathers VL, Zou WQ, Estey LA, Lamontagne J, Lehto MT, Kondejewski LH, Francoeur GP, Papadopoulos M, Haghighat A, Spatz SJ, Head M, Will R, Ironside J, O’Rourke K, Tonelli Q, Ledebur HC, Chakrabartty A, Cashman NR (2003) A prion protein epitope selective for the pathologically misfolded conformation. Nat Med 9:893–899PubMedCrossRefGoogle Scholar
  53. 53.
    Hilton DA, Ghani AC, Conyers L, Edwards P, McCardle L, Ritchie D, Penney M, Hegazy D, Ironside JW (2004) Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol 203:733–739PubMedCrossRefGoogle Scholar
  54. 54.
    Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813PubMedCrossRefGoogle Scholar
  55. 55.
    Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206PubMedCrossRefGoogle Scholar
  56. 56.
    Chang B, Cheng X, Yin S, Pan T, Zhang H, Wong P, Kang SC, Xiao F, Yan H, Li C, Wolfe LL, Miller MW, Wisniewski T, Greene MI, Sy MS (2007) Test for detection of disease-associated prion aggregate in the blood of infected but asymptomatic animals. Clin Vaccine Immunol 14:36–43PubMedCrossRefGoogle Scholar
  57. 57.
    Brown P (2005) Blood infectivity, processing and screening tests in transmissible spongiform encephalopathy. Vox Sang 89:63–70PubMedCrossRefGoogle Scholar
  58. 58.
    Dabaghian RH, Mortimer PP, Clewley JP (2004) Prospects for the development of pre-mortem laboratory diagnostic tests for Creutzfeldt-Jakob disease. Rev Med Virol 14:345–361PubMedCrossRefGoogle Scholar
  59. 59.
    Gilch S, Krammer C, Schatzl HM (2008) Targeting prion proteins in neurodegenerative disease. Expert Opin Biol Ther 8:923–940PubMedCrossRefGoogle Scholar
  60. 60.
    Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874PubMedCrossRefGoogle Scholar
  61. 61.
    Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, Brandner S, Jefferys JG, Collinge J (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53:325–335PubMedCrossRefGoogle Scholar
  62. 62.
    Ellington AD (1994) RNA selection—aptamers achieve the desired recognition. Curr Biol 4:427–429PubMedCrossRefGoogle Scholar
  63. 63.
    Gold L (1995) Oligonucleotides as research, diagnostic, and therapeutic agents. J Biol Chem 270:13581–13584PubMedGoogle Scholar
  64. 64.
    Proske D, Hofliger M, Soll RM, Beck-Sickinger AG, Famulok M (2002) A Y2 receptor mimetic aptamer directed against neuropeptide Y. J Biol Chem 277:11416–11422PubMedCrossRefGoogle Scholar
  65. 65.
    Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033PubMedGoogle Scholar
  66. 66.
    Li Y, Lee HJ, Corn RM (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 79:1082–1088PubMedCrossRefGoogle Scholar
  67. 67.
    Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797PubMedCrossRefGoogle Scholar
  68. 68.
    Enari M, Flechsig E, Weissmann C (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci USA 98:9295–9299PubMedCrossRefGoogle Scholar
  69. 69.
    Moroncini G, Kanu N, Solforosi L, Abalos G, Telling GC, Head M, Ironside J, Brockes JP, Burton DR, Williamson RA (2004) Motif-grafted antibodies containing the replicative interface of cellular PrP are specific for PrPSc. Proc Natl Acad Sci USA 101:10404–10409PubMedCrossRefGoogle Scholar
  70. 70.
    Solforosi L, Bellon A, Schaller M, Cruite JT, Abalos GC, Williamson RA (2007) Toward molecular dissection of PrPC–PrPSc interactions. J Biol Chem 282:7465–7471PubMedCrossRefGoogle Scholar
  71. 71.
    Weiss S, Proske D, Neumann M, Groschup MH, Kretzschmar HA, Famulok M, Winnacker EL (1997) RNA aptamers specifically interact with the prion protein PrP. J Virol 71:8790–8797PubMedGoogle Scholar
  72. 72.
    Proske D, Gilch S, Wopfner F, Schatzl HM, Winnacker EL, Famulok M (2002) Prion-protein-specific aptamer reduces PrPSc formation. Chembiochem 3:717–725PubMedCrossRefGoogle Scholar
  73. 73.
    Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–321). Nature 382:180–182PubMedCrossRefGoogle Scholar
  74. 74.
    Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci USA 99:3563–3568PubMedCrossRefGoogle Scholar
  75. 75.
    Govaerts C, Wille H, Prusiner SB, Cohen FE (2004) Evidence for assembly of prions with left-handed beta-helices into trimers. Proc Natl Acad Sci USA 101:8342–8347PubMedCrossRefGoogle Scholar
  76. 76.
    Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261PubMedCrossRefGoogle Scholar
  77. 77.
    Rhie A, Kirby L, Sayer N, Wellesley R, Disterer P, Sylvester I, Gill A, Hope J, James W, Tahiri-Alaoui A (2003) Characterization of 2’-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J Biol Chem 278:39697–39705PubMedCrossRefGoogle Scholar
  78. 78.
    Sayer NM, Cubin M, Rhie A, Bullock M, Tahiri-Alaoui A, James W (2004) Structural determinants of conformationally selective, prion-binding aptamers. J Biol Chem 279:13102–13109PubMedCrossRefGoogle Scholar
  79. 79.
    Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PK, Nishikawa S (2006) Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem 139:383–390PubMedCrossRefGoogle Scholar
  80. 80.
    Wopfner F, Weidenhofer G, Schneider R, von Brunn A, Gilch S, Schwarz TF, Werner T, Schatzl HM (1999) Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 289:1163–1178PubMedCrossRefGoogle Scholar
  81. 81.
    Gabus C, Derrington E, Leblanc P, Chnaiderman J, Dormont D, Swietnicki W, Morillas M, Surewicz WK, Marc D, Nandi P, Darlix JL (2001) The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. J Biol Chem 276:19301–19309PubMedCrossRefGoogle Scholar
  82. 82.
    Gomes MP, Millen TA, Ferreira PS, Cunha E, Silva NL, Vieira TC, Almeida MS, Silva JL, Cordeiro Y (2008) Prion protein complexed to N2a cellular RNAs through its N-terminal domain forms aggregates and is toxic to murine neuroblastoma cells. J Biol Chem 238:19616–19625Google Scholar
  83. 83.
    Mercey R, Lantier I, Maurel MC, Grosclaude J, Lantier F, Marc D (2006) Fast, reversible interaction of prion protein with RNA aptamers containing specific sequence patterns. Arch Virol 151:2197–2214PubMedCrossRefGoogle Scholar
  84. 84.
    Takemura K, Wang P, Vorberg I, Surewicz W, Priola SA, Kanthasamy A, Pottathil R, Chen SG, Sreevatsan S (2006) DNA aptamers that bind to PrP(C) and not PrP(Sc) show sequence and structure specificity. Exp Biol Med (Maywood) 231:204–214Google Scholar
  85. 85.
    Kouassi GK, Wang P, Sreevatan S, Irudayaraj J (2007) Aptamer-mediated magnetic and gold-coated magnetic nanoparticles as detection assay for prion protein assessment. Biotechnol Prog 23:1239–1244PubMedGoogle Scholar
  86. 86.
    Bibby DF, Gill AC, Kirby L, Farquhar CF, Bruce ME, Garson JA (2008) Application of a novel in vitro selection technique to isolate and characterise high affinity DNA aptamers binding mammalian prion proteins. J Virol Methods 151:107–115PubMedCrossRefGoogle Scholar
  87. 87.
    Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB (1998) Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 4:1157–1165PubMedCrossRefGoogle Scholar
  88. 88.
    Pfeifer A, Eigenbrod S, Al Khadra S, Hofmann A, Mitteregger G, Moser M, Bertsch U, Kretzschmar H (2006) Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Invest 116:3204–3210PubMedCrossRefGoogle Scholar
  89. 89.
    White MD, Farmer M, Mirabile I, Brandner S, Collinge J, Mallucci GR (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci USA 105:10238–10243PubMedCrossRefGoogle Scholar
  90. 90.
    Blind M, Kolanus W, Famulok M (1999) Cytoplasmic RNA modulators of an inside-out signal-transduction cascade. Proc Natl Acad Sci USA 96:3606–3610PubMedCrossRefGoogle Scholar
  91. 91.
    Colas P, Cohen B, Jessen T, Grishina I, Mccoy J, Brent R (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380:548–550PubMedCrossRefGoogle Scholar
  92. 92.
    Hoppe-Seyler F, Crnkovic-Mertens I, Tomai E, Butz K (2004) Peptide aptamers: Specific inhibitors of protein function. Curr Mol Med 4:529–538PubMedCrossRefGoogle Scholar
  93. 93.
    Ladner RC (1995) Constrained peptides as binding entities. Trends Biotechnol 13:426–430PubMedCrossRefGoogle Scholar
  94. 94.
    Geyer CR, Colman-Lerner A, Brent R (1999) “Mutagenesis” by peptide aptamers identifies genetic network members and pathway connections. Proc Natl Acad Sci USA 96:8567–8572PubMedCrossRefGoogle Scholar
  95. 95.
    Baines IC, Colas P (2006) Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today 11:334–341PubMedCrossRefGoogle Scholar
  96. 96.
    Peelle B, Gururaja TL, Payan DG, Anderson DC (2001) Characterization and use of green fluorescent proteins from Renilla mulleri and Ptilosarcus guernyi for the human cell display of functional peptides. J Protein Chem 20:507–519PubMedCrossRefGoogle Scholar
  97. 97.
    Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA (1997) Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 15:772–777PubMedCrossRefGoogle Scholar
  98. 98.
    Beste G, Schmidt FS, Stibora T, Skerra A (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci USA 96:1898–1903PubMedCrossRefGoogle Scholar
  99. 99.
    Colas P, Cohen B, Ferrigno PK, Silver PA, Brent R (2000) Targeted modification and transportation of cellular proteins. Proc Natl Acad Sci USA 97:13720–13725PubMedCrossRefGoogle Scholar
  100. 100.
    Butz K, Denk C, Fitscher B, Crnkovic-Mertens I, Ullmann A, Schroder CH, Hoppe-Seyler F (2001) Peptide aptamers targeting the hepatitis B virus core protein: a new class of molecules with antiviral activity. Oncogene 20:6579–6586PubMedCrossRefGoogle Scholar
  101. 101.
    Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F (2000) Induction of apoptosis in human papillomavirus-positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 97:6693–6697PubMedCrossRefGoogle Scholar
  102. 102.
    Nauenburg S, Zwerschke W, Jansen-Durr P (2001) Induction of apoptosis in cervical carcinoma cells by peptide aptamers that bind to the HPV-16 E7 oncoprotein. FASEB J 15:592–594PubMedGoogle Scholar
  103. 103.
    Buerger C, Nagel-Wolfrum K, Kunz C, Wittig I, Butz K, Hoppe-Seyler F, Groner B (2003) Sequence-specific peptide aptamers, interacting with the intracellular domain of the epidermal growth factor receptor, interfere with Stat3 activation and inhibit the growth of tumor cells. J Biol Chem 278:37610–37621PubMedCrossRefGoogle Scholar
  104. 104.
    Gilch S, Kehler C, Schatzl HM (2007) Peptide aptamers expressed in the secretory pathway interfere with cellular PrPSc formation. J Mol Biol 371:362–373PubMedCrossRefGoogle Scholar
  105. 105.
    Wuertzer CA, Sullivan MA, Qiu X, Federoff HJ (2008) CNS delivery of vectored prion-specific single-chain antibodies delays disease onset. Mol Ther 16:481–486PubMedCrossRefGoogle Scholar
  106. 106.
    Siernion IZ, Cebrat M, Kluczyk A (2004) The problem of amino acid complementarity and antisense peptides. Curr Protein Pept Sci 5:507–527CrossRefGoogle Scholar
  107. 107.
    Root-Bernstein RS, Holsworth DD (1998) Antisense peptides: a critical mini-review. J Theor Biol 190:107–119PubMedCrossRefGoogle Scholar
  108. 108.
    Huang YY, Zhao R, Luo J, Xiong SX, Shangguan DH, Zhang HW, Liu GQ, Chen Y (2008) Design, synthesis and screening of antisense peptide based combinatorial peptide libraries towards an aromatic region of SARS-CoV. J Mol Recognit 21:122–131PubMedCrossRefGoogle Scholar
  109. 109.
    Imai M, Baranyi L, Okada N, Okada H (2007) Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments. Biochem Biophys Res Commun 353:851–856PubMedCrossRefGoogle Scholar
  110. 110.
    Rother KI, Clay OK, Bourquin JP, Silke J, Schaffner W (1997) Long non-stop reading frames on the antisense strand of heat shock protein 70 genes and prion protein (PrP) genes are conserved between species. Biol Chem 378:1521–1530PubMedCrossRefGoogle Scholar
  111. 111.
    Moser M, Oesch B, Bueler H (1993) An anti-prion protein? Nature 362:213–214PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Institute of VirologyTechnische Universität MünchenMunichGermany

Personalised recommendations