Advertisement

Cellular and Molecular Life Sciences

, Volume 66, Issue 14, pp 2391–2403 | Cite as

Tryptophan synthase: a mine for enzymologists

  • Samanta Raboni
  • Stefano Bettati
  • Andrea Mozzarelli
Review

Abstract

Tryptophan synthase is a pyridoxal 5′-phosphate-dependent α2β2 complex catalyzing the last two steps of tryptophan biosynthesis in bacteria, plants and fungi. Structural, dynamic and functional studies, carried out over more than 40 years, have unveiled that: (1) α- and β-active sites are separated by about 20 Å and communicate via the selective stabilization of distinct conformational states, triggered by the chemical nature of individual catalytic intermediates and by allosteric ligands; (2) indole, formed at α-active site, is intramolecularly channeled to the β-active site; and (3) naturally occurring as well as genetically generated mutants have allowed to pinpoint functional and regulatory roles for several individual amino acids. These key features have made tryptophan synthase a text-book case for the understanding of the interplay between chemistry and conformational energy landscapes.

Keywords

Enzyme catalysis Pyridoxal 5′-phosphate Conformational changes Tryptophan X-ray crystallography 

Abbreviations

GP

Glycerol phosphate

G3P

d-glyceraldehyde-3-phosphate

IA

trans-3-indole-3′-acrylate

IAD

Indoleacetyl aspartate

IAG

Indoleacetyl glycine

IAV

Indoleacetyl valine

IGP

Indole-3-glycerol phosphate

IPP

Indole 3-propanol phosphate

PLP

Pyridoxal 5′-phosphate

TS

Tryptophan synthase

Notes

Acknowledgments

We gratefully thank Dr. Francesca Spyrakis for help in the preparation of Figs. 1 and 2. This work was supported by a grant from the Italian Ministry of University and Research (COFIN2007 to A.M.).

References

  1. 1.
    Huang X, Holden HM, Raushel FM (2001) Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem 70:149–180PubMedCrossRefGoogle Scholar
  2. 2.
    Barends TR, Dunn MF, Schlichting I (2008) Tryptophan synthase, an allosteric molecular factory. Curr Opin Chem Biol 12:593–600Google Scholar
  3. 3.
    Dunn MF, Niks D, Ngo H, Barends TR, Schlichting I (2008) Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem Sci 33:254–264PubMedCrossRefGoogle Scholar
  4. 4.
    Kirschner K, Wiskocil RL, Foehn M, Rezeau L (1975) The tryptophan synthase from Escherichia coli: an improved purification procedure for the α-subunit and binding studies with substrate analogues. Eur J Biochem 60:513–523PubMedCrossRefGoogle Scholar
  5. 5.
    Miles EW (1979) Tryptophan synthase: structure, function, and subunit interaction. Adv Enzymol Relat Areas Mol Biol 49:127–186PubMedCrossRefGoogle Scholar
  6. 6.
    Miles EW (1991) Structural basis for catalysis by tryptophan synthase. Adv Enzymol Relat Areas Mol Biol 64:93–172PubMedCrossRefGoogle Scholar
  7. 7.
    Miles EW (1995) Tryptophan synthase: structure, function, and protein engineering. Subcell Biochem 24:207–254PubMedGoogle Scholar
  8. 8.
    Miles EW, Rhee S, Davies DR (1999) The molecular basis of substrate channeling. J Biol Chem 274:12193–12196PubMedCrossRefGoogle Scholar
  9. 9.
    Pan P, Woehl E, Dunn MF (1997) Protein architecture, dynamics and allostery in tryptophan synthase channeling. Trends Biochem Sci 22:22–27PubMedCrossRefGoogle Scholar
  10. 10.
    Yanofsky C, Crawford IP (1972) In: The enzyme. Academy Press, NY, pp 1–13Google Scholar
  11. 11.
    Kallen RG, Korpela T, Martell AE, Matsushina Y, Metzler CM, Metzler DE, Yuru V, Ralson IM, Savin FA, Torchinski YM, Ueno H (1985). In: Christen P, Metzler DE (eds) Transaminases. Wiley, New York, pp 38–108Google Scholar
  12. 12.
    Hyde CC, Ahmed SA, Padlan EA, Miles EW, Davies DR (1988) Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium. J Biol Chem 263:17857–17871PubMedGoogle Scholar
  13. 13.
    Schneider TR, Gerhardt E, Lee M, Liang PH, Anderson KS, Schlichting I (1998) Loop closure and intersubunit communication in tryptophan synthase. Biochemistry 37:5394–5406PubMedCrossRefGoogle Scholar
  14. 14.
    Weyand M, Schlichting I, Herde P, Marabotti A, Mozzarelli A (2002) Crystal structure of the βSer178– > Pro mutant of tryptophan synthase: a “knock-out” allosteric enzyme. J Biol Chem 277:10653–10660PubMedCrossRefGoogle Scholar
  15. 15.
    Raboni S, Mozzarelli A, Cook PF (2007) Control of ionizable residues in the catalytic mechanism of tryptophan synthase from Salmonella typhimurium. Biochemistry 46:13223–13234PubMedCrossRefGoogle Scholar
  16. 16.
    Barends TR, Domratcheva T, Kulik V, Blumenstein L, Niks D, Dunn MF, Schlichting I (2008) Structure and mechanistic implications of a tryptophan synthase quinonoid intermediate. Chembiochem 9:1024–1028PubMedCrossRefGoogle Scholar
  17. 17.
    Grishin NV, Phillips MA, Goldsmith EJ (1995) Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci 4:1291–1304PubMedCrossRefGoogle Scholar
  18. 18.
    Rhee S, Parris KD, Ahmed SA, Miles EW, Davies DR (1996) Exchange of K+ or Cs+ for Na+ induces local and long-range changes in the three-dimensional structure of the tryptophan synthase α2β2 complex. Biochemistry 35:4211–4221PubMedCrossRefGoogle Scholar
  19. 19.
    Rhee S, Parris KD, Hyde CC, Ahmed SA, Miles EW, Davies DR (1997) Crystal structures of a mutant (βK87T) tryptophan synthase α2β2 complex with ligands bound to the active sites of the α- and β-subunits reveal ligand-induced conformational changes. Biochemistry 36:7664–7680PubMedCrossRefGoogle Scholar
  20. 20.
    Anderson KS, Miles EW, Johnson KA (1991) Serine modulates substrate channeling in tryptophan synthase: a novel intersubunit triggering mechanism. J Biol Chem 266:8020–8033PubMedGoogle Scholar
  21. 21.
    Dunn MF, Aguilar V, Brzovic P, Drewe WF Jr, Houben KF, Leja CA, Roy M (1990) The tryptophan synthase bienzyme complex transfers indole between the α- and β-sites via a 25–30 Å long tunnel. Biochemistry 29:8598–8607PubMedCrossRefGoogle Scholar
  22. 22.
    Nagata S, Hyde CC, Miles EW (1989) The α-subunit of tryptophan synthase. Evidence that aspartic acid 60 is a catalytic residue and that the double alteration of residues 175 and 211 in a second-site revertant restores the proper geometry of the substrate binding site. J Biol Chem 264:6288–6296PubMedGoogle Scholar
  23. 23.
    Yutani K, Ogasahara K, Tsujita T, Kanemoto K, Matsumoto M, Tanaka S, Miyashita T, Matsushiro A, Sugino Y, Miles EW (1987) Tryptophan synthase α-subunit glutamic acid 49 is essential for activity: studies with 19 mutants at position 49. J Biol Chem 262:13429–13433PubMedGoogle Scholar
  24. 24.
    Kulik V, Hartmann E, Weyand M, Frey M, Gierl A, Niks D, Dunn MF, Schlichting I (2005) On the structural basis of the catalytic mechanism and the regulation of the α-subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes. J Mol Biol 352:608–620PubMedCrossRefGoogle Scholar
  25. 25.
    Miles EW, McPhie P, Yutani K (1988) Evidence that glutamic acid 49 of tryptophan synthase α-subunit is a catalytic residue: inactive mutant proteins substituted at position 49 bind ligands and transmit ligand-dependent to the β-subunit. J Biol Chem 263:8611–8614PubMedGoogle Scholar
  26. 26.
    Lane AN, Kirschner K (1983) The catalytic mechanism of tryptophan synthase from Escherichia coli: kinetics of the reaction of indole with the enzyme-l-serine complexes. Eur J Biochem 129:571–582PubMedCrossRefGoogle Scholar
  27. 27.
    Weischet WO, Kirschner K (1976) The mechanism of the synthesis of indoleglycerol phosphate catalyzed by tryptophan synthase from Escherichia coli: steady-state kinetic studies. Eur J Biochem 65:365–373PubMedCrossRefGoogle Scholar
  28. 28.
    Marabotti A, Cozzini P, Mozzarelli A (2000) Novel allosteric effectors of the tryptophan synthase α2β2 complex identified by computer-assisted molecular modeling. Biochim Biophys Acta 1476:287–299PubMedGoogle Scholar
  29. 29.
    Weyand M, Schlichting I, Marabotti A, Mozzarelli A (2002) Crystal structures of a new class of allosteric effectors complexed to tryptophan synthase. J Biol Chem 277:10647–10652PubMedCrossRefGoogle Scholar
  30. 30.
    Sachpatzidis A, Dealwis C, Lubetsky JB, Liang PH, Anderson KS, Lolis E (1999) Crystallographic studies of phosphonate-based α-reaction transition-state analogues complexed to tryptophan synthase. Biochemistry 38:12665–12674PubMedCrossRefGoogle Scholar
  31. 31.
    Ngo H, Kimmich N, Harris R, Niks D, Blumenstein L, Kulik V, Barends TR, Schlichting I, Dunn MF (2007) Allosteric regulation of substrate channeling in tryptophan synthase: modulation of the l-serine reaction in stage I of the β-reaction by α-site ligands. Biochemistry 46:7740–7753PubMedCrossRefGoogle Scholar
  32. 32.
    Anderson KS, Kim AY, Quillen JM, Sayers E, Yang XJ, Miles EW (1995) Kinetic characterization of channel impaired mutants of tryptophan synthase. J Biol Chem 270:29936–29944PubMedCrossRefGoogle Scholar
  33. 33.
    Brzovic PS, Ngo K, Dunn MF (1992) Allosteric interactions coordinate catalytic activity between successive metabolic enzymes in the tryptophan synthase bienzyme complex. Biochemistry 31:3831–3839PubMedCrossRefGoogle Scholar
  34. 34.
    Lane AN, Kirschner K (1991) Mechanism of the physiological reaction catalyzed by tryptophan synthase from Escherichia coli. Biochemistry 30:479–484PubMedCrossRefGoogle Scholar
  35. 35.
    Schleicher E, Mascaro K, Potts R, Mann DR, Floss HB (1976) Letter: stereochemistry and mechanism of reactions catalyzed by tryptophanase and tryptophan synthetase. J Am Chem Soc 98:1043–1044PubMedCrossRefGoogle Scholar
  36. 36.
    Skye GE, Potts R, Floss HG (1974) Stereochemistry of the tryptophan synthetase reaction. J Am Chem Soc 96:1593–1595PubMedCrossRefGoogle Scholar
  37. 37.
    Tai CH, Cook PF (2001) Pyridoxal 5′-phosphate-dependent α,β-elimination reactions: mechanism of O-acetylserine sulfhydrylase. Acc Chem Res 34:49–59PubMedCrossRefGoogle Scholar
  38. 38.
    Dunn MF, Agular V, Drewe WF Jr, Houben K, Robustell B, Roy M (1987) The interconversion of E. coli tryptophan synthase intermediates is modulated by allosteric interactions. Ind J Biochem Biophys 24(Suppl 4):4–51Google Scholar
  39. 39.
    Roy M, Keblawi S, Dunn MF (1988) Stereoelectronic control of bond formation in Escherichia coli tryptophan synthase: substrate specificity and enzymatic synthesis of the novel amino acid dihydroisotryptophan. Biochemistry 27:6698–6704PubMedCrossRefGoogle Scholar
  40. 40.
    Faeder EJ, Hammes GG (1970) Kinetic studies of tryptophan synthetase: interaction of substrates with the β subunit. Biochemistry 9:4043–4049PubMedCrossRefGoogle Scholar
  41. 41.
    Peracchi A, Bettati S, Mozzarelli A, Rossi GL, Miles EW, Dunn MF (1996) Allosteric regulation of tryptophan synthase: effects of pH, temperature, and α-subunit ligands on the equilibrium distribution of pyridoxal 5′-phosphate-l-serine intermediates. Biochemistry 35:1872–1880PubMedCrossRefGoogle Scholar
  42. 42.
    Peracchi A, Mozzarelli A, Rossi GL (1995) Monovalent cations affect dynamic and functional properties of the tryptophan synthase α2β2 complex. Biochemistry 34:9459–9465PubMedCrossRefGoogle Scholar
  43. 43.
    Woehl E, Dunn MF (1999) Mechanisms of monovalent cation action in enzyme catalysis: the first stage of the tryptophan synthase β-reaction. Biochemistry 38:7118–7130PubMedCrossRefGoogle Scholar
  44. 44.
    Woehl EU, Dunn MF (1995) Monovalent metal ions play an essential role in catalysis and intersubunit communication in the tryptophan synthase bienzyme complex. Biochemistry 34:9466–9476PubMedCrossRefGoogle Scholar
  45. 45.
    Mozzarelli A, Peracchi A, Rossi GL, Ahmed SA, Miles EW (1989) Microspectrophotometric studies on single crystals of the tryptophan synthase α2β2 complex demonstrate formation of enzyme-substrate intermediates. J Biol Chem 264:15774–15780PubMedGoogle Scholar
  46. 46.
    Fan YX, McPhie P, Miles EW (2000) Regulation of tryptophan synthase by temperature, monovalent cations, and an allosteric ligand: evidence from Arrhenius plots, absorption spectra, and primary kinetic isotope effects. Biochemistry 39:4692–4703PubMedCrossRefGoogle Scholar
  47. 47.
    Ahmed SA, McPhie P, Miles EW (1996) Mechanism of activation of the tryptophan synthase α2β2 complex: solvent effects of the co-substrate β-mercaptoethanol. J Biol Chem 271:29100–29106PubMedCrossRefGoogle Scholar
  48. 48.
    Ahmed SA, Miles EW (1994) Aliphatic alcohols stabilize an alternative conformation of the tryptophan synthase α2β2 complex from Salmonella typhimurium. J Biol Chem 269:16486–16492PubMedGoogle Scholar
  49. 49.
    Phillips RS, Miles EW, McPhie P, Marchal S, Georges C, Dupont Y, Lange R (2008) Pressure and temperature jump relaxation kinetics of the conformational change in Salmonella typhimurium tryptophan synthase l-serine complex: large activation compressibility and heat capacity changes demonstrate the contribution of solvation. J Am Chem Soc 130:13580–13588PubMedCrossRefGoogle Scholar
  50. 50.
    Phillips RS, Miles EW, Holtermann G, Goody RS (2005) Hydrostatic pressure affects the conformational equilibrium of Salmonella typhimurium tryptophan synthase. Biochemistry 44:7921–7928PubMedCrossRefGoogle Scholar
  51. 51.
    Phillips RS, McPhie P, Miles EW, Marchal S, Lange R (2008) Quantitative effects of allosteric ligands and mutations on conformational equilibria in Salmonella typhimurium tryptophan synthase. Arch Biochem Biophys 470:8–19PubMedCrossRefGoogle Scholar
  52. 52.
    Drewe WF Jr, Dunn MF (1985) Detection and identification of intermediates in the reaction of l-serine with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. Biochemistry 24:3977–3987PubMedCrossRefGoogle Scholar
  53. 53.
    Lane AN, Kirschner K (1983) The mechanism of binding of l-serine to tryptophan synthase from Escherichia coli. Eur J Biochem 129:561–570PubMedCrossRefGoogle Scholar
  54. 54.
    Schiaretti F, Bettati S, Viappiani C, Mozzarelli A (2004) pH dependence of tryptophan synthase catalytic mechanism: I. The first stage, the β-elimination reaction. J Biol Chem 279:29572–29582PubMedCrossRefGoogle Scholar
  55. 55.
    York SS (1972) Kinetic spectroscopic studies of substrate and subunit interactions of tryptophan synthetase. Biochemistry 11:2733–2740PubMedCrossRefGoogle Scholar
  56. 56.
    Pan P, Dunn MF (1996) β-Site covalent reactions trigger transitions between open and closed conformations of the tryptophan synthase bienzyme complex. Biochemistry 35:5002–5013PubMedCrossRefGoogle Scholar
  57. 57.
    Casino P, Niks D, Ngo H, Pan P, Brzovic P, Blumenstein L, Barends TR, Schlichting I, Dunn MF (2007) Allosteric regulation of tryptophan synthase channeling: the internal aldimine probed by trans-3-indole-3′-acrylate binding. Biochemistry 46:7728–7739PubMedCrossRefGoogle Scholar
  58. 58.
    Brzovic PS, Kayastha AM, Miles EW, Dunn MF (1992) Substitution of glutamic acid 109 by aspartic acid alters the substrate specificity and catalytic activity of the β-subunit in the tryptophan synthase bienzyme complex from Salmonella typhimurium. Biochemistry 31:1180–1190PubMedCrossRefGoogle Scholar
  59. 59.
    Lu Z, Nagata S, McPhie P, Miles EW (1993) Lysine 87 in the β-subunit of tryptophan synthase that forms an internal aldimine with pyridoxal phosphate serves critical roles in transimination, catalysis, and product release. J Biol Chem 268:8727–8734PubMedGoogle Scholar
  60. 60.
    Osborne A, Teng Q, Miles EW, Phillips RS (2003) Detection of open and closed conformations of tryptophan synthase by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance of bound 1-15N-l-tryptophan. J Biol Chem 278:44083–44090PubMedCrossRefGoogle Scholar
  61. 61.
    Ferrari D, Niks D, Yang LH, Miles EW, Dunn MF (2003) Allosteric communication in the tryptophan synthase bienzyme complex: roles of the β-subunit aspartate 305-arginine 141 salt bridge. Biochemistry 42:7807–7818PubMedCrossRefGoogle Scholar
  62. 62.
    Ferrari D, Yang LH, Miles EW, Dunn MF (2001) βD305A mutant of tryptophan synthase shows strongly perturbed allosteric regulation and substrate specificity. Biochemistry 40:7421–7432PubMedCrossRefGoogle Scholar
  63. 63.
    Drewe WF Jr, Dunn MF (1986) Characterization of the reaction of l-serine and indole with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. Biochemistry 25:2494–2501PubMedCrossRefGoogle Scholar
  64. 64.
    Woehl E, Dunn MF (1999) Mechanisms of monovalent cation action in enzyme catalysis: the tryptophan synthase α-, β-, and α, β-reactions. Biochemistry 38:7131–7141PubMedCrossRefGoogle Scholar
  65. 65.
    Weber-Ban E, Hur O, Bagwell C, Banik U, Yang LH, Miles EW, Dunn MF (2001) Investigation of allosteric linkages in the regulation of tryptophan synthase: the roles of salt bridges and monovalent cations probed by site-directed mutation, optical spectroscopy, and kinetics. Biochemistry 40:3497–3511PubMedCrossRefGoogle Scholar
  66. 66.
    Cash MT, Miles EW, Phillips RS (2004) The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[2H]indole. Arch Biochem Biophys 432:233–243PubMedCrossRefGoogle Scholar
  67. 67.
    Brzovic PS, Hyde CC, Miles EW, Dunn MF (1993) Characterization of the functional role of a flexible loop in the α-subunit of tryptophan synthase from Salmonella typhimurium by rapid-scanning, stopped-flow spectroscopy and site-directed mutagenesis. Biochemistry 32:10404–10413PubMedCrossRefGoogle Scholar
  68. 68.
    Brzovic PS, Sawa Y, Hyde CC, Miles EW, Dunn MF (1992) Evidence that mutations in a loop region of the α-subunit inhibit the transition from an open to a closed conformation in the tryptophan synthase bienzyme complex. J Biol Chem 267:13028–13038PubMedGoogle Scholar
  69. 69.
    Mozzarelli A, Peracchi A, Rovegno B, Dale G, Rossi GL, Dunn MF (2000) Effect of pH and monovalent cations on the formation of quinonoid intermediates of the tryptophan synthase α2β2 complex in solution and in the crystal. J Biol Chem 275:6956–6962PubMedCrossRefGoogle Scholar
  70. 70.
    Strambini GB, Cioni P, Peracchi A, Mozzarelli A (1992) Conformational changes and subunit communication in tryptophan synthase: effect of substrates and substrate analogs. Biochemistry 31:7535–7542PubMedCrossRefGoogle Scholar
  71. 71.
    Strambini GB, Cioni P, Peracchi A, Mozzarelli A (1992) Characterization of tryptophan and coenzyme luminescence in tryptophan synthase from Salmonella typhimurium. Biochemistry 31:7527–7534PubMedCrossRefGoogle Scholar
  72. 72.
    Vaccari S, Benci S, Peracchi A, Mozzarelli A (1996) Time-resolved fluorescence of tryptophan synthase. Biophys Chem 61:9–22PubMedCrossRefGoogle Scholar
  73. 73.
    Bettati S, Benci S, Campanini B, Raboni S, Chirico G, Beretta S, Schnackerz KD, Hazlett TL, Gratton E, Mozzarelli A (2000) Role of pyridoxal 5′-phosphate in the structural stabilization of O-acetylserine sulfhydrylase. J Biol Chem 275:40244–40251PubMedCrossRefGoogle Scholar
  74. 74.
    Bettati S, Campanini B, Vaccari S, Mozzarelli A, Schianchi G, Hazlett TL, Gratton E, Benci S (2002) Unfolding of pyridoxal 5′-phosphate-dependent O-acetylserine sulfhydrylase probed by time-resolved tryptophan fluorescence. Biochim Biophys Acta 1596:47–54PubMedGoogle Scholar
  75. 75.
    Schnackerz KD, Mozzarelli A (1998) Plasticity of the tryptophan synthase active site probed by 31P NMR spectroscopy. J Biol Chem 273:33247–33253PubMedCrossRefGoogle Scholar
  76. 76.
    Rhee S, Miles EW, Mozzarelli A, Davies DR (1998) Cryocrystallography and microspectrophotometry of a mutant (αD60N) tryptophan synthase α2β2 complex reveals allosteric roles of αAsp60. Biochemistry 37:10653–10659PubMedCrossRefGoogle Scholar
  77. 77.
    Kulik V, Weyand M, Seidel R, Niks D, Arac D, Dunn MF, Schlichting I (2002) On the role of αThr183 in the allosteric regulation and catalytic mechanism of tryptophan synthase. J Mol Biol 324:677–690PubMedCrossRefGoogle Scholar
  78. 78.
    Ahmed SA, Hyde CC, Thomas G, Miles EW (1987) Microcrystals of tryptophan synthase α2β2 complex from Salmonella typhimurium are catalytically active. Biochemistry 26:5492–5498PubMedCrossRefGoogle Scholar
  79. 79.
    Pioselli B, Bettati S, Mozzarelli A (2005) Confinement and crowding effects on tryptophan synthase α2β2 complex. FEBS Lett 579:2197–2202PubMedCrossRefGoogle Scholar
  80. 80.
    Leja CA, Woehl EU, Dunn MF (1995) Allosteric linkages between β-site covalent transformations and α-site activation and deactivation in the tryptophan synthase bienzyme complex. Biochemistry 34:6552–6561PubMedCrossRefGoogle Scholar
  81. 81.
    Ogasahara K, Hiraga K, Ito W, Miles EW, Yutani K (1992) Origin of the mutual activation of the α and β2 subunits in the α2β2 complex of tryptophan synthase. Effect of alanine or glycine substitutions at proline residues in the α-subunit. J Biol Chem 267:5222–5228PubMedGoogle Scholar
  82. 82.
    Rowlett R, Yang LH, Ahmed SA, McPhie P, Jhee KH, Miles EW (1998) Mutations in the contact region between the α and β subunits of tryptophan synthase alter subunit interaction and intersubunit communication. Biochemistry 37:2961–2968PubMedCrossRefGoogle Scholar
  83. 83.
    Marabotti A, De Biase D, Tramonti A, Bettati S, Mozzarelli A (2001) Allosteric communication of tryptophan synthase: functional and regulatory properties of the βS178P mutant. J Biol Chem 276:17747–17753PubMedCrossRefGoogle Scholar
  84. 84.
    Raboni S, Bettati S, Mozzarelli A (2005) Identification of the geometric requirements for allosteric communication between the α- and β-subunits of tryptophan synthase. J Biol Chem 280:13450–13456PubMedCrossRefGoogle Scholar
  85. 85.
    Raboni S, Pioselli B, Bettati S, Mozzarelli A (2003) The molecular pathway for the allosteric regulation of tryptophan synthase. Biochim Biophys Acta 1647:157–160PubMedGoogle Scholar
  86. 86.
    Spyrakis F, Raboni S, Cozzini P, Bettati S, Mozzarelli A (2006) Allosteric communication between α- and β-subunits of tryptophan synthase: modelling the open-closed transition of the α-subunit. Biochim Biophys Acta 1764:1102–1109PubMedGoogle Scholar
  87. 87.
    Amadasi A, Bertoldi M, Contestabile R, Bettati S, Cellini B, di Salvo ML, Borri-Voltattorni C, Bossa F, Mozzarelli A (2007) Pyridoxal 5′-phosphate enzymes as targets for therapeutic agents. Curr Med Chem 14:1291–1324PubMedCrossRefGoogle Scholar
  88. 88.
    Greenville-Briggs LJ, Avreva AO, Bruce CR, Williams A, Whisson SC, Birch PR, van West P (2005) Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Fungal Genet Biol 42:244–256CrossRefGoogle Scholar
  89. 89.
    Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, Maclean I, Mohammed Z, Peeling R, Roshick C, Schachter J, Solomon AW, Stamm WE, Suchland RJ, Taylor L, West SK, Quinn TC, Belland RJ, McClarty G (2003) Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest 111:1757–1769PubMedGoogle Scholar
  90. 90.
    Fehlner-Gardiner C, Roshick C, Carlson JH, Hughes S, Belland RJ, Caldwell HD, McClarty G (2002) Molecular basis defining human Chlamydia trachomatis tissue tropism: a possible role for tryptophan synthase. J Biol Chem 277:26893–26903PubMedCrossRefGoogle Scholar
  91. 91.
    Chaudhary K, Roos DS (2005) Protozoan genomics for drug discovery. Nat Biotechnol 23:1089–1091Google Scholar
  92. 92.
    Finn J, Langevine C, Birk I, Birk J, Nickerson K, Rodaway S (1999) Rational herbicide design by inhibition of tryptophan biosynthesis. Bioorg Med Chem Lett 9:2297–2302PubMedCrossRefGoogle Scholar
  93. 93.
    Dias MV, Canduri F, da Silveira NJ, Czekster CM, Basso LA, Palma MS, Santos DS, de Azevedo WF Jr (2006) Molecular models of tryptophan synthase from Mycobacterium tuberculosis complexed with inhibitors. Cell Biochem Biophys 44:375–384PubMedCrossRefGoogle Scholar
  94. 94.
    Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440:303–307PubMedCrossRefGoogle Scholar
  95. 95.
    Blumenstein L, Domratcheva T, Niks D, Ngo H, Seidel R, Dunn MF, Schlichting I (2007) βQ114N and βT110V mutations reveal a critically important role of the substrate α-carboxylate site in the reaction specificity of tryptophan synthase. Biochemistry 46:14100–14116PubMedCrossRefGoogle Scholar
  96. 96.
    Ngo H, Harris R, Kimmich N, Casino P, Niks D, Blumenstein L, Barends TR, Kulik V, Weyand M, Schlichting I, Dunn MF (2007) Synthesis and characterization of allosteric probes of substrate channeling in the tryptophan synthase bienzyme complex. Biochemistry 46:7713–7727PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Samanta Raboni
    • 1
    • 3
  • Stefano Bettati
    • 1
    • 2
  • Andrea Mozzarelli
    • 1
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of ParmaParmaItaly
  2. 2.Italian National Institute of Biostructures and BiosystemsParmaItaly
  3. 3.CRIBI Biotechnology Centre, University of PaduaPaduaItaly

Personalised recommendations