Cellular and Molecular Life Sciences

, Volume 66, Issue 15, pp 2427–2443 | Cite as

Intracellular protein degradation in mammalian cells: recent developments

  • Erwin Knecht
  • Carmen Aguado
  • Jaime Cárcel
  • Inmaculada Esteban
  • Juan Miguel Esteve
  • Ghita Ghislat
  • José Félix Moruno
  • José Manuel Vidal
  • Rosana Sáez
Review

Abstract

In higher organisms, dietary proteins are broken down into amino acids within the digestive tract but outside the cells, which incorporate the resulting amino acids into their metabolism. However, under certain conditions, an organism loses more nitrogen than is assimilated in the diet. This additional loss was found in the past century to come from intracellular proteins and started an intensive research that produced an enormous expansion of the field and a dispersed literature. Therefore, our purpose is to provide an updated summary of the current knowledge on the proteolytic machinery involved in intracellular protein degradation and its physiological and pathological relevance, especially addressed to newcomers in the field who may find further details in more specialized reviews. However, even providing a general overview, this is an extremely wide field and, therefore, we mainly focus on mammalian cells, while other cells will be mentioned only for comparison purposes.

Keywords

Intracellular protein degradation Proteases Proteasomes Ubiquitin Lysosomes Autophagy Cell injury 

References

  1. 1.
    Ciechanover A (2005) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting. Cell Death Differ 12:1178–1190PubMedCrossRefGoogle Scholar
  2. 2.
    Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12:1191–1197PubMedCrossRefGoogle Scholar
  3. 3.
    Varshavsky A (2008) Discovery of cellular regulation by protein degradation. J Biol Chem 283:34469–34489PubMedCrossRefGoogle Scholar
  4. 4.
    Yewdell JW, Nicchitta CV (2006) The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol 27:368–373PubMedCrossRefGoogle Scholar
  5. 5.
    Grisolía S, Hernández-Yago J, Knecht E (1985) Regulation of mitochondrial protein concentration: a plausible model which may permit assessing protein turnover. Curr Topics Cell Regul 27:387–396Google Scholar
  6. 6.
    Yen HC, Xu Q, Chou DM, Zhao Z, Elledge SJ (2008) Global protein stability profiling in mammalian cells. Science 322:918–923PubMedCrossRefGoogle Scholar
  7. 7.
    Fuertes G, Villarroya A, Knecht E (2003) Role of proteasomes in the degradation of short-lived proteins in human fibroblasts under various growth conditions. Int J Biochem Cell Biol 35:665–675CrossRefGoogle Scholar
  8. 8.
    Vabulas RM, Hartl FU (2005) Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310:1960–1963PubMedCrossRefGoogle Scholar
  9. 9.
    Quesada V, Ordoñez GR, Sánchez LM, Puente XS, López-Otín C (2009) The Degradome database: mammalian proteases and diseases of proteolysis. Nucl Acids Res 37:D239–D243PubMedCrossRefGoogle Scholar
  10. 10.
    Esteban I, Aguado C, Sánchez M, Knecht E (2007) Regulation of various proteolytic pathways by insulin and amino acids in human fibroblasts. FEBS Lett 581:3415–3421PubMedCrossRefGoogle Scholar
  11. 11.
    DeMartino GN, Gillette TG (2007) Proteasomes: machines for all reasons. Cell 129:659–662PubMedCrossRefGoogle Scholar
  12. 12.
    Hanna J, Finley D (2007) A proteasome for all occasions. FEBS Lett 581:2854–2861PubMedCrossRefGoogle Scholar
  13. 13.
    Raasi S, Wolf DH (2007) Ubiquitin receptors and ERAD: a network of pathways to the proteasome. Semin Cell Dev Biol 18:780–791PubMedCrossRefGoogle Scholar
  14. 14.
    Takeuchi J, Chen H, Coffino P (2007) Proteasome substrate degradation requires association plus extended peptide. EMBO J 26:123–131PubMedCrossRefGoogle Scholar
  15. 15.
    Kisselev AF, Callard A, Goldberg AL (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281:8582–8590PubMedCrossRefGoogle Scholar
  16. 16.
    Rosenzweig R, Glickman MH (2008) Chaperone-driven proteasome assembly. Biochem Soc Trans 36:807–812PubMedCrossRefGoogle Scholar
  17. 17.
    Hutschenreiter S, Tinazli A, Model K, Tampé R (2004) Two-substrate association with the 20S proteasome at single-molecule level. EMBO J 23:2488–2497PubMedCrossRefGoogle Scholar
  18. 18.
    Rechsteiner MC, Hill M (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33PubMedCrossRefGoogle Scholar
  19. 19.
    da Fonseca PC, Morris EP (2008) Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J Biol Chem 283:23305–23314PubMedCrossRefGoogle Scholar
  20. 20.
    Lee D, Ezhkova E, Li B, Pattenden SG, Tansey WP, Workman JL (2005) The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123:423–436PubMedCrossRefGoogle Scholar
  21. 21.
    Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006) ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 24:39–50PubMedCrossRefGoogle Scholar
  22. 22.
    Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488PubMedCrossRefGoogle Scholar
  23. 23.
    Koulich E, Li X, DeMartino GN (2008) Relative structural and functional roles of multiple deubiquitinating proteins associated with mammalian 26S proteasome. Mol Biol Cell 19:1072–1082PubMedCrossRefGoogle Scholar
  24. 24.
    Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:99–111PubMedCrossRefGoogle Scholar
  25. 25.
    Mao I, Liu J, Li X, Luo H (2008) REGgamma, a proteasome activator and beyond? Cell Mol Life Sci 65:3971–3980PubMedCrossRefGoogle Scholar
  26. 26.
    Groettrup M, Pelzer C, Schmidtke G, Hofmann K (2008) Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem Sci 33:230–237PubMedCrossRefGoogle Scholar
  27. 27.
    Rodrigo-Brenni MC, Morgan DO (2007) Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130:127–139PubMedCrossRefGoogle Scholar
  28. 28.
    Ciechanover A (2005) N-terminal ubiquitination. Methods Mol Biol 301:255–270PubMedGoogle Scholar
  29. 29.
    Robinson PA, Ardley HC (2004) Ubiquitin-protein ligases. J Cell Sci 117:5191–5194PubMedCrossRefGoogle Scholar
  30. 30.
    Li W, Ye Y (2008) Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 65:2397–2406PubMedCrossRefGoogle Scholar
  31. 31.
    Janse DM, Crosas B, Finley D, Church GM (2004) Localization to the proteasome is sufficient for degradation. J Biol Chem 279:21415–21420PubMedCrossRefGoogle Scholar
  32. 32.
    Li W, Tu D, Brunger AT, Ye Y (2007) A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446:333–337PubMedCrossRefGoogle Scholar
  33. 33.
    Hoppe T (2005) Multiubiquitination by E4 enzymes: ‘one size’ doesn’t fit all. Trends Biochem Sci 30:183–187PubMedCrossRefGoogle Scholar
  34. 34.
    Seaman MNJ (2008) Endosome protein sorting: motifs and machinery. Cell Mol Life Sci 65:2842–2858PubMedCrossRefGoogle Scholar
  35. 35.
    Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29:653–663PubMedCrossRefGoogle Scholar
  36. 36.
    Millard SM, Wood SA (2006) Riding the DUBway: regulation of protein trafficking by deubiquitylating enzymes. J Cell Biol 173:463–468PubMedCrossRefGoogle Scholar
  37. 37.
    Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180PubMedCrossRefGoogle Scholar
  38. 38.
    Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546PubMedCrossRefGoogle Scholar
  39. 39.
    Naujokat C, Fuchs D, Berges C (2007) Adaptive modification and flexibility of the proteasome system in response to proteasome inhibition. Biochim Biophys Acta 1773:1389–1397PubMedCrossRefGoogle Scholar
  40. 40.
    Croall DE, Ersfeld K (2007) The calpains: modular designs and functional diversity. Genome Biol 28:218CrossRefGoogle Scholar
  41. 41.
    Yi CH, Yuan J (2009) The Jekyll and Hyde functions of caspases. Dev Cell 16:21–34PubMedCrossRefGoogle Scholar
  42. 42.
    Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314PubMedCrossRefGoogle Scholar
  43. 43.
    Klionsky DJ, Cuervo AM, Dunn WA Jr, Levine B, van der Klei I, Seglen PO (2007) How shall I eat thee? Autophagy 3:413–416PubMedGoogle Scholar
  44. 44.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873PubMedCrossRefGoogle Scholar
  45. 45.
    Sakai Y, Oku M, van der Klei IJ, Kiel JA (2006) Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta 1763:1767–1775PubMedCrossRefGoogle Scholar
  46. 46.
    Kraft C, Deplazes A, Sohrmann M, Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10:602–610PubMedCrossRefGoogle Scholar
  47. 47.
    Juhasz G, Neufeld TP (2006) Autophagy: a forty-year search for a missing membrane source. PLoS Biol 4:e36PubMedCrossRefGoogle Scholar
  48. 48.
    Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701PubMedCrossRefGoogle Scholar
  49. 49.
    Yoshimori T, Noda T (2008) Toward unraveling membrane biogenesis in mammalian autophagy. Curr Opin Cell Biol 20:401–407PubMedCrossRefGoogle Scholar
  50. 50.
    Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirni A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545PubMedCrossRefGoogle Scholar
  51. 51.
    Kawamata T, Kamada Y, Kabeya Y, Sekito T, Ohsumi Y (2008) Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell 19:2039–2050PubMedCrossRefGoogle Scholar
  52. 52.
    Obara K, Sekito T, Niimi K, Ohsumi Y (2008) The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283:23972–23980PubMedCrossRefGoogle Scholar
  53. 53.
    Ohsumi Y, Mizushima N (2004) Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 15:231–236PubMedCrossRefGoogle Scholar
  54. 54.
    Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178PubMedCrossRefGoogle Scholar
  55. 55.
    Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092–2100PubMedCrossRefGoogle Scholar
  56. 56.
    Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688PubMedCrossRefGoogle Scholar
  57. 57.
    Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372PubMedCrossRefGoogle Scholar
  58. 58.
    Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 105:19211–19216PubMedCrossRefGoogle Scholar
  59. 59.
    Maria Fimia G, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125Google Scholar
  60. 60.
    Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen EL, Millen J, Goldfarb DS, Thumm M (2008) Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell 19:4492–4505PubMedCrossRefGoogle Scholar
  61. 61.
    Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human cancer cells. Cell Death Differ 15:1318–1329PubMedCrossRefGoogle Scholar
  62. 62.
    Meijer AJ, Codogno P (2006) Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med 27:411–425PubMedCrossRefGoogle Scholar
  63. 63.
    Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534PubMedCrossRefGoogle Scholar
  64. 64.
    Meléndez A, Neufeld TP (2008) The cell biology of autophagy in metazoans: a developing story. Development 135:2347–2360PubMedCrossRefGoogle Scholar
  65. 65.
    Kadowaki M, Razaul Karim M, Carpi A, Miotto G (2006) Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med 27:426–443PubMedCrossRefGoogle Scholar
  66. 66.
    Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282:5641–5652PubMedCrossRefGoogle Scholar
  67. 67.
    Abraham RT (2009) Regulation of the mTOR signalling pathway: from laboratory bench to bedside and back again. F1000 Biol Rep 1:8Google Scholar
  68. 68.
    Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, Meijer AJ (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281:34870–34879PubMedCrossRefGoogle Scholar
  69. 69.
    Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jaattela M (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193–205PubMedCrossRefGoogle Scholar
  70. 70.
    Sadiq F, Hazlerigg DG, Lomax MA (2007) Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes. BMC Mol Biol 8:23PubMedCrossRefGoogle Scholar
  71. 71.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483PubMedCrossRefGoogle Scholar
  72. 72.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCrossRefGoogle Scholar
  73. 73.
    Sun XM, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A, Cohen GM (2004) Caspase activation inhibits proteasome function during apoptosis. Mol Cell 14:81–93PubMedCrossRefGoogle Scholar
  74. 74.
    Levine B, Kroemer G (2009) Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ 16:1–2PubMedCrossRefGoogle Scholar
  75. 75.
    Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708PubMedCrossRefGoogle Scholar
  76. 76.
    Nedelsky NB, Todd PK, Taylor JP (2008) Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 1782:691–699PubMedGoogle Scholar
  77. 77.
    Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199PubMedGoogle Scholar
  78. 78.
    Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C, Rubinsztein DC, Ballabio A (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129PubMedCrossRefGoogle Scholar
  79. 79.
    Perrin AJ, Jiang X, Birmingham CL, So NS, Brumell JH (2004) Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr Biol 14:806–811PubMedCrossRefGoogle Scholar
  80. 80.
    Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–162PubMedGoogle Scholar
  81. 81.
    Shackelford J, Pagano JS (2007) Role of the ubiquitin system and tumor viruses in AIDS-related cancer. BMC Biochem 8(Suppl 1):S8PubMedCrossRefGoogle Scholar
  82. 82.
    Petroski MD (2008) The ubiquitin system, disease, and drug discovery. BMC Biochem 9(Suppl 1):S7PubMedCrossRefGoogle Scholar
  83. 83.
    Levine BB, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedCrossRefGoogle Scholar
  84. 84.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884PubMedCrossRefGoogle Scholar
  85. 85.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Erwin Knecht
    • 1
    • 2
  • Carmen Aguado
    • 2
  • Jaime Cárcel
    • 1
  • Inmaculada Esteban
    • 2
  • Juan Miguel Esteve
    • 1
  • Ghita Ghislat
    • 1
  • José Félix Moruno
    • 1
  • José Manuel Vidal
    • 1
  • Rosana Sáez
    • 3
  1. 1.Centro de Investigación Príncipe FelipeValenciaSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIValenciaSpain
  3. 3.Departamento de Biología CelularUniversidad de ValenciaBurjassotSpain

Personalised recommendations